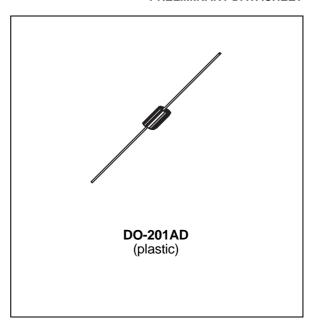


MDV04-600

HIGH VOLTAGE ULTRA-FAST DIODE FOR VIDEO


PRELIMINARY DATASHEET

MAJOR PRODUCTS CHARACTERISTICS

Fpeak	4 A
V _{RRM}	600 V
t _{rr}	55 ns
V _F (max)	1.2 V

FEATURES AND BENEFITS

- TURBOSWITCH[™] OUTSTANDING BENEFITS.
- HIGH REVERSE VOLTAGE: 600 V
- LOW POWER LOSSES INDUCING LOW TEMPERATURE AND HIGH RELIABILITY.
- OPTIMIZED COMPROMISE BETWEEN t_{rr} AND SOFTNESS FOR VIDEO HORIZONTAL DEFLECTION.

DESCRIPTION

High voltage ultra-fast diode especially designed for modulation and fkyback rectification in standard and figh resolution displays for TV's and monitors.

The device is packaged in a DO-201AD axial enveloppe.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	VALUE	Unit	
V_{RRM}	Repetitive Peak Reverse Voltage		600	V
V_{RWM}	Reverse Working Voltage		600	V
I _F peak	Forward Average Current (1)	4	Α	
	Ambient temperature (2)	115	°C	
I _{FRM}	Repetitive peak forward current	tp = 5μs f = 1kHz	100	Α
I _{FSM}	Surge Non Repetitive Forward Current	150	Α	
T _{stg}	Storage Temperature Range	- 40 to 150	°C	
Tj	Max Operating Junction Temperature	150	°C	

⁽¹⁾ delta = 0.5 and triangular waveform

October 1996 - Ed: 2 1/3

⁽²⁾ on infinite heatsink with 10mm lead length

MDV04-600

THERMAL DATA

Symbol	Parameter	Max.	Unit
R _{th(j-l)}	Junction to lead on infinite heatsink	21	°C/W
R _{th(j-a)}	Junction to ambient on printed circuit L lead = 10mm	75	°C/W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Con	ditions	Тур.	Max.	Unit
I _R *	Reverse Leakage Current	$V_R = 0.8 V_{RWM}$	Tj = 25°C Tj = 125°C		50 0.75	μA mA
V _F **	Forward Voltage Drop	I _F = 4 A	Tj = 25°C Tj = 125°C		1.28 1.20	V

Pulse test:

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

Symbol	Parameter	Test Conditions	Тур.	Max.	Unit
t _{rr}	Reverse Recovery Time	I _F = 0.5A I _R = 1A Irr = 0.25A	55	75	ns
		I _F = + 100 mA / - 100 mA	130		ns

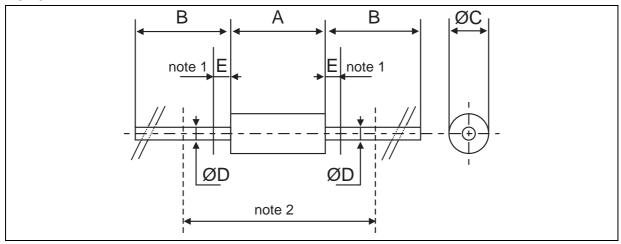
DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-ON SWITCHING

Symbol	Parameter	Test Conditions	Тур.	Max.	Unit
t _{fr}	Forward Recovery Time	$I_F = 4 \text{ A}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$		0.5	μs
V _{FP}	Peak Forward Voltage	Measured at V _F max. Tj = 25°C		15	V

To evaluate the maximum conduction losses use the following equation :

$$P = \frac{1.0 \times I_p}{2} \times \delta + \frac{0.050 \times I_p^{\ \ 2}}{3} \times \delta$$


 δ : duty cycle Ip: Peak current

Ex : for $\,\,I_{P}$ = 4 A and δ = 0.5, P = 1.2 Watts.

^{*} tp = 5 ms, duty cycle < 2%** tp = $380 \mu s$, duty cycle < 2%

PACKAGE MECHANICAL DATA

DO-201AD

		DIMEN	SIONS		
REF.	Millin	neters Inches		hes	NOTES
	Min.	Max.	Min.	Max.	
Α		9.50		0.374	1 - The lead diameter Ø D is not controlled over zone E
В	25.40		1.000		2 - The minimum axial lengh within which the device may be
ØC		5.30		0.209	placed with its leads bent at right angles is 0.59"(15 mm)
ØD		1.30		0.051	
Е		1.25		0.049	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

