# MCM69P737

# Product Preview 128K x 36 Bit Pipelined BurstRAM<sup>™</sup> Synchronous Fast Static RAM

The MCM69P737 is a 4M bit synchronous fast static RAM designed to provide a burstable, high performance, secondary cache for the PowerPC<sup>™</sup> and other high performance microprocessors. It is organized as 128K words of 36 bits each. This device integrates input registers, an output register, a 2–bit address counter, and high speed SRAM onto a single monolithic circuit for reduced parts count in cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K).

\_Addresses (SA), data inputs (DQx), and all control signals except output enable (G) and Linear Burst Order (LBO) are clock (K) controlled through positive–edge–triggered noninverting registers.

Bursts can be initiated with either ADSP or ADSC input pins. Subsequent burst addresses can be generated internally by the MCM69P737 (burst sequence operates in linear or interleaved mode dependent upon state of LBO) and controlled by the burst address advance (ADV) input pin.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased timing flexibility for incoming signals.

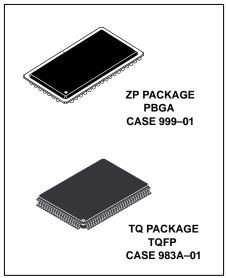
Synchronous byte write (SBx), synchronous global write (SGW), and synchronous write enable (SW) are provided to allow writes to either individual bytes or to all bytes. The four bytes are designated as "a", "b", "c", and "d". SBa controls DQa, SBb controls DQb, etc. Individual bytes are written if the selected byte writes SBx are asserted with SW. All bytes are written if either SGW is asserted or if all SBx and SW are asserted.

For read cycles, pipelined SRAMs output data is temporarily stored by an edgetriggered output register and then released to the output buffers at the next rising edge of clock (K).

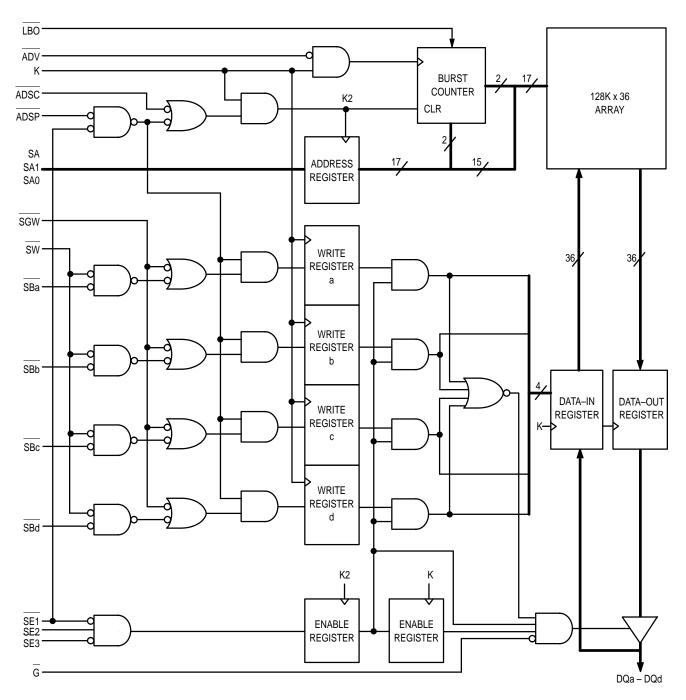
The MCM69P737 operates from a 3.3 V core power supply and all outputs operate on a 2.5 V power supply. All inputs and outputs are JEDEC standard JESD8–5 compatible.

MCM69P737 Speed Options

| Speed   | <sup>t</sup> кнкн | Pipelined<br><sup>t</sup> KHQV | Setup  | Hold   | I <sub>DD</sub> | Pkg       |
|---------|-------------------|--------------------------------|--------|--------|-----------------|-----------|
| 166 MHz | 6 ns              | 3.5 ns                         | 1.5 ns | 0.5 ns | 425 mA          | PBGA      |
| 150 MHz | 6.7 ns            | 3.8 ns                         | 1.5 ns | 0.5 ns | 400 mA          | PBGA      |
| 133 MHz | 7.5 ns            | 4 ns                           | 1.5 ns | 0.5 ns | 375 mA          | PBGA/TQFP |
| 117 MHz | 8.5 ns            | 4 ns                           | 2 ns   | 0.5 ns | 350 mA          | PBGA/TQFP |


- <u>3.3 V + 10%, 5% Core</u> Power Supply, 2.5 V I/O Supply
- ADSP, ADSC, and ADV Burst Control Pins
- Selectable Burst Sequencing Order (Linear/Interleaved)
- Single-Cycle Deselect Timing
- Internally Self-Timed Write Cycle
- Byte Write and Global Write Control
- JEDEC Standard 119 Pin PBGA and 100 Pin TQFP Packages

BurstRAM is a trademark of Motorola, Inc.


PowerPC is a trademark of IBM Corp.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.

8/7/96







## **PIN ASSIGNMENTS**

|                                           |                                                                                            | 2                                                                                                                               | 3                                     | 4                                                               | 5                                                                                                                                         | 6                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>E<br>F<br>G           | 1<br>VDDQ<br>NC ONC ONC<br>DQC ODQ<br>DQC<br>DQC<br>DQC<br>DQC                             | 2<br>SA<br>SE2<br>SA<br>DQc<br>DQc<br>DQc<br>DQc<br>OQc                                                                         | 3<br>SA OSA OSA OSS<br>VSS OSS<br>SBC | 4<br>ADSP<br>ADSC<br>VDD<br>NC<br>VDD<br>SE1<br>G<br>ADV<br>ADV | 5<br>SA<br>SA<br>SA<br>SA<br>SA<br>SS<br>SB<br>SB<br>SB<br>SB<br>SB<br>SB<br>SB<br>SB<br>SB<br>SB                                         | 6<br>SA<br>SE3<br>SA<br>DQb<br>DQb<br>DQb<br>DQb<br>ODb<br>ODb              | 7<br>VDDQ<br>NC<br>NC<br>DQb<br>DQb<br>VDDQ<br>OQb<br>OQb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H<br>J<br>K<br>M<br>N<br>P<br>R<br>T<br>U | DQc<br>VDDQ<br>DQd<br>DQd<br>VDDQ<br>DQd<br>VDDQ<br>DQd<br>DQd<br>NC<br>NC<br>VDDQ<br>VDDQ | DQC<br>VDD<br>DQd<br>DQd<br>DQd<br>DQd<br>DQd<br>DQd<br>DQd<br>CQd<br>CQd<br>CQd<br>CQd<br>CQd<br>CQd<br>CQd<br>CQd<br>CQd<br>C |                                       | SGW<br>VDD K ON QW OSA1 OD NO NO NO                             | VS<br>NO<br>VS<br>SB<br>VS<br>VS<br>VS<br>VS<br>VS<br>NO<br>S<br>O<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>S | DQb<br>VDD<br>DQa<br>DQa<br>DQa<br>DQa<br>DQa<br>SA<br>SA<br>SA<br>SA<br>SA | DQb<br>O<br>VDDQ<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>DQa<br>O<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D |

**TOP VIEW 119 BUMP PBGA** 

TOP VIEW 100 PIN TQFP

Not to Scale

# PBGA PIN DESCRIPTIONS

| Pin Locations                                                                                                                                                                                              | Symbol           | Туре   | Description                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4B                                                                                                                                                                                                         | ADSC             | Input  | Synchronous Address Status Controller: Initiates READ, WRITE, or chip deselect cycle.                                                                                                                                                     |
| 4A                                                                                                                                                                                                         | ADSP             | Input  | Synchronous Address Status Processor: Initiates READ, WRITE, or <u>chip d</u> eselect cycle (exception — chip deselect does not occur when ADSP is asserted and SE1 is high).                                                             |
| 4G                                                                                                                                                                                                         | ADV              | Input  | Synchronous Address Advance: Increments address count in accordance with counter type selected (linear/interleaved).                                                                                                                      |
| <ul> <li>(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P</li> <li>(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H</li> <li>(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H</li> <li>(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P</li> </ul> | DQx              | I/O    | Synchronous Data I/O: "x" refers to the byte being read or written (byte a, b, c, d).                                                                                                                                                     |
| 4F                                                                                                                                                                                                         | G                | Input  | Asynchronous Output Enable Input:<br>Low — enables output buffers (DQx pins).<br>High — DQx pins are high impedance.                                                                                                                      |
| 4K                                                                                                                                                                                                         | к                | Input  | Clock: <u>Th</u> is sig <u>nal regi</u> sters the address, data in, and all control signals except G and LBO.                                                                                                                             |
| 3R                                                                                                                                                                                                         | LBO              | Input  | Linear Burst Order Input: This pin must remain in steady state (this signal not registered or latched). It must be tied high or low.<br>Low — linear burst counter (68K/PowerPC).<br>High — interleaved burst counter (486/i960/Pentium). |
| 2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C,<br>5C, 6C, 2R, 6R, 3T, 5T, 6T                                                                                                                                              | SA               | Input  | Synchronous Address Inputs: These inputs are registered and must meet setup and hold times.                                                                                                                                               |
| 4N, 4P                                                                                                                                                                                                     | SA1,SA0          | Input  | Synchronous Address Inputs: These pins must be wired to the two LSBs of the address bus for proper burst operation. These inputs are registered and must meet setup and hold times.                                                       |
| 5L, 5G, 3G, 3L<br>(a) (b) (c) (d)                                                                                                                                                                          | SBx              | Input  | Synchrono <u>us By</u> te Write In <u>puts</u> : "x" refers to the byte being written (byte a, b, c, d). SGW overrides SBx.                                                                                                               |
| 4E                                                                                                                                                                                                         | SE1              | Input  | Synchronous Chip Enab <u>le: Ac</u> tive low to enable chip<br>Negated high — blocks ADSP or deselects chip when ADSC is<br>asserted.                                                                                                     |
| 2B                                                                                                                                                                                                         | SE2              | Input  | Synchronous Chip Enable: Active high for depth expansion.                                                                                                                                                                                 |
| 6B                                                                                                                                                                                                         | SE3              | Input  | Synchronous Chip Enable: Active low for depth expansion.                                                                                                                                                                                  |
| 4H                                                                                                                                                                                                         | SGW              | Input  | Synchronous <u>Glo</u> bal <u>Write</u> : This signal writes all bytes regar <u>dles</u> s of the status of the SBx and SW signals. If only byte write signals SBx are being used, tie this pin high.                                     |
| 4M                                                                                                                                                                                                         | SW               | Input  | Synchronous Write: This sign <u>al w</u> rites only those bytes that have been selected using the byte write SBx pins. If only byte write signals SBx are being used, tie this pin low.                                                   |
| 4C, 2J, 4J, 6J, 4R                                                                                                                                                                                         | V <sub>DD</sub>  | Supply | Core Power Supply.                                                                                                                                                                                                                        |
| 1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U                                                                                                                                                                     | V <sub>DDQ</sub> | Supply | I/O Power Supply.                                                                                                                                                                                                                         |
| 3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H,<br>3K, 5K, 3M, 5M, 3N, 5N, 3P, 5P                                                                                                                                          | V <sub>SS</sub>  | Supply | Ground.                                                                                                                                                                                                                                   |
| 1B, 7B, 1C, 7C, 4D, 3J, 5J, 4L, 1R, 5R,<br>7R, 1T, 2T 4T, 7T, 2U, 3U, 4U, 5U, 6U                                                                                                                           | NC               | -      | No Connection: There is no connection to the chip.                                                                                                                                                                                        |

# **TQFP PIN DESCRIPTIONS**

| Pin Locations                                                                                                                                                 | Symbol           | Туре   | Description                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85                                                                                                                                                            | ADSC             | Input  | Synchronous Address Status Controller: Initiates READ, WRITE, or chip deselect cycle.                                                                                                                                                     |
| 84                                                                                                                                                            | ADSP             | Input  | Synchronous Address Status Processor: Initiates READ, WRITE, or <u>chip deselect cycle (exception — chip deselect does not occur when</u> ADSP is asserted and SE1 is high).                                                              |
| 83                                                                                                                                                            | ADV              | Input  | Synchronous Address Advance: Increments address count in accordance with counter type selected (linear/interleaved).                                                                                                                      |
| (a) 51, 52, 53, 56, 57, 58, 59, 62, 63<br>(b) 68, 69, 72, 73, 74, 75, 78, 79, 80<br>(c) 1, 2, 3, 6, 7, 8, 9, 12, 13<br>(d) 18, 19, 22, 23, 24, 25, 28, 29, 30 | DQx              | I/O    | Synchronous Data I/O: "x" refers to the byte being read or written (byte a, b, c, d).                                                                                                                                                     |
| 86                                                                                                                                                            | G                | Input  | Asynchronous Output Enable Input:<br>Low — enables output buffers (DQx pins).<br>High — DQx pins are high impedance.                                                                                                                      |
| 89                                                                                                                                                            | К                | Input  | Clock: <u>Th</u> is signal registers the address, data in, and all control signals except G and LBO.                                                                                                                                      |
| 31                                                                                                                                                            | LBO              | Input  | Linear Burst Order Input: This pin must remain in steady state (this signal not registered or latched). It must be tied high or low.<br>Low — linear burst counter (68K/PowerPC).<br>High — interleaved burst counter (486/i960/Pentium). |
| 32, 33, 34, 35, 44, 45, 46,<br>47, 48, 49, 50, 81, 82, 99, 100                                                                                                | SA               | Input  | Synchronous Address Inputs: These inputs are registered and must meet setup and hold times.                                                                                                                                               |
| 36, 37                                                                                                                                                        | SA1,SA0          | Input  | Synchronous Address Inputs: these pins must be wired to the two LSBs of the address bus for proper burst operation. These inputs are registered and must meet setup and hold times.                                                       |
| 93, 94, 95, 96<br>(a) (b) (c) (d)                                                                                                                             | SBx              | Input  | Synchrono <u>us By</u> te Write In <u>puts</u> : "x" refers to the byte being written (byte a, b, c, d). SGW overrides SBx.                                                                                                               |
| 98                                                                                                                                                            | SE1              | Input  | Synchronous Chip Enab <u>le: Ac</u> tive low to enable chip<br>Negated high — blocks ADSP or deselects chip when ADSC is<br>asserted.                                                                                                     |
| 97                                                                                                                                                            | SE2              | Input  | Synchronous Chip Enable: Active high for depth expansion.                                                                                                                                                                                 |
| 92                                                                                                                                                            | SE3              | Input  | Synchronous Chip Enable: Active low for depth expansion.                                                                                                                                                                                  |
| 88                                                                                                                                                            | SGW              | Input  | Synchronous <u>Glo</u> bal <u>Write</u> : This signal writes all bytes regar <u>dles</u> s of the status of the SBx and SW signals. If only byte write signals SBx are being used, tie this pin high.                                     |
| 87                                                                                                                                                            | SW               | Input  | Synchronous Write: This sign <u>al w</u> rites only those bytes that have been selected using the byte write SBx pins. If only byte write signals SBx are being used, tie this pin low.                                                   |
| 15, 41, 65, 91                                                                                                                                                | V <sub>DD</sub>  | Supply | Core Power Supply.                                                                                                                                                                                                                        |
| 4, 11, 20, 27, 54, 61, 70, 77                                                                                                                                 | V <sub>DDQ</sub> | Supply | I/O Power Supply.                                                                                                                                                                                                                         |
| 5, 10, 17, 21, 26, 40,<br>55, 60, 67, 71, 76, 90                                                                                                              | V <sub>SS</sub>  | Supply | Ground.                                                                                                                                                                                                                                   |
| 14, 16, 38, 39, 42, 43, 64, 66                                                                                                                                | NC               | _      | No Connection: There is no connection to the chip.                                                                                                                                                                                        |

## TRUTH TABLE (See Notes 1 through 5)

| Next Cycle     | Address<br>Used | SE1 | SE2 | SE3 | ADSP | ADSC | ADV | G 3 | DQx    | Write 2, 4        |
|----------------|-----------------|-----|-----|-----|------|------|-----|-----|--------|-------------------|
| Deselect       | None            | 1   | Х   | Х   | Х    | 0    | Х   | Х   | High–Z | Х                 |
| Deselect       | None            | 0   | Х   | 1   | 0    | Х    | Х   | Х   | High–Z | Х                 |
| Deselect       | None            | 0   | 0   | Х   | 0    | Х    | Х   | Х   | High–Z | Х                 |
| Deselect       | None            | Х   | Х   | 1   | 1    | 0    | Х   | Х   | High–Z | Х                 |
| Deselect       | None            | Х   | 0   | Х   | 1    | 0    | Х   | Х   | High–Z | Х                 |
| Begin Read     | External        | 0   | 1   | 0   | 0    | Х    | Х   | Х   | High–Z | Х2                |
| Begin Read     | External        | 0   | 1   | 0   | 1    | 0    | Х   | Х   | High–Z | READ <sup>5</sup> |
| Continue Read  | Next            | Х   | Х   | Х   | 1    | 1    | 0   | 1   | High–Z | READ              |
| Continue Read  | Next            | Х   | Х   | Х   | 1    | 1    | 0   | 0   | DQ     | READ              |
| Continue Read  | Next            | 1   | Х   | Х   | Х    | 1    | 0   | 1   | High–Z | READ              |
| Continue Read  | Next            | 1   | Х   | Х   | Х    | 1    | 0   | 0   | DQ     | READ              |
| Suspend Read   | Current         | Х   | Х   | Х   | 1    | 1    | 1   | 1   | High–Z | READ              |
| Suspend Read   | Current         | Х   | Х   | Х   | 1    | 1    | 1   | 0   | DQ     | READ              |
| Suspend Read   | Current         | 1   | Х   | Х   | Х    | 1    | 1   | 1   | High–Z | READ              |
| Suspend Read   | Current         | 1   | Х   | Х   | Х    | 1    | 1   | 0   | DQ     | READ              |
| Begin Write    | External        | 0   | 1   | 0   | 1    | 0    | Х   | Х   | High–Z | WRITE             |
| Continue Write | Next            | Х   | Х   | Х   | 1    | 1    | 0   | Х   | High–Z | WRITE             |
| Continue Write | Next            | 1   | Х   | Х   | Х    | 1    | 0   | Х   | High–Z | WRITE             |
| Suspend Write  | Current         | Х   | Х   | Х   | 1    | 1    | 1   | Х   | High–Z | WRITE             |
| Suspend Write  | Current         | 1   | Х   | Х   | Х    | 1    | 1   | Х   | High–Z | WRITE             |

 NOTES:
 1. X = Don't Care. 1 = logic high. 0 = logic low.

 2. Write is defined as either 1) any SBx and SW low or 2) SGW is low.

3. G is an asynchronous signal and is not sampled by the clock K. G drives the bus immediately (t<sub>GLQX</sub>) following G going low.

4. On write cycles that follow read cycles, G must be negated prior to the start of the write cycle to ensure proper write data setup times. G must also remain negated at the completion of the write cycle to ensure proper write data hold times.

5. This read assumes the RAM was previously deselected.

## LINEAR BURST ADDRESS TABLE $(LBO = V_{SS})$

| 1st Address (External) | 2nd Address (Internal) | 3rd Address (Internal) | 4th Address (Internal) |
|------------------------|------------------------|------------------------|------------------------|
| X X00                  | X X01                  | X X10                  | X X11                  |
| X X01                  | X X10                  | X X11                  | X X00                  |
| X X10                  | X X11                  | X X00                  | X X01                  |
| X X11                  | X X00                  | X X01                  | X X10                  |

# **INTERLEAVED BURST ADDRESS TABLE** (LBO = VDD)

| 1st Address (External) | 2nd Address (Internal) | 3rd Address (Internal) | 4th Address (Internal) |
|------------------------|------------------------|------------------------|------------------------|
| X X00                  | X X01                  | X X10                  | X X11                  |
| X X01                  | X X00                  | X X11                  | X X10                  |
| X X10                  | X X11                  | X X00                  | X X01                  |
| X X11                  | X X10                  | X X01                  | X X00                  |

## WRITE TRUTH TABLE

| Cycle Type      | SGW | SW | SBa | SBb | SBc | SBd |
|-----------------|-----|----|-----|-----|-----|-----|
| Read            | Н   | Н  | Х   | Х   | Х   | Х   |
| Read            | Н   | L  | н   | Н   | Н   | н   |
| Write Byte a    | Н   | L  | L   | Н   | Н   | н   |
| Write Byte b    | Н   | L  | н   | L   | Н   | н   |
| Write Byte c    | Н   | L  | L   | Н   | L   | Н   |
| Write Byte d    | н   | L  | н   | L   | Н   | L   |
| Write All Bytes | Н   | L  | L   | L   | L   | L   |
| Write All Bytes | L   | Х  | Х   | Х   | Х   | Х   |

#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                                                                                       | Symbol                             | Value                                              | Unit |
|----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------|------|
| Power Supply Voltage                                                                         | V <sub>DD</sub>                    | V <sub>SS</sub> – 0.5 to + 4.6                     | V    |
| I/O Supply Voltage (See Note 3)                                                              | V <sub>DDQ</sub>                   | $V_{SS}$ – 0.5 to $V_{DD}$                         | V    |
| Input Voltage Relative to V <sub>SS</sub> for Any<br>Pin Except V <sub>DD</sub> (See Note 3) | V <sub>in</sub> , V <sub>out</sub> | V <sub>SS</sub> – 0.5 to<br>V <sub>DD</sub> + 0.5  | V    |
| Input Voltage (Three–State I/O) (See Note 3)                                                 | VIT                                | V <sub>SS</sub> – 0.5 to<br>V <sub>DDQ</sub> + 0.5 | V    |
| Output Current (per I/O)                                                                     | I <sub>out</sub>                   | ± 20                                               | mA   |
| Package Power Dissipation (See Note 2)                                                       | PD                                 | 1.6                                                | W    |
| Temperature Under Bias                                                                       | T <sub>bias</sub>                  | – 10 to 85                                         | °C   |
| Storage Temperature                                                                          | T <sub>stg</sub>                   | – 55 to 125                                        | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high–impedance circuit.

NOTES:

 Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

- 2. Power dissipation capability is dependent upon package characteristics and use environment. See Package Thermal Characteristics.
- 3. This is a steady–state DC parameter that is in effect after the power supply has achieved its nominal operating level. Power sequencing cannot be controlled and is not allowed.

#### PACKAGE THERMAL CHARACTERISTICS-PBGA

| Rating                          |                                        | Symbol           | Max      | Unit | Notes |
|---------------------------------|----------------------------------------|------------------|----------|------|-------|
| Junction to Ambient (@ 200 lfm) | Single Layer Board<br>Four Layer Board | R <sub>θJA</sub> | 41<br>19 | °C/W | 1, 2  |
| Junction to Board (Bottom)      |                                        | $R_{\theta JB}$  | 11       | °C/W | 3     |
| Junction to Case (Top)          |                                        | $R_{\theta JC}$  | 9        | °C/W | 4     |

NOTES:

1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, board population, and board thermal resistance.

2. Per SEMI G38-87.

3. Indicates the average thermal resistance between the die and the printed circuit board.

4. Indicates the average thermal resistance between the die and the case top surface via the cold plate method (MIL SPEC-883 Method 1012.1).

#### PACKAGE THERMAL CHARACTERISTICS-TQFP (See Note 1)

| Rating                          |                                        | Symbol           | Max      | Unit | Notes |
|---------------------------------|----------------------------------------|------------------|----------|------|-------|
| Junction to Ambient (@ 200 lfm) | Single Layer Board<br>Four Layer Board | R <sub>θJA</sub> | 40<br>25 | °C/W | 2     |
| Junction to Board (Bottom)      |                                        | $R_{\theta JB}$  | 17       | °C/W | 3     |
| Junction to Case (Top)          |                                        | R <sub>θJC</sub> | 9        | °C/W | 4     |

NOTES:

1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, board population, and board thermal resistance.

2. Per SEMI G38-87.

3. Indicates the average thermal resistance between the die and the printed circuit board.

4. Indicates the average thermal resistance between the die and the case top surface via the cold plate method (MIL SPEC-883 Method 1012.1).

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(3.6 V  $\geq$  VDD  $\geq$  3.135 V, 110°C  $\geq$  TJ  $\geq$  20°C, Unless Otherwise Noted)

# **RECOMMENDED OPERATING CONDITIONS** (Voltages referenced to $V_{SS} = 0 V$ )

| Parameter             | Symbol          | Min   | Тур | Max                   | Unit |
|-----------------------|-----------------|-------|-----|-----------------------|------|
| Supply Voltage        | V <sub>DD</sub> | 3.135 | 3.3 | 3.6                   | V    |
| Operating Temperature | Тј              | 20    | _   | 110                   | °C   |
| Input Low Voltage     | VIL             | - 0.3 | —   | 0.7                   | V    |
| Input High Voltage    | VIH             | 1.7   | —   | V <sub>DD</sub> + 0.3 | V    |
| I/O Supply Voltage    | VDDQ            | 2.375 | 2.5 | V <sub>DD</sub>       | V    |

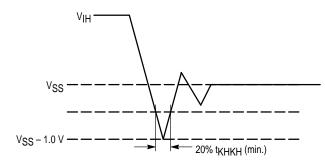



Figure 1. Undershoot Voltage

## DC CHARACTERISTICS AND SUPPLY CURRENTS

| Parameter                                                                                                                                                                                                                  | Symbol               | Min | Тур | Max                      | Unit | Notes         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|-----|--------------------------|------|---------------|
| Input Leakage Current (0 V $\leq$ V <sub>in</sub> $\leq$ V <sub>DD</sub> )                                                                                                                                                 | l <sub>lkg(l)</sub>  | -   | —   | ± 1                      | μA   |               |
| Output Leakage Current (0 V $\leq$ V <sub>in</sub> $\leq$ V <sub>DDQ</sub> )                                                                                                                                               | l <sub>lkg</sub> (O) | -   | —   | ± 1                      | μA   |               |
| AC Supply Current (Device Selected,<br>All Outputs Open, Cycle Time ≥ tKHKH min)<br>MCM69P737–3.8<br>MCM69P737–4<br>MCM69P737–4                                                                                            |                      | _   |     | 425<br>400<br>375<br>350 | mA   | 2, 3, 4       |
| CMOS Standby Supply Current<br>(Deselected, Clock (K) Cycle Time ≥ t <sub>KHKH</sub> )                                                                                                                                     | ISB1                 | -   | —   | 130                      | mA   | 1, 2,<br>3, 4 |
| Clock Running Supply Current (Deselected,<br>Clock (K) Cycle Time $\ge$ t <sub>KHKH</sub> , All Other Inputs Held to Static<br>CMOS Levels V <sub>in</sub> $\le$ V <sub>SS</sub> + 0.2 V or $\ge$ V <sub>DD</sub> - 0.2 V) |                      | _   | _   | 30                       | mA   | 1             |
| Output Low Voltage (I <sub>OL</sub> = 2 mA). Refer to Figure 5.                                                                                                                                                            | V <sub>OL</sub>      | -   | —   | 0.7                      | V    |               |
| Output High Voltage ( $I_{OL} = -2$ mA). Refer to Figure 5.                                                                                                                                                                | VOH                  | 1.7 | —   | —                        | V    |               |
| Desk Top Suspend Current (Selected, All Inputs $\leq$ 0.2 V, freq. = max, V <sub>DD</sub> = max, ADSP and ADSC = Logic High, Outputs Disabled)                                                                             | IDS1                 | -   | —   | TBD                      | mA   |               |
| Desk Top Idle Current (Selected, All Inputs $\leq$ 0.2 V, freq. =0,<br>V <sub>DD</sub> = max, ADSP and ADSC = Logic High, Outputs Disabled)                                                                                | IDS1A                | -   | —   | TBD                      | mA   |               |
| Desk Top Standby Current (Deselected, All Inputs $\leq$ 0.2 V, freq. =0, V <sub>DDQ</sub> = max, Outputs Disabled)                                                                                                         | IDS2                 | -   | —   | TBD                      | mA   |               |

NOTES:

1. Device is deselected as defined by the Truth Table.

2. Reference AC Operating Conditions and Characteristics for input and timing.

3. All addresses transition simultaneously low (LSB) then high (MSB).

4. Data states are all zero.

## $\textbf{CAPACITANCE} ~(\text{f} = 1.0 \text{ MHz}, \text{ dV} = 3.0 \text{ V}, ~110^{\circ}\text{C} \geq T_J \geq 20^{\circ}\text{C}, \text{ Periodically Sampled Rather Than 100\% Tested})$

| Parameter                | Symbol           | Min | Тур | Max | Unit |
|--------------------------|------------------|-----|-----|-----|------|
| Input Capacitance        | C <sub>in</sub>  | —   | 4   | 5   | pF   |
| Input/Output Capacitance | C <sub>I/O</sub> |     | 7   | 8   | pF   |

# AC OPERATING CONDITIONS AND CHARACTERISTICS

(3.6 V  $\geq$  VDD  $\geq$  3.135 V, 110°C  $\geq$  TJ  $\geq$  20°C, Unless Otherwise Noted)

| Input Timing Measurement Reference Level 1.2 | 5 V |
|----------------------------------------------|-----|
| Input Pulse Levels 0 to 2.8                  | 5 V |
| Input Slew Rate (See Note 1) 1.0 V           | /ns |

 Output Timing Reference Level
 1.25 V

 Output Load
 See Figure 2 Unless Otherwise Noted

 Output Rise/Fall Times (max)
 1.8 ns

#### **READ/WRITE CYCLE TIMING** (See Notes 1 and 2)

|                                                                                           |                                                                                                         | MCM69F<br>166 | 9737–3.5<br>MHz |     | 9737–3.8<br>MHz | MCM69P737–4<br>133 MHz |     | MCM69P737–4<br>117 MHz |     |      |         |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|-----------------|-----|-----------------|------------------------|-----|------------------------|-----|------|---------|
| Parameter                                                                                 | Symbol                                                                                                  | Min           | Max             | Min | Max             | Min                    | Max | Min                    | Max | Unit | Notes   |
| Cycle Time                                                                                | <sup>t</sup> KHKH                                                                                       | 6             | —               | 6.7 | _               | 7.5                    | —   | 8.5                    | —   | ns   |         |
| Clock High Pulse Width                                                                    | <sup>t</sup> KHKL                                                                                       | 2.4           | —               | 2.6 | _               | 2.8                    | —   | 3.4                    | —   | ns   | 3, 6    |
| Clock Low Pulse Width                                                                     | <sup>t</sup> KLKH                                                                                       | 2.4           | —               | 2.6 | _               | 2.8                    | —   | 3.4                    | —   | ns   | 3, 6    |
| Clock Low                                                                                 | <sup>t</sup> KL                                                                                         | 1.5           | —               | 1.7 | _               | 1.9                    | —   | 2.5                    | —   | ns   | 3, 6    |
| Clock High                                                                                | tкн                                                                                                     | 1.5           | —               | 1.7 | _               | 1.9                    | —   | 2.5                    | —   | ns   | 3, 6    |
| Clock Access Time                                                                         | <sup>t</sup> KHQV                                                                                       | —             | 3.5             | —   | 3.8             | —                      | 4   | —                      | 4   | ns   | 3       |
| Output Enable to Output<br>Valid                                                          | <sup>t</sup> GLQV                                                                                       | _             | 3.5             | _   | 3.5             | _                      | 3.8 | _                      | 3.8 | ns   | 3       |
| Clock High to Output Active                                                               | <sup>t</sup> KHQX1                                                                                      | 0             | —               | 0   |                 | 0                      | —   | 0                      | —   | ns   | 3, 4, 5 |
| Clock High to Output<br>Change                                                            | <sup>t</sup> KHQX2                                                                                      | 1.5           | _               | 1.5 | _               | 1.5                    | _   | 1.5                    | _   | ns   | 3, 5    |
| Output Enable to Output<br>Active                                                         | <sup>t</sup> GLQX                                                                                       | 0             | —               | 0   |                 | 0                      | —   | 0                      | —   | ns   | 3, 4, 5 |
| Output Disable to Q High–Z                                                                | <sup>t</sup> GHQZ                                                                                       | —             | 3.5             | —   | 3.5             | —                      | 3.8 | —                      | 3.8 | ns   | 3, 4, 5 |
| Clock High to Q High–Z                                                                    | <sup>t</sup> KHQZ                                                                                       | 1.5           | 6               | 1.5 | 6.7             | 1.5                    | 7.5 | 1.5                    | 8.5 | ns   | 3, 4, 5 |
| Setup Ti <u>mes:</u> <u>Address</u><br>ADSP, ADSC, ADV<br>Data In<br>Write<br>Chip Enable | <sup>t</sup> ADKH<br><sup>t</sup> ADSKH<br><sup>t</sup> DVKH<br><sup>t</sup> WVKH<br><sup>t</sup> EVKH  | 1.5           |                 | 1.5 |                 | 1.5                    |     | 2                      | _   | ns   | 3       |
| Hold Tim <u>es:</u> <u>Address</u><br>ADSP, ADSC, ADV<br>Data In<br>Write<br>Chip Enable  | <sup>t</sup> KHAX<br><sup>t</sup> KHADSX<br><sup>t</sup> KHDX<br><sup>t</sup> KHWX<br><sup>t</sup> KHEX | 0.5           | _               | 0.5 | _               | 0.5                    | —   | 0.5                    | —   | ns   | 3       |

NOTES:

1. Write is defined as either any SBx and SW low or SGW is low. Chip Enable is defined as SE1 low, SE2 high and SE3 low whenever ADSP or ADSC is asserted.

2. All read and write cycle timings are referenced from K or  $\overline{G}$ .

3. Tested per AC Test Load, Figure 2.

4. Measured at  $\pm$  200 mV from steady state.

5. This parameter is sampled and not 100% tested.

6. In order to reduce test correlation issues and to reduce the effects of application specific input edge rate variations on correlation between data sheet parameters and actual system performance, FSRAM AC parametric specifications are always specified at V<sub>DDQ</sub>/2. In some design exercises, it is desirable to evaluate timing using other reference levels. Since the maximum test input edge rate is known and is given in the AC Test Conditions section of the datasheet as 1V/ns, one can easily interpolate timing values to other reference levels. Figure 3 shows interpolation to DC V<sub>IH</sub> and DC V<sub>IL</sub> levels.

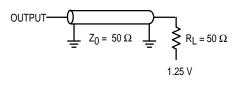



Figure 2. Test Load

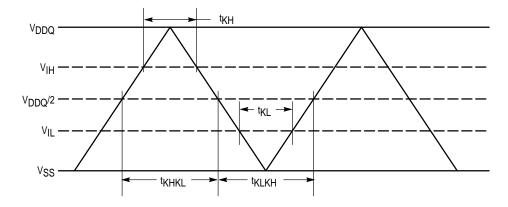
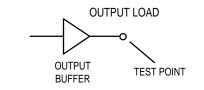
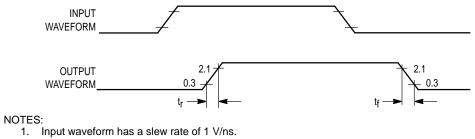
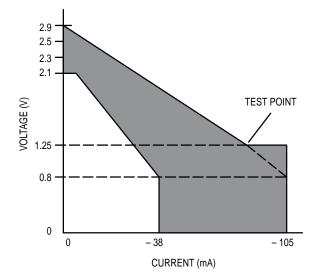




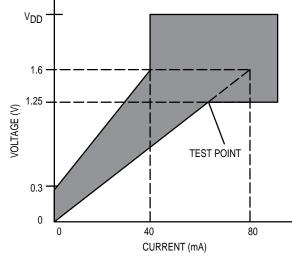

Figure 3. Interpolation to DC VIH and DC VIL Levels




## UNLOADED RISE AND FALL TIME MEASUREMENT

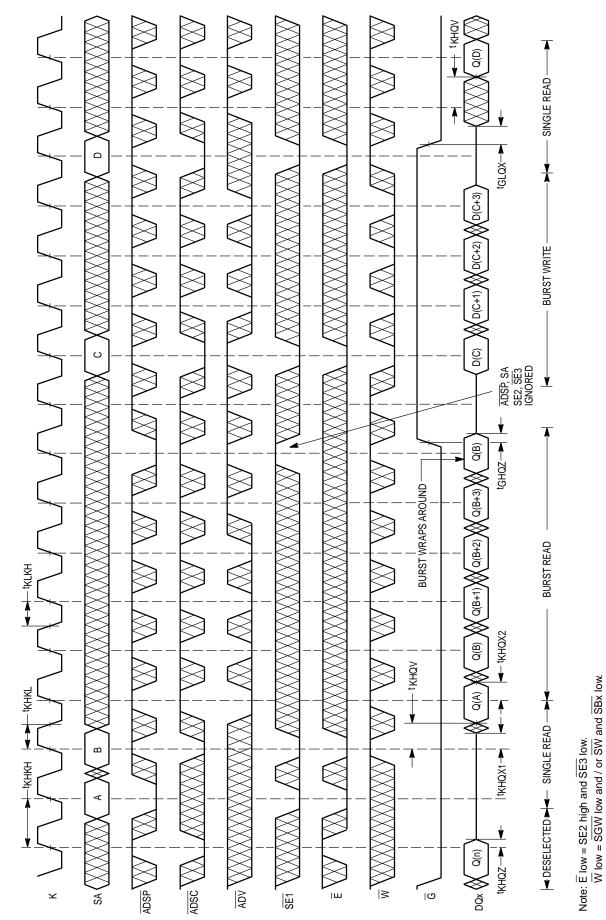


- 2. Rise time is measured from 0.3 V to 2.1 V unloaded.
- 3. Fall time is measured from 2.1 V to 0.3 V unloaded.


# Figure 4. Unloaded Rise and Fall Time Characterization

| PULL-UP     |            |            |  |  |  |  |  |
|-------------|------------|------------|--|--|--|--|--|
| VOLTAGE (V) | l (mA) Min | I (mA) Max |  |  |  |  |  |
| - 0.5       | - 38       | - 105      |  |  |  |  |  |
| 0           | - 38       | - 105      |  |  |  |  |  |
| 0.8         | - 38       | - 105      |  |  |  |  |  |
| 1.25        | - 26       | - 83       |  |  |  |  |  |
| 1.5         | - 20       | - 70       |  |  |  |  |  |
| 2.3         | 0          | - 30       |  |  |  |  |  |
| 2.7         | 0          | - 10       |  |  |  |  |  |
| 2.9         | 0          | 0          |  |  |  |  |  |
| 3.4         | 0          | 0          |  |  |  |  |  |






| PULL-DOWN   |            |            |  |  |  |  |  |
|-------------|------------|------------|--|--|--|--|--|
| VOLTAGE (V) | l (mA) Min | I (mA) Max |  |  |  |  |  |
| - 0.5       | 0          | 0          |  |  |  |  |  |
| 0           | 0          | 0          |  |  |  |  |  |
| 0.4         | 10         | 20         |  |  |  |  |  |
| 0.8         | 20         | 40         |  |  |  |  |  |
| 1.25        | 31         | 63         |  |  |  |  |  |
| 1.6         | 40         | 80         |  |  |  |  |  |
| 2.8         | 40         | 80         |  |  |  |  |  |
| 3.2         | 40         | 80         |  |  |  |  |  |
| 3.4         | 40         | 80         |  |  |  |  |  |



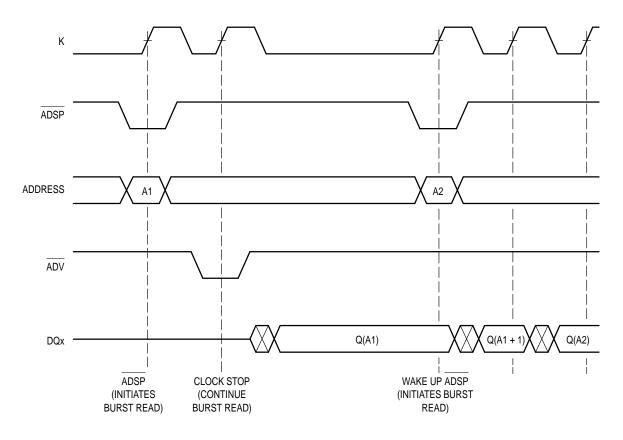
(b) Pull–Down

Figure 5. Typical Output Buffer Characteristics



READ/WRITE CYCLES

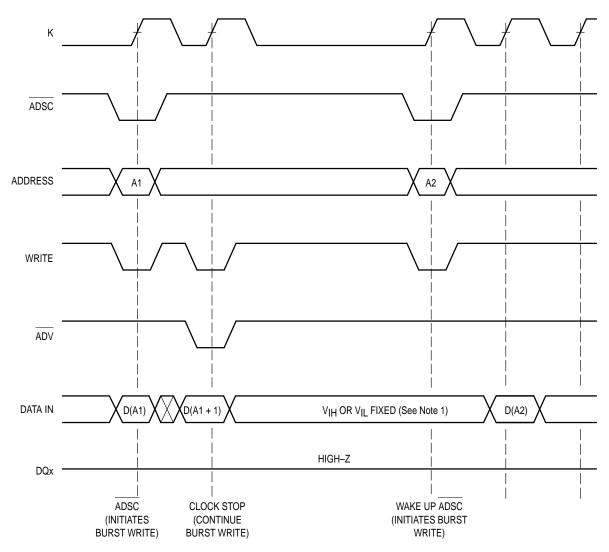
## **APPLICATION INFORMATION**


## STOP CLOCK OPERATION

In the stop clock mode of operation, the SRAM will hold all state and data values even though the clock is not running (full static operation). The SRAM design allows the clock to start with ADSP and ADSC, and stops the clock after the last write data is latched, or the last read data is driven out.

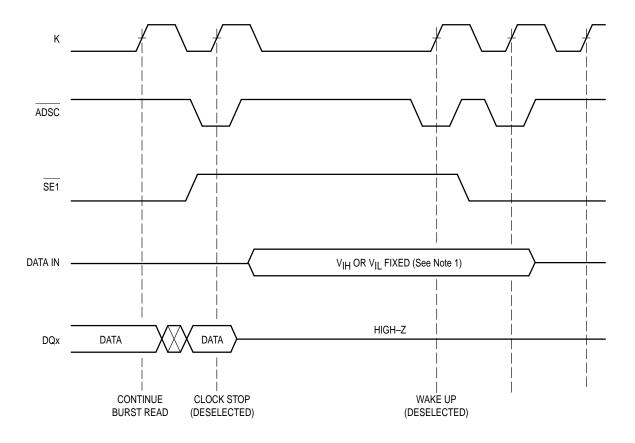
When starting and stopping the clock, the AC clock timing and parametrics must be strictly maintained. For example, clock pulse width and edge rates must be guaranteed when starting and stopping the clocks.

To achieve the lowest power operation for all three stop clock modes, stop read, stop write, and stop deselect:


- 1. Force the clock to a low state.
- 2. Force the control signals to an inactive state (this guarantees any potential source of noise on the clock input will not start an unplanned on activity).
- 3. Force the address inputs to a low state.



STOP CLOCK WITH READ TIMING


NOTES:

1. For lowest possible power consumption during stop clock, the addresses should be driven to a low state (V<sub>IL</sub>). Best results are obtained if V<sub>II</sub> < 0.2 V.



NOTES:

- 1. While the clock is stopped, DATA IN must be fixed in a high (VIH) or low (VIL) state to reduce DC current of the input buffers. For lowest power operation, all data and address lines should be held in a low (VIL) state and control lines held in an inactive state.
- 2. For best possible power savings, the data-in should be driven low.



#### NOTES:

- While the clock is stopped, DATA IN must be fixed in a high (VIH) or low (VIL) state to reduce DC current of the input buffers. For lowest power operation, all data and address lines should be held in a low (VIL) state and control lines held in an inactive state.
- 2. For best possible power savings, the data-in should be driven low.

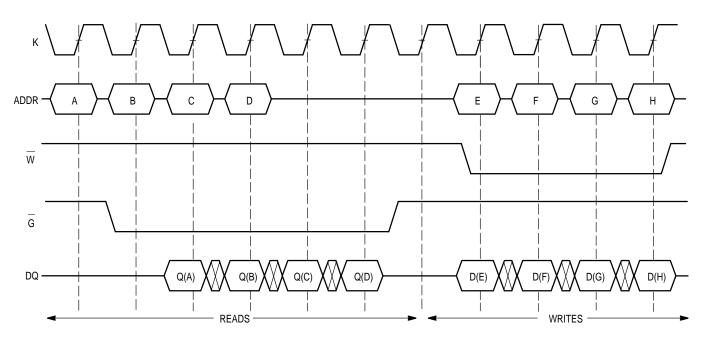
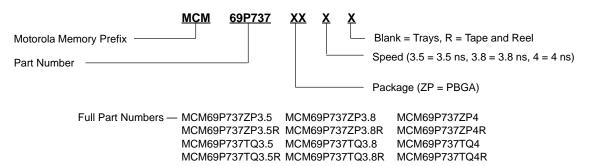
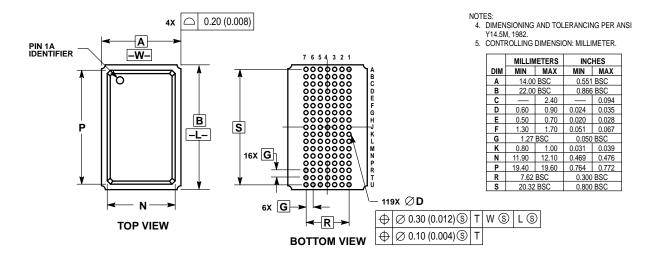
## NON-BURST SYNCHRONOUS OPERATION

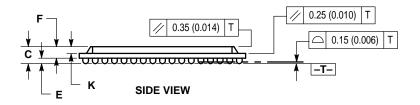
Although this BurstRAM has been designed for PowerPC – and other high end MPU – based systems, these SRAMs can be used in other high speed L2 cache or memory applications that do not require the burst address feature. Most L2 caches designed with a synchronous interface can make use of the MCM69P737. The burst counter feature of the BurstRAM can be disabled, and the SRAM can be configured to act upon a continuous stream of addresses. See Figure 6.

## CONTROL PIN TIE VALUES $(H \ge V_{IH}, L \le V_{IL})$

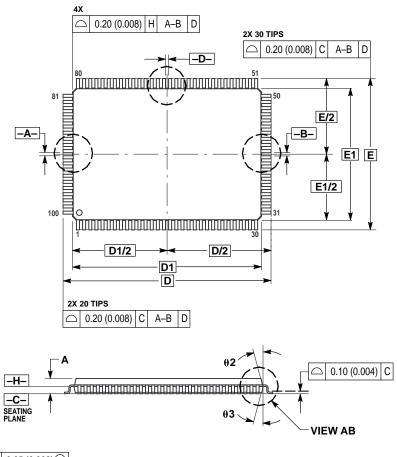
| Non-Burst                         | ADSP | ADSC | ADV | SE1 | LBO |
|-----------------------------------|------|------|-----|-----|-----|
| Sync Non–Burst,<br>Pipelined SRAM | Н    | L    | Τ   | L   | Х   |

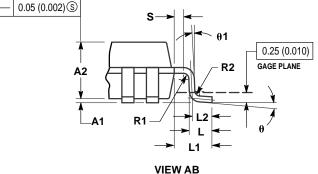
NOTE: Although X is specified in the table as a don't care, the pin must be tied either high or low.

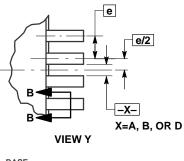




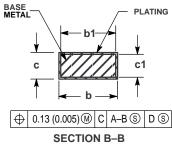


Figure 6. Configured as Non–Burst Synchronous SRAM

## ORDERING INFORMATION (Order by Full Part Number)





## PACKAGE DIMENSIONS ZP PACKAGE 7 x 17 BUMP PBGA CASE 999–01




#### TQ PACKAGE TQFP CASE 983A-01









NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE

- THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
  DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-.
  DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE -C-.
  DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS D1 AND B1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
  DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE 7.

| THE b DIMENSION TO EXCEED 0.45 (0.018) |        |        |           |       |  |  |  |
|----------------------------------------|--------|--------|-----------|-------|--|--|--|
|                                        | MILLIN | IETERS | INC       | HES   |  |  |  |
| DIM                                    | MIN    | MAX    | MIN       | MAX   |  |  |  |
| Α                                      |        | 1.60   |           | 0.063 |  |  |  |
| A1                                     | 0.05   | 0.15   | 0.002     | 0.006 |  |  |  |
| A2                                     | 1.35   | 1.45   | 0.053     | 0.057 |  |  |  |
| b                                      | 0.22   | 0.38   | 0.009     | 0.015 |  |  |  |
| b1                                     | 0.22   | 0.33   | 0.009     | 0.013 |  |  |  |
| C                                      | 0.09   | 0.20   | 0.004     | 0.008 |  |  |  |
| c1                                     | 0.09   | 0.16   | 0.004     | 0.006 |  |  |  |
| D                                      | 22.00  | BSC    | 0.866 BSC |       |  |  |  |
| D1                                     | 20.00  | BSC    | 0.787 BSC |       |  |  |  |
| E                                      | 16.00  | BSC    | 0.630 BSC |       |  |  |  |
| E1                                     | 14.00  | BSC    | 0.551 BSC |       |  |  |  |
| е                                      | 0.65   | BSC    | 0.026     | 6 BSC |  |  |  |
| L                                      | 0.45   | 0.75   | 0.018     | 0.030 |  |  |  |
| L1                                     | 1.00   | REF    | 0.039     | REF   |  |  |  |
| L2                                     | 0.50   | REF    | 0.020     | REF   |  |  |  |
| S                                      | 0.20   |        | 0.008     |       |  |  |  |
| R1                                     | 0.08   |        | 0.003     |       |  |  |  |
| R2                                     | 0.08   | 0.20   | 0.003     | 0.008 |  |  |  |
| θ                                      | 0 °    | 7°     | 0 °       | 7°    |  |  |  |
| θ1                                     | 0 °    |        | 0 °       |       |  |  |  |
| θ2                                     | 11 °   | 13 °   | 11 °      | 13°   |  |  |  |
| θ3                                     | 11 °   | 13 °   | 11 °      | 13°   |  |  |  |

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

 $\Diamond$ 

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com



JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

