
Order this document by MC68HC05D9/D Rev 3.0

MC68HC05D9 MC68HC05D24 MC68HC05D32 MC68HC705D32

HCMOS Microcontroller Unit

TECHNICAL DATA

List of Sections

List of Sections
Table of Contents 5
Introduction
Operating Modes and Pin Descriptions
Central Processing Unit (CPU) 23
Resets and Interrupts 43
Memory and Registers 53
Input/Output Ports 57
16-bit Programmable TImer 63
Serial Communications Interface (SCI)
Pulse Width Modulator (PWM)
Electrical Specifications
Mechanical Data and Ordering Information 111
Features Specific to the MC68HC05D24 117
Features Specific to the MC68HC05D32 121

Features Specific to the MC68HC705D32	125
Glossary	135
Index	147
Literature Updates	153

Table of Contents

List of Sections

Table of Contents	
Introduction	Contents.9General description.9Features.10
Operating Modes and Pin Descriptions	Contents13Operating Modes13Software-selectable options16Pin Descriptions17
Central Processing Unit (CPU)	Contents.23Introduction.24CPU Registers.24Arithmetic/Logic Unit (ALU).27Instruction Set Overview.28Addressing Modes.28Instruction Types.31Instruction Set Summary.36
Resets and Interrupts	Contents.43Resets.43Interrupts.47Low power modes.50
Memory and Registers	Contents.53Introduction.53RAM.53ROM.54Registers.54

Table of Contents

Input/Output Ports	Contents	57
	Introduction	57
	Input/output programming	57
	Ports A, B and C	59
	Port D	59
	Port registers	30
	Other port considerations	51
16-bit	Contents	33
Programmable	Introduction	33
TImer	Counter	35
	Timer functions	37
	Timer during WAIT mode	72
	Timer during STOP mode	73
	Timer state diagrams	73
Serial	Contents	
Communications	Introduction	79
Interface (SCI)	Overview and features	30
	Functional description	31
	Data format	33
	Receiver wake-up operation	34
	Receive data (RDI)	35
	Start bit detection	36
	Transmit data (TDO)	39
	SCI registers	39
Pulse Width	Contents	
Modulator (PWM)	Introduction	99
	PWM counter	
	PWM registers)0
Electrical	Contents)3
Specifications	Introduction)3
	Maximum ratings10)3
	Thermal characteristics and power considerations)3
	DC electrical characteristics10)6
	Control timing)7

Mechanical Data and Ordering Information	Contents111Mechanical Data112Ordering information115
Features Specific to the MC68HC05D24	Contents117Introduction117Memory map and registers117Programming model117
Features Specific to the MC68HC05D32	Contents121Introduction121Memory map and registers121Programming model121
Features Specific to the MC68HC705D32	Contents125Introduction125Operating mode selection125Pin descriptions126Memory127MC68HC705D32 EPROM description130Bootloader mode132
Glossary	
Index	
Literature Updates	Literature Distribution Centers153Customer Focus Center154Mfax154Motorola SPS World Marketing World Wide Web Server154

Introduction

Contents

General description	9
eatures	. 10

General description

The MC68HC05D9, with 16K bytes of masked ROM, is a member of the Motorola M68HC05 family of advanced HCMOS 8-bit single chip microcomputers. Based around the industry standard M68HC05 CPU core and its familiar, efficient instruction set, this device includes five 6-bit pulse width modulation (PWM) channels, a serial communications interface (SCI), computer operating properly (COP) watchdog timer, high current output port capable of driving LEDs and a 16-bit timer with input capture and output compare.

Devices similar to the MC68HC05D9 are described in a set of appendices at the back of this book.

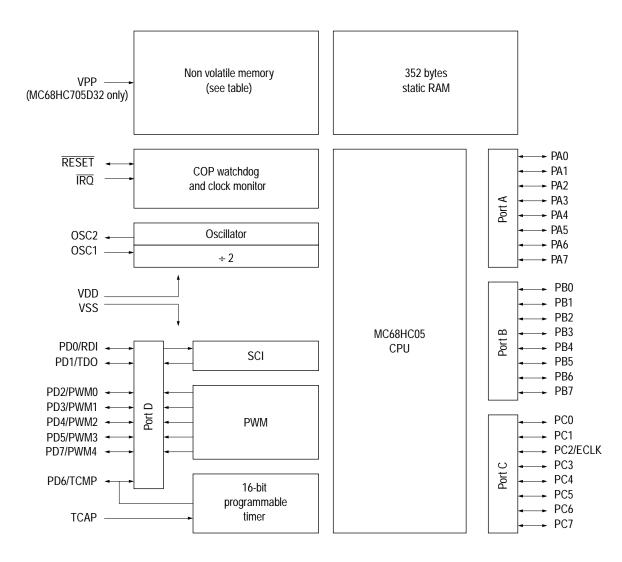

Device	Appendix	Differences from MC68HC05D9
MC68HC05D24	А	24K bytes of ROM
MC68HC05D32	В	32K bytes of user
MC68HC705D32	С	32K bytes of EPROM

 Table 1. Data book appendices

1-intro

Features

- 15920 bytes of masked User ROM (plus 10 bytes for User vectors) on the MC68HC05D9
 - or 24112 bytes of masked User ROM (plus 10 bytes for vectors) on the MC68HC05D24
 - or 32304 bytes of masked User ROM (plus 10 bytes for vectors) on the MC68HC05D32
 - or 32304 bytes of User EPROM (plus 10 bytes for vectors) on the MC68HC705D32
- 239 bytes of self-check ROM (including self-check vectors) on the three mask-programmable ROM devices; 239 bytes of bootloader ROM (including bootloader vectors) on the MC68HC705D32
- 352 bytes of RAM
- Memory-mapped I/O
- 31 bidirectional I/O Lines
- Fully static operation
- On-chip oscillator with crystal/ceramic resonator
- 16-bit capture/compare timer sub-system
- Five 6-bit pulse width modulation channels operating at 30 kHz
- High current LED drive output port (port B)
- Asynchronous serial communications interface (SCI) system
- Power saving STOP, WAIT and data-retention modes
- Single 3.0 to 5.5 Volt supply (2 Volt data retention mode)
- Computer operating properly (COP) watchdog timer with clock monitor
- Software programmable external interrupt sensitivity

Device	Non volatile memory
MC68HC05D9	 15920 bytes User ROM (plus 10 bytes for vectors) 239 bytes self-check ROM (including vectors)
MC68HC05D24	 24112 bytes User ROM (plus 10 bytes for vectors) 239 bytes self-check ROM (including vectors)
MC68HC05D32	 32304 bytes User ROM (plus 10 bytes for vectors) 239 bytes self-check ROM (including vectors)
MC68HC705D32	32304 bytes User EROM (plus 10 bytes for vectors)239 bytes self-check ROM (including vectors)

Figure 1. Functional block diagram

Operating Modes and Pin Descriptions

Contents

Operating Modes	3
Single chip mode1	4
Self-check mode	4
Software-selectable options1	6
Option register	6
Pin Descriptions	
VDD and VSS1	9
VPP	9
OSC1/OSC2	9
RESET	1
IRQ2	1
TCAP	1
PA0–PA7	1
PB0–PB7	1
PC0–PC7	2
PD0–PD7	
PD0/RDI	
PD1/TDO	
PD2–PD5, PD7/PWM0–PWM4	
PD6/TCMP	2

Operating Modes

The MCU has two modes of operation: single chip mode and self-check mode. The mode of operation is determined by the voltage level present on the IRQ pin when the device is brought out of reset (see Table 2).

Single chip mode This is the normal operating mode of the MCU. In this mode the device functions as a self-contained microcomputer with all on-board peripherals available to the user, including the four 8-bit I/O ports.

CAUTION: For the MC68HC705D32 all vectors are fetched from EPROM (locations \$3FF6-\$3FFF or \$7FF6-\$7FFF) in single chip mode; therefore, the EPROM must be programmed (via the bootloader mode) before the device is powered up in single chip mode.

Single chip mode is entered on the rising edge of RESET if the voltage level on the IRQ pin is within the normal operating range.

IRQ ⁽¹⁾	RESET	TCAP	Mode
V_{SS} to V_{DD}		Don't care	Single chip
2 V _{DD}		V _{DD}	Self-check

 Table 2. Operating mode entry conditions

1. The voltage level on the IRQ pin should be maintained for at least 7x t_{CYC} after the rising edge of the reset signal to guarantee proper mode selection.

- **Self-check mode** The MCU contains, in masked ROM at locations \$3F00 to \$3FDE (or \$7F00 to \$7FDE), a program that checks the integrity of the device with a minimum of support hardware (see Figure 2). To enter self-check mode, a voltage equal to 2x V_{DD} must be present on the IRQ pin when the device is brought out of reset.
 - **NOTE:** The TCAP pin must be tied to V_{DD} to ensure correct selection of the self-check mode. Failure to do so could result in unpredictable operation.

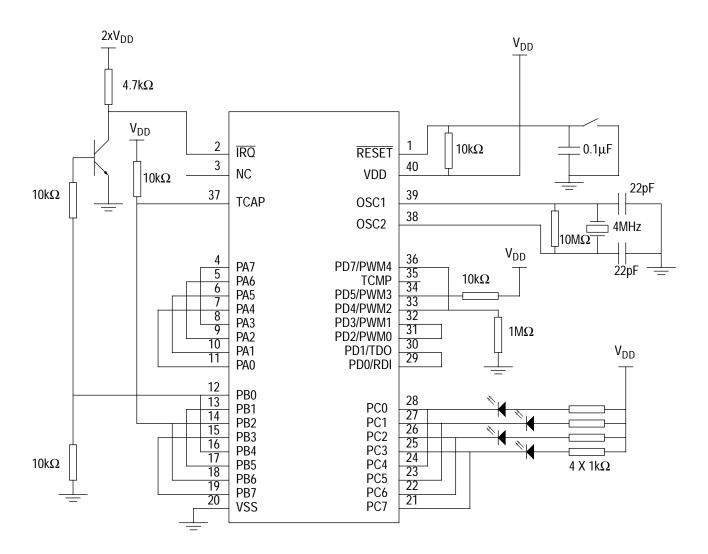


Figure 2. Self-check circuit diagram (for 40-pin DIL package)

The self-check program indicates the results of its tests by outputting a 4-bit code on the lower four bits of port C (PC0–3). The fault codes are detailed in Table 3.

PC3	PC2	PC1	PC0	Result
1	0	0	1	Bad I/O
1	0	1	0	Bad RAM
1	0	1	1	Bad timer

Table 3. Self-check	mode fault indication

MC68HC05D9 Rev 3.0

MOTOROLA

1	1	0	0	Bad SCI
1	1	0	1	Bad ROM
1	1	1	0	Bad PWM
1	1	1	1	Bad interrupts or IRQ
	Flashing		Good device	
	All other		Bad device	

 Table 3. Self-check mode fault indication

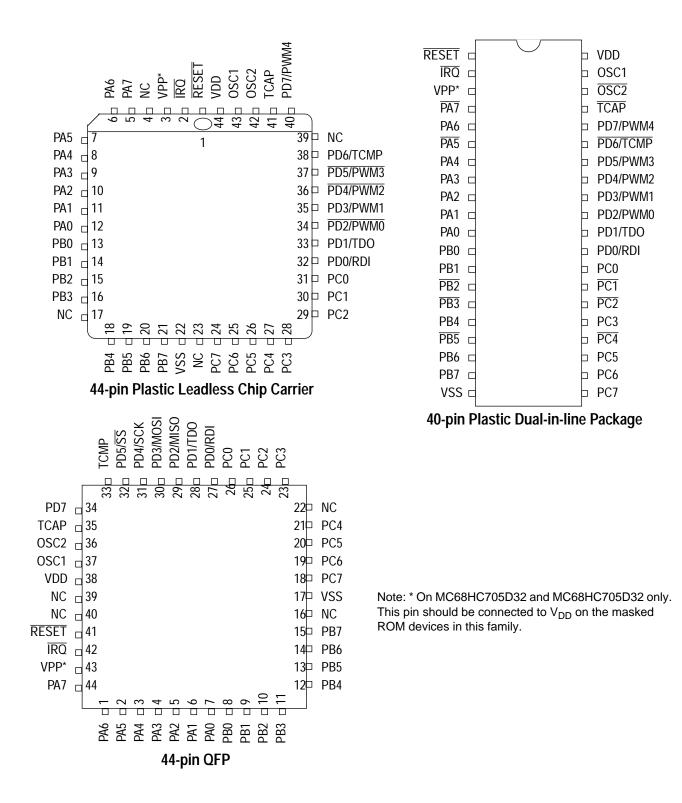
'0' denotes LED on; '1' denotes LED off

Software-selectable options

Option register The option register (OPTION) is a user-writable register located at \$3FDF on the MC68HC05D9 (\$7FDF on the MC68HC05D24 and MC68HC05D32). It allows the user to configure the memory map and the external interrupt IRQ.



Figure 3. Options register (OPTION)


- RAMO This bit maps 48 bytes of either RAM or ROM into the memory map from \$0020 to \$004F. This bit is readable and writable at all times, allowing the user software to switch back and forth between RAM and ROM when necessary. Reset clears this bit.
 - 1 = Maps 48 bytes of RAM into the memory map starting at address \$0020.
 - 0 = Maps 48 bytes of ROM/EPROM into the memory map starting at address \$0020.

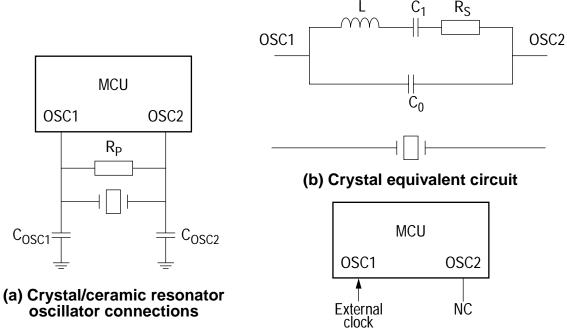
RAM1	This bit maps 128 bytes of either RAM or ROM/EPROM into the memory map from \$0100 to \$017F. This bit is readable and writable at all times, allowing the user software to switch back and forth between RAM and ROM/EPROM when necessary. Reset clears this bit.
	 1 = Maps 128 bytes of RAM into the memory map starting at address \$0100. 0 = Maps 128 bytes of ROM/EPROM into the memory map starting at address \$0100.
IRQ	This bit selects the external interrupt IRQ sensitivity. This bit is not readable and can only be written once after reset. Reset sets this bit.
	1 = Edge-and-level sensitive interrupt selected.0 = Edge sensitive only option is selected.

Pin Descriptions

Figure 4 shows the pin-out for this family of devices for the 40-pin plastic dual-in-line package (PDIP) and the 44-pin plastic leadless chip-carrier (PLCC).

5-pins

Figure 4. Pin assignments for MC68HC05D9 packages


VDD and VSS	Power is supplied to the microcomputer via these two pins. VDD is the
	positive supply and VSS is ground.

It is in the nature of CMOS designs that very fast signal transitions occur on the MCU pins. These short rise and fall times place very high short-duration current demands on the power supply. To prevent noise problems, special care must be taken to provide good power supply by-passing at the MCU. By-pass capacitors should have good high-frequency characteristics and be as close to the MCU as possible. By-passing requirements vary, depending on how heavily the MCU pins are loaded.

- OSC1/OSC2 These pins provide control input for an on-chip clock oscillator circuit. A crystal, ceramic resonator or external clock signal connected to these pins provides the oscillator clock. The oscillator frequency is divided by 2 to provide the internal bus frequency.
- Crystal The circuit shown in Figure 5(a) is recommended when using a crystal. The internal oscillator is designed to interface with an AT-cut parallel-resonant quartz crystal resonator in the frequency range specified for f_{osc} (see Control timing). Use of an external CMOS oscillator is recommended when crystals outside the specified ranges are to be used. The crystal and components should be mounted as close as possible to the input pins to minimise output distortion and start-up stabilization time.
- CeramicA ceramic resonator may be used instead of a crystal in cost-sensitive
applications. The circuit in Figure 5(a) is recommended when using a
ceramic resonator. Figure 5(d) lists the recommended capacitance and
feedback resistance values. The manufacturer of the particular ceramic

7-pins

resonator being considered should be consulted for specific information. .

Crystal			
	2MHz	4MHz	Unit
R _S (max)	400	75	Ω
C ₀	5	7	pF
C ₁	8	12	nF
C _{OSC1}	15 – 40	15 – 30	pF
C _{OSC2}	15 – 30	15 – 25	pF
R _P	10	10	MΩ
Q	30 000	40 000	—

Ceramic resonator			
	2 – 4 MHz	Unit	
R _S (typ)	10	Ω	
C ₀	40	pF	
C ₁	4.3	pF	
C _{OSC1}	30	pF	
C _{OSC2}	30	pF	
R _P	1 – 10	MΩ	
Q	1250	_	

(d) Crystal and ceramic resonator parameters

Figure 5. Oscillator connections

External clock	An external clock should be applied to the OSC1 input with the OSC2 pin not connected, as shown in Figure 5 (c). The t_{OXOV} specification does not apply when using an external clock input. The equivalent specification of the external clock source should be used in lieu of t_{OXOV} .
RESET	This pin is used to apply an active low reset signal to the MCU. Applying a logic zero to this pin forces the device to a known start-up state. An external RC circuit can be connected to this pin to generate a power-on reset (POR). In this case, the time constant must be chosen high enough (minimum 100 ms) to allow the oscillator circuit to stabilise. This input has an internal Schmitt trigger to improve noise immunity. When a reset condition occurs internally, i.e. from the COP watchdog or clock monitor circuitry, this pin provides an active-low open drain output signal which may be used to reset external hardware.
IRQ	IRQ is an input pin for external interrupt sources. The interrupt type (edge or edge-and-level sensitive) can be selected via the option register.
ТСАР	An external signal can be applied to this input pin to trigger an input capture event in the 16-bit timer. Input capture can be programmed to occur on either the rising edge or the falling edge of the signal applied to TCAP (see 16-bit Programmable Timer).
PAO-PA7	Port A comprises eight bidirectional pins (PA0 to PA7). The direction and state of each pin is software programmable. All pins are configured as inputs during power-on or reset.
PBO–PB7	Port B comprises eight bidirectional pins (PB0 to PB7). The direction and state of each pin is software programmable, and each pin can drive one LED load. All pins are configured as inputs during power-on or reset.

Operating Modes and Pin Descriptions

PC0-PC7	Port C comprises eight bidirectional pins (PC0 to PC7). The direction and state of each pin is software programmable. All pins are configured as inputs during power-on or reset.
PD0–PD7	Port D comprises seven bidirectional pins (PD0 to PD5, PD7), with each pin supporting one of the on-chip hardware functions. PD6 is dedicated to the TCMP pin and is always an output, therefore a read of bit 6 of the port D data register will always return the value on the TCMP pin.
PD0/RDI	When the SCI is enabled, this pin is configured as the high-impedance receive data input pin and the SCI becomes active. When the SCI is disabled, this pin is configured as a normal I/O port pin.
PD1/TDO	When the SCI is enabled, this pin is configured as the transmit data output pin and the SCI becomes active. When the SCI is disabled, this pin is configured as a normal I/O port pin.
PD2–PD5, PD7/PWM0–PWM4	When the associated PWM enable bits in the PWM mode register are set, these pins are configured to output the PWM signals. When the PWM channels are disabled, these pins are configured as normal I/O pins.
PD6/TCMP	As an output, this pin is always configured to support the output compare function in the 16-bit timer. Consequently, there is no corresponding data direction register bit associated with this pin. Reading the associated bit in the port D data register always returns the instantaneous value present on the pin, whether this is caused by the output compare function or by an external signal applied to the pin.

Central Processing Unit (CPU)

Contents

Introduction
CPU Registers
Accumulator
Index Register
Stack Pointer
Program Counter
Condition Code Register
Arithmetic/Logic Unit (ALU)
Instruction Set Overview
Addressing Modes
Inherent
Immediate
Direct
Extended
Indexed, No Offset
Indexed, 8-Bit Offset
Indexed,16-Bit Offset
Relative
Instruction Types
Register/Memory Instructions
Read-Modify-Write Instructions
Jump/Branch Instructions
Bit Manipulation Instructions
Control Instructions
Instruction Set Summary

MOTOROLA

Introduction

This chapter describes the CPU registers and the HC05 instruction set.

CPU Registers

Figure 1 shows the five CPU registers. CPU registers are not part of the memory map.

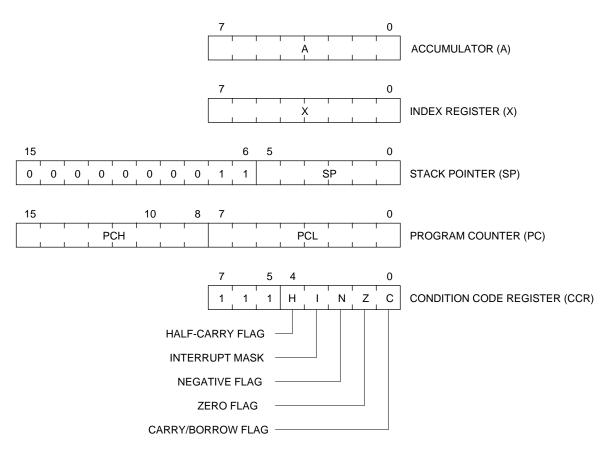


Figure 6. Programming Model

Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and results of arithmetic and non-arithmetic operations.

MC68HC05D9 F	Rev	3.0
--------------	-----	-----

Figure 7. Accumulator

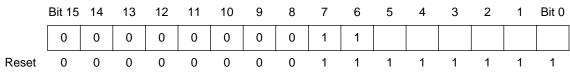

Index Register In the indexed addressing modes, the CPU uses the byte in the index register to determine the conditional address of the operand.

Figure 8. Index Register

The 8-bit index register can also serve as a temporary data storage location.

Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset or after the reset stack pointer (RSP) instruction, the stack pointer is preset to \$00FF. The address in the stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack.

Figure 9. Stack Pointer

The ten most significant bits of the stack pointer are permanently fixed at 000000011, so the stack pointer produces addresses from \$00C0 to \$00FF. If subroutines and interrupts use more than 64 stack locations, the stack pointer wraps around to address \$00FF and begins writing over the previously stored data. A subroutine uses two stack locations. An interrupt uses five locations. **Program Counter** The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. The two most significant bits of the program counter are ignored internally.

Normally, the address in the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.

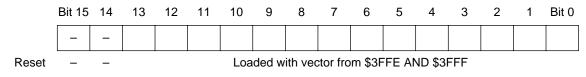


Figure 10. Program Counter

Condition CodeThe condition code register is an 8-bit register whose three mostRegistersignificant bits are permanently fixed at 111. The condition code register
contains the interrupt mask and four flags that indicate the results of the
instruction just executed. The following paragraphs describe the
functions of the condition code register.

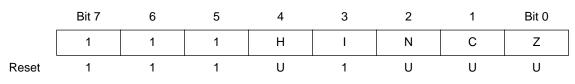


Figure 11. Condition Code Register

Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between bits 3 and 4 of the accumulator during an ADD or ADC operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations.

Interrupt Mask

Setting the interrupt mask disables interrupts. If an interrupt request occurs while the interrupt mask is logic zero, the CPU saves the CPU registers on the stack, sets the interrupt mask, and then fetches the

interrupt vector. If an interrupt request occurs while the interrupt mask is set, the interrupt request is latched. Normally, the CPU processes the latched interrupt as soon as the interrupt mask is cleared again.

A return from interrupt (RTI) instruction pulls the CPU registers from the stack, restoring the interrupt mask to its cleared state. After any reset, the interrupt mask is set and can be cleared only by a software instruction.

Negative Flag

The CPU sets the negative flag when an arithmetic operation, logical operation, or data manipulation produces a negative result.

Zero Flag

The CPU sets the zero flag when an arithmetic operation, logical operation, or data manipulation produces a result of \$00.

Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some logical operations and data manipulation instructions also clear or set the carry/borrow flag.

Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logical operations defined by the instruction set.

The binary arithmetic circuits decode instructions and set up the ALU for the selected operation. Most binary arithmetic is based on the addition algorithm, carrying out subtraction as negative addition. Multiplication is not performed as a discrete operation but as a chain of addition and shift operations within the ALU. The multiply instruction (MUL) requires 11 internal clock cycles to complete this chain of operations.

Instruction Set Overview

The MCU instruction set has 62 instructions and uses eight addressing modes. The instructions include all those of the M146805 CMOS Family plus one more: the unsigned multiply (MUL) instruction. The MUL instruction allows unsigned multiplication of the contents of the accumulator (A) and the index register (X). The high-order product is stored in the index register, and the low-order product is stored in the accumulator.

Addressing Modes

The CPU uses eight addressing modes for flexibility in accessing data. The addressing modes provide eight different ways for the CPU to find the data required to execute an instruction. The eight addressing modes are:

- Inherent
- Immediate
- Direct
- Extended
- Indexed, no offset
- Indexed, 8-bit offset
- Indexed, 16-bit offset
- Relative

Inherent Inherent instructions are those that have no operand, such as return from interrupt (RTI) and stop (STOP). Some of the inherent instructions act on data in the CPU registers, such as set carry flag (SEC) and increment accumulator (INCA). Inherent instructions require no operand address and are one byte long.

Immediate	Immediate instructions are those that contain a value to be used in an operation with the value in the accumulator or index register. Immediate instructions require no operand address and are two bytes long. The opcode is the first byte, and the immediate data value is the second byte.
Direct	Direct instructions can access any of the first 256 memory locations with two bytes. The first byte is the opcode, and the second is the low byte of the operand address. In direct addressing, the CPU automatically uses \$00 as the high byte of the operand address.
Extended	Extended instructions use three bytes and can access any address in memory. The first byte is the opcode; the second and third bytes are the high and low bytes of the operand address.
	When using the Motorola assembler, the programmer does not need to specify whether an instruction is direct or extended. The assembler automatically selects the shortest form of the instruction.
Indexed, No Offset	Indexed instructions with no offset are 1-byte instructions that can access data with variable addresses within the first 256 memory locations. The index register contains the low byte of the effective address of the operand. The CPU automatically uses \$00 as the high byte, so these instructions can address locations \$0000–\$00FF.
	Indexed, no offset instructions are often used to move a pointer through a table or to hold the address of a frequently used RAM or I/O location.
Indexed, 8-Bit Offset	Indexed, 8-bit offset instructions are 2-byte instructions that can access data with variable addresses within the first 511 memory locations. The CPU adds the unsigned byte in the index register to the unsigned byte following the opcode. The sum is the effective address of the operand. These instructions can access locations \$0000-\$01FE.
	Indexed 8-bit offset instructions are useful for selecting the kth element in an n-element table. The table can begin anywhere within the first 256 memory locations and could extend as far as location 510 (\$01FE). The

Central Processing Unit (CPU)

k value is typically in the index register, and the address of the beginning of the table is in the byte following the opcode.

Indexed, 16-BitIndexed, 16-bit offset instructions are 3-byte instructions that can access
data with variable addresses at any location in memory. The CPU adds
the unsigned byte in the index register to the two unsigned bytes
following the opcode. The sum is the effective address of the operand.
The first byte after the opcode is the high byte of the 16-bit offset; the
second byte is the low byte of the offset.

Indexed, 16-bit offset instructions are useful for selecting the kth element in an n-element table anywhere in memory.

As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing.

Relative Relative addressing is only for branch instructions. If the branch condition is true, the CPU finds the effective branch destination by adding the signed byte following the opcode to the contents of the program counter. If the branch condition is not true, the CPU goes to the next instruction. The offset is a signed, two's complement byte that gives a branching range of –128 to +127 bytes from the address of the next location after the branch instruction.

When using the Motorola assembler, the programmer does not need to calculate the offset, because the assembler determines the proper offset and verifies that it is within the span of the branch.

30

Instruction Types

The MCU instructions fall into the following five categories:

- Register/Memory Instructions
- Read-Modify-Write Instructions
- Jump/Branch Instructions
- Bit Manipulation Instructions
- Control Instructions

Register/MemoryThese instructions operate on CPU registers and memory locations.InstructionsMost of them use two operands. One operand is in either the
accumulator or the index register. The CPU finds the other operand in
memory.

Instruction	Mnemonic
Add Memory Byte and Carry Bit to Accumulator	ADC
Add Memory Byte to Accumulator	ADD
AND Memory Byte with Accumulator	AND
Bit Test Accumulator	BIT
Compare Accumulator	CMP
Compare Index Register with Memory Byte	СРХ
EXCLUSIVE OR Accumulator with Memory Byte	EOR
Load Accumulator with Memory Byte	LDA
Load Index Register with Memory Byte	LDX
Multiply	MUL
OR Accumulator with Memory Byte	ORA
Subtract Memory Byte and Carry Bit from Accumulator	SBC
Store Accumulator in Memory	STA
Store Index Register in Memory	STX
Subtract Memory Byte from Accumulator	SUB

Table 4. Register/Memory Instructions

18-cpu

Read-Modify-WritThese instructions read a memory location or a register, modify itse Instructionscontents, and write the modified value back to the memory location or to
the register.

NOTE: Do not use read-modify-write operations on write-only registers.

1
ASL
ASR
BCLR ⁽¹⁾
BSET ⁽¹⁾
CLR
СОМ
DEC
INC
LSL
LSR
NEG
ROL
ROR
TST ⁽²⁾

Table 5. Read-Modify-Write Instructions

1. Unlike other read-modify-write instructions, BCLR and BSET use only direct addressing.

2. TST is an exception to the read-modify-write sequence because it does not write a replacement value.

Jump/Branch Jump instructions allow the CPU to interrupt the normal sequence of the program counter. The unconditional jump instruction (JMP) and the jump-to-subroutine instruction (JSR) have no register operand. Branch instructions allow the CPU to interrupt the normal sequence of the program counter when a test condition is met. If the test condition is not met, the branch is not performed.

The BRCLR and BRSET instructions cause a branch based on the state of any readable bit in the first 256 memory locations. These 3-byte instructions use a combination of direct addressing and relative addressing. The direct address of the byte to be tested is in the byte following the opcode. The third byte is the signed offset byte. The CPU finds the effective branch destination by adding the third byte to the program counter if the specified bit tests true. The bit to be tested and its condition (set or clear) is part of the opcode. The span of branching is from -128 to +127 from the address of the next location after the branch instruction. The CPU also transfers the tested bit to the carry/borrow bit of the condition code register.

Instruction	Mnemonic					
Branch if Carry Bit Clear	BCC					
Branch if Carry Bit Set	BCS					
Branch if Equal	BEQ					
Branch if Half-Carry Bit Clear	BHCC					
Branch if Half-Carry Bit Set	BHCS					
Branch if Higher	BHI					
Branch if Higher or Same	BHS					
Branch if IRQ Pin High	BIH					
Branch if IRQ Pin Low	BIL					
Branch if Lower	BLO					
Branch if Lower or Same	BLS					
Branch if Interrupt Mask Clear	BMC					
Branch if Minus	BMI					
Branch if Interrupt Mask Set	BMS					
Branch if Not Equal	BNE					
Branch if Plus	BPL					
Branch Always	BRA					
Branch if Bit Clear	BRCLR					
Branch Never	BRN					
Branch if Bit Set	BRSET					
Branch to Subroutine	BSR					
Unconditional Jump	JMP					
Jump to Subroutine	JSR					

Table 6. Jump and Branch Instructions

Bit ManipulationThe CPU can set or clear any writable bit in the first 256 bytes of
memory, which includes I/O registers and on-chip RAM locations. The
CPU can also test and branch based on the state of any bit in any of the
first 256 memory locations.

Table 7. Bit Manipulation Instructions	it Manipulation Instructio	ns
--	----------------------------	----

Instruction	Mnemonic
Bit Clear	BCLR
Branch if Bit Clear	BRCLR
Branch if Bit Set	BRSET
Bit Set	BSET

Control Instructions

These instructions act on CPU registers and control CPU operation during program execution.

Table 8. Control Instructions

Instruction	Mnemonic
Clear Carry Bit	CLC
Clear Interrupt Mask	CLI
No Operation	NOP
Reset Stack Pointer	RSP
Return from Interrupt	RTI
Return from Subroutine	RTS
Set Carry Bit	SEC
Set Interrupt Mask	SEI
Stop Oscillator and Enable IRQ Pin	STOP
Software Interrupt	SWI
Transfer Accumulator to Index Register	TAX
Transfer Index Register to Accumulator	TXA
Stop CPU Clock and Enable Interrupts	WAIT

22-cpu

Instruction Set Summary

Source Form	Operation	Description	Effect on CCR					Address Mode	Opcode	Operand	Cycles
			Н	I	N	z	С	Add	obc	Ope	Š
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X	Add with Carry	$A \gets (A) + (M) + (C)$	¢¢		¢¢	ţo	¢¢	IMM DIR EXT IX2 IX1 IX	A9 B9 C9 D9 E9 F9	ii dd hh II ee ff ff	1 .
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X	Add without Carry	A ← (A) + (M)	¢¢		¢¢	\$	\$	IMM DIR EXT IX2 IX1 IX	AB BB CB DB EB FB	ii dd hh II ee ff ff	1 .
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X	Logical AND	A ← (A) ∧ (M)			¢¢	\$		IMM DIR EXT IX2 IX1 IX	A4 B4 C4 D4 E4 F4	ii dd hh II ee ff ff	1 .
ASL opr ASLA ASLX ASL opr,X ASL ,X	Arithmetic Shift Left (Same as LSL)	C			¢¢	\$	\$	DIR INH INH IX1 IX	38 48 58 68 78	dd ff	5 3 3 6 5
ASR opr ASRA ASRX ASR opr,X ASR ,X	Arithmetic Shift Right		_		ţ¢	\$	\$	DIR INH INH IX1 IX	37 47 57 67 77	dd ff	5 3 3 6 5
BCC rel	Branch if Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C = 0$	-	-	_	-	-	REL	24	rr	3
BCLR n opr	Clear Bit n	Mn ← 0	_		_			DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b6) DIR (b7)	15 17 19 1B 1D	dd dd dd dd dd dd dd dd dd	5 5 5 5 5 5 5 5 5 5 5 5 5 5
BCS rel	Branch if Carry Bit Set (Same as BLO)	PC ← (PC) + 2 + <i>rel</i> ? C = 1	_	-	_	1-	-	REL	25	rr	3
BEQ rel	Branch if Equal	PC ← (PC) + 2 + <i>rel</i> ? Z = 1	1-	-	_	1-	-	REL	27	rr	3
BHCC rel	Branch if Half-Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? H = 0$	1-	-		1-	-	REL	28	rr	3
BHCS rel	Branch if Half-Carry Bit Set	PC ← (PC) + 2 + <i>rel</i> ? H = 1	1-	-			-	REL	29	rr	3
BHI <i>rel</i>	Branch if Higher	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C \lor Z = 0$	-	-	-	-	-	REL	22	rr	3

Table 9. Instruction Set Summary

Source	Operation	Description	F	Effect o CCR			n	Address Mode	Opcode	Operand	Cycles
Form	- For #1101		н	I	Ν	Z	С	Add	odo	Ope	ð
BHS rel	Branch if Higher or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C = 0$	1-	-		—	-	REL	24	rr	3
BIH <i>rel</i>	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + rel ? IRQ = 1$	-	_	_		-	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + rel ? IRQ = 0$	1-	—			-	REL	2E	rr	3
BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X	Bit Test Accumulator with Memory Byte	(A) ∧ (M)	_	_	\$0	\$	_	IMM DIR EXT IX2 IX1 IX	A5 B5 C5 D5 E5 F5	ii dd hh II ee ff ff	2 3 4 5 4 3
BLO rel	Branch if Lower (Same as BCS)	PC ← (PC) + 2 + <i>rel</i> ? C = 1	-	—	—		-	REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? C \lor Z = 1$	-	—			-	REL	23	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? I = 0$	-	-		-	-	REL	2C	rr	3
BMI <i>rel</i>	Branch if Minus	$PC \leftarrow (PC) + 2 + rel? N = 1$	-	—			-	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	$PC \leftarrow (PC) + 2 + \mathit{rel} ? I = 1$	-	—	_	-	-	REL	2D	rr	3
BNE rel	Branch if Not Equal	$PC \leftarrow (PC) + 2 + \mathit{rel} ? Z = 0$	-	-	_		- -	REL	26	rr	3
BPL rel	Branch if Plus	$PC \leftarrow (PC) + 2 + rel? N = 0$	-	-		-	-	REL	2A	rr	3
BRA rel	Branch Always	PC ← (PC) + 2 + <i>rel</i> ? 1 = 1	-	_	_		-	REL	20	rr	3
BRCLR n opr rel	Branch if Bit n Clear	PC ← (PC) + 2 + <i>rel</i> ? Mn = 0					¢≎	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b6) DIR (b7)	03 05 07 09 0B 0D	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5
BRN rel	Branch Never	$PC \leftarrow (PC) + 2 + \mathit{rel} ? 1 = 0$		—	_		-	REL	21	rr	3
BRSET n opr rel	Branch if Bit n Set	PC ← (PC) + 2 + <i>rel</i> ? Mn = 1					• \$\$	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b6) DIR (b7)	02 04 06 08 0A 0C	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5
BSET n opr	Set Bit n	Mn ← 1	_					DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b6) DIR (b7)	12 14 16 18 1A 1C	dd dd dd dd dd dd dd dd dd	5 5 5 5 5 5 5 5 5 5 5
BSR rel	Branch to Subroutine	$\begin{array}{c} PC \leftarrow (PC) + 2; push \; (PCL) \\ SP \leftarrow (SP) - 1; push \; (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	_	_			_	REL	AD	rr	6
CLC	Clear Carry Bit	$C \leftarrow 0$	-	_			0	INH	98		2

24-cpu

Source Form	Operation	Description			ect on CR			Address Mode	Opcode	Operand	Cycles
Form		·	Н	I	N	z	С	Adc	op 0	ope	ပ်
CLI	Clear Interrupt Mask	$I \leftarrow 0$	—	0	—	—	_	INH	9A		2
CLR opr CLRA CLRX CLR opr,X CLR ,X	Clear Byte	$\begin{array}{l} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00 \end{array}$	_		0	1		DIR INH INH IX1 IX	3F 4F 5F 6F 7F	dd ff	5 3 3 6 5
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X	Compare Accumulator with Memory Byte	(A) – (M)	_	_	¢¢	\$	\$	IMM DIR EXT IX2 IX1 IX	A1 B1 C1 D1 E1 F1	ii dd hh II ee ff ff	2 3 4 5 4 3
COM opr COMA COMX COM opr,X COM ,X	Complement Byte (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (A) \\ X \leftarrow (\overline{X}) = \$FF - (X) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$	_	_	¢¢	¢¢	1	DIR INH INH IX1 IX	33 43 53 63 73	dd ff	5 3 3 6 5
CPX #opr CPX opr CPX opr CPX opr,X CPX opr,X CPX ,X	Compare Index Register with Memory Byte	(X) – (M)	_	_	¢¢	\$	\$	IMM DIR EXT IX2 IX1 IX	A3 B3 C3 D3 E3 F3	ii dd hh II ee ff ff	2 3 4 5 4 3
DEC opr DECA DECX DEC opr,X DEC ,X	Decrement Byte	$\begin{array}{l} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$	_	_	¢¢	¢¢	_	DIR INH INH IX1 IX	3A 4A 5A 6A 7A	dd ff	5 3 3 6 5
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X	EXCLUSIVE OR Accumulator with Memory Byte	$A \gets (A) \oplus (M)$			≎	\$		IMM DIR EXT IX2 IX1 IX	A8 B8 C8 D8 E8 F8	ii dd hh II ee ff ff	2 3 4 5 4 3
INC opr INCA INCX INC opr,X INC ,X	Increment Byte	$\begin{array}{l} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$	_		\$\$	ţ0		DIR INH INH IX1 IX	3C 4C 5C 6C 7C	dd ff	5 3 3 6 5
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Unconditional Jump	$PC \gets Jump \; Address$						DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	2 3 4 3 2

Source	Operation	Description		Effect on CCR				Address Mode	Opcode	Operand	Cycles
Form			Н	I	Ν	Z	С	Add	odo	Ope	Š
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + n \ (n = 1, 2, or \ 3) \\ Push \ (PCL); \ SP \leftarrow (SP) - 1 \\ Push \ (PCH); \ SP \leftarrow (SP) - 1 \\ PC \leftarrow Effective \ Address \end{array}$	_					DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh II ee ff ff	5 6 7 6 5
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X	Load Accumulator with Memory Byte	A ← (M)	_		\$\$	\$		IMM DIR EXT IX2 IX1 IX	A6 B6 C6 D6 E6 F6	ii dd hh II ee ff ff	2 3 4 5 4 3
LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X	Load Index Register with Memory Byte	X ← (M)			\$0	¢¢		IMM DIR EXT IX2 IX1 IX	AE BE CE DE EE FE	ii dd hh II ee ff ff	2 3 4 5 4 3
LSL opr LSLA LSLX LSL opr,X LSL ,X	Logical Shift Left (Same as ASL)		_		10	\$	\$	DIR INH INH IX1 IX	38 48 58 68 78	dd ff	5 3 3 6 5
LSR opr LSRA LSRX LSR opr,X LSR ,X	Logical Shift Right		_		0	\$	\$	DIR INH INH IX1 IX	34 44 54 64 74	dd ff	5 3 3 6 5
MUL	Unsigned Multiply	$X:A \leftarrow (X) \times (A)$	0				0	INH	42		11
NEG opr NEGA NEGX NEG opr,X NEG ,X	Negate Byte (Two's Complement)	$\begin{array}{l} M \leftarrow -(M) = \$00 - (M) \\ A \leftarrow -(A) = \$00 - (A) \\ X \leftarrow -(X) = \$00 - (X) \\ M \leftarrow -(M) = \$00 - (M) \\ M \leftarrow -(M) = \$00 - (M) \end{array}$			\$\$	\$	\$	DIR INH INH IX1 IX	30 40 50 60 70	dd ff	5 3 3 6 5
NOP	No Operation							INH	9D		2
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X	Logical OR Accumulator with Memory	$A \gets (A) \lor (M)$	_		¢\$	\$	_	IMM DIR EXT IX2 IX1 IX	AA BA CA DA EA FA	ii dd hh II ee ff ff	2 3 4 5 4 3
ROL <i>opr</i> ROLA ROLX ROL <i>opr</i> ,X ROL ,X	Rotate Byte Left through Carry Bit	C-C			\$\$	\$	\$	DIR INH INH IX1 IX	39 49 59 69 79	dd ff	5 3 3 6 5

26-cpu

Source	Operation	Description			eci CC		n	Address Mode	Opcode	Operand	Cycles
Form			н	I	N	Z	С	Add	opo	Ope	Š
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X	Rotate Byte Right through Carry Bit				¢¢	\$	\$	DIR INH INH IX1 IX	36 46 56 66 76	dd ff	5 3 3 6 5
RSP	Reset Stack Pointer	$SP \leftarrow \$00FF$		-	-		-	INH	9C		2
RTI	Return from Interrupt	$\begin{array}{c} SP \leftarrow (SP) + 1; Pull \ (CCR) \\ SP \leftarrow (SP) + 1; Pull \ (A) \\ SP \leftarrow (SP) + 1; Pull \ (X) \\ SP \leftarrow (SP) + 1; Pull \ (PCH) \\ SP \leftarrow (SP) + 1; Pull \ (PCL) \end{array}$	ţ0	\$	\$	\$	\$	INH	80		9
RTS	Return from Subroutine	$\begin{array}{l} SP \leftarrow (SP) + 1; Pull \; (PCH) \\ SP \leftarrow (SP) + 1; Pull \; (PCL) \end{array}$	-	_	_		-	INH	81		6
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X	Subtract Memory Byte and Carry Bit from Accumulator	$A \leftarrow (A) - (M) - (C)$			\$\$	\$	\$	IMM DIR EXT IX2 IX1 IX	A2 B2 C2 D2 E2 F2	ii dd hh II ee ff ff	2 3 4 5 4 3
SEC	Set Carry Bit	C ← 1	-	-	-	-	1	INH	99		2
SEI	Set Interrupt Mask	l ← 1	_	1		_	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA ,X	Store Accumulator in Memory	M ← (A)			ţ0	\$		DIR EXT IX2 IX1 IX	B7 C7 D7 E7 F7	dd hh II ee ff ff	4 5 6 5 4
STOP	Stop Oscillator and Enable IRQ Pin		_	0	_	_	-	INH	8E		2
STX opr STX opr STX opr,X STX opr,X STX ,X	Store Index Register In Memory	M ← (X)			ţ0	\$		DIR EXT IX2 IX1 IX	BF CF DF EF FF	dd hh II ee ff ff	4 5 6 5 4
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X	Subtract Memory Byte from Accumulator	A ← (A) – (M)			\$	\$	\$	IMM DIR EXT IX2 IX1 IX	A0 B0 C0 D0 E0 F0	hh ll	
SWI	Software Interrupt	$\begin{array}{c c} PC \leftarrow (PC) + 1; Push (PCL) \\ SP \leftarrow (SP) - 1; Push (PCH) \\ SP \leftarrow (SP) - 1; Push (X) \\ SP \leftarrow (SP) - 1; Push (A) \\ SP \leftarrow (SP) - 1; Push (CCR) \\ SP \leftarrow (SP) - 1; I \leftarrow 1 \\ PCH \leftarrow Interrupt Vector High Byte \\ PCL \leftarrow Interrupt Vector Low Byte \end{array}$		1				INH	83		10
TAX	Transfer Accumulator to Index Register	$X \gets (A)$	_	-	-	_	—	INH	97		2

MC68HC05D9 Rev 3.0

40

Source Form	Operation	Description	Effect on CCR				n	Address Mode	Opcode	Operand	Cycles
Form		•	н	I	N	z	С	Ado	opo	Ope	Š
TST opr TSTA TSTX TST opr,X TST ,X	Test Memory Byte for Negative or Zero	(M) – \$00			\$	\$		DIR INH INH IX1 IX	3D 4D 5D 6D 7D	dd ff	4 3 5 4
ТХА	Transfer Index Register to Accumulator	$A \gets (X)$	_	_	—		-	INH	9F		2
WAIT	Stop CPU Clock and Enable Interrupts		_	0 ◊	_		_	INH	8F		2
CCR Conditi dd Direct a dd rr Direct a DIR Direct a ee ff High ar EXT Extend ff Offset t H Half-ca hh II High ar I Interrup ii Immedi IMM Immedi INH Inherer IX Indexed IX1 Indexed	d low bytes of operand address in extended addre to mask ate operand byte ate addressing mode t addressing mode d, no offset addressing mode d, 8-bit offset addressing mode d, 16-bit offset addressing mode y location	rel Relative prog rr Relative prog SP Stack pointer X Index register Z Zero flag	nter nter ess ram ram	י hig וסא וחק מי כס ורכס	h b v by mo unt unt	er c er c er c	offse				

Table 10. Opcode Map

MC68HC05D9								Table	e 10. O	pcode	Мар							
) Ö5		Bit Mani	pulation	Branch		Read	l-Modify-W	/rite		Con	trol			Register	/Memory]
		DIR	DIR	REL	DIR	INH	INH	IX1	IX	INH	INH	IMM	DIR	EXT	IX2	IX1	IX	
Rev	MSB SB	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	MSB LSB
3.0	0	5 BRSET0 3 DIR	5 BSET0 2 DIR	BRA	5 NEG 2 DIR	NEGA 1 INH	NEGX 1 INH 2	6 NEG 2 IX1	NEG	9 RTI 1 INH		2 SUB 2 IMM	3 SUB 2 DIR	4 SUB <u>3 EXT</u>	5 SUB 3 IX2	4 SUB 2 IX1 1	SUB IX	-
	1	5 BRCLR0 3 DIR	5 BCLR0 2 DIR	3 BRN 2 REL						6 RTS 1 INH		2 CMP 2 IMM	3 CMP 2 DIR	4 CMP 3 EXT	5 CMP 3 IX2	4 CMP 2 IX1 1	CMP IX	1
	2	5 BRSET1 3 DIR	5 BSET1 2 DIR	3 BHI 2 REL		11 MUL 1 INH						2 SBC 2 IMM	3 SBC 2 DIR	4 SBC 3 EXT	5 SBC 3 IX2	4 SBC 2 IX1 1	SBC IX	3 2
	3	5 BRCLR1 3 DIR	5 BCLR1 2 DIR	3 BLS 2 REL	COM 2 DIR	3 COMA 1 INH	COMX 1 INH 2	6 COM 2 IX1	5 COM 1 IX	10 SWI 1 INH		2 CPX 2 IMM	CPX 2 DIR	4 CPX 3 EXT	5 CPX 3 IX2	4 CPX 2 IX1 1	CPX IX	3
	4	5 BRSET2 3 DIR	5 BSET2 2 DIR	3 BCC 2 REL 3	5 LSR 2 DIR	3 LSRA 1 INH	3 LSRX 1 INH 2	6 LSR 2 IX1	5 LSR 1 IX			2 AND 2 IMM	3 AND 2 DIR	4 AND 3 EXT	5 AND 3 IX2	4 AND 2 IX1 1	AND IX	3 4
	5	5 BRCLR2 3 DIR	5 BCLR2 2 DIR	BCS/BLO								2 BIT 2 IMM	3 BIT 2 DIR	4 BIT 3 EXT	5 BIT 3 IX2	BIT 2 IX1 1	BIT IX	5
	6	5 BRSET3 3 DIR	5 BSET3 2 DIR	3 BNE 2 REL	5 ROR 2 DIR	3 RORA 1 INH	RORX 1 INH 2	6 ROR 2 IX1	ROR 1 IX			2 LDA 2 IMM	3 LDA 2 DIR	4 LDA 3 EXT	5 LDA 3 IX2	4 LDA 2 IX1 1	LDA IX	6
	7	5 BRCLR3 3 DIR	5 BCLR3 2 DIR	BEQ	5 ASR 2 DIR	3 ASRA 1 INH	3 ASRX 1 INH 2	6 ASR 2 IX1	ASR 1 IX		2 TAX 1 INH		4 STA 2 DIR	5 STA 3 EXT	6 STA 3 IX2	5 STA 2 IX1 1	STA IX	7
	8	5 BRSET4 3 DIR	5 BSET4 2 DIR	3 BHCC 2 REL	5 ASL/LSL 2 DIR	3 ASLA/LSLA 1 INH	3 ASLX/LSLX 1 INH	6 ASL/LSL 2 IX1	5 ASL/LSL 1 IX		2 CLC 1 INH	2 EOR 2 IMM	3 EOR 2 DIR	4 EOR 3 EXT	5 EOR 3 IX2	4 EOR 2 IX1 1	EOR IX	3 8
	9	5 BRCLR4 3 DIR	5 BCLR4 2 DIR	3 BHCS 2 REL	5 ROL 2 DIR	3 ROLA 1 INH	3 ROLX 1 INH 2	6 ROL 2 IX1	ROL		2 SEC 1 INH	ADC 2 IMM	ADC 2 DIR	ADC 3 EXT	ADC 3 IX2	4 ADC 2 IX1 1	ADC IX	3 (9
	Α	5 BRSET5 3 DIR	5 BSET5 2 DIR	3 BPL 2 REL	5 DEC 2 DIR	3 DECA 1 INH	3 DECX 1 INH 2	6 DEC 2 IX1	DEC 1 IX		2 CLI 1 INH	2 ORA 2 IMM	3 ORA 2 DIR	4 ORA 3 EXT	5 ORA 3 IX2	4 ORA 2 IX1 1	ORA IX	A
	в	5 BRCLR5 3 DIR	5 BCLR5 2 DIR	3 BMI 2 REL							2 SEI 1 INH	2 ADD 2 IMM	3 ADD 2 DIR	4 ADD 3 EXT	5 ADD 3 IX2	4 ADD 2 IX1 1	ADD IX	B
	С	5 BRSET6 3 DIR	5 BSET6 2 DIR	3 BMC 2 REL	INC 2 DIR	3 INCA 1 INH	INCX 1 INH 2	6 INC 2 IX1	INC		2 RSP 1 INH		2 JMP 2 DIR	3 JMP	4 JMP	3 JMP	JMP IX	c c
	D	5 BRCLR6 3 DIR	5 BCLR6 2 DIR	3 BMS 2 REL	4 TST 2 DIR	3 TSTA 1 INH	TSTX 1 INH 2	5 TST 2 IX1	TST 4 1 IX		2 NOP 1 INH	6 BSR 2 REL	5 JSR 2 DIR	6 JSR	7 JSR	6 JSR	JSR IX	D
	Е	5 BRSET7 3 DIR	5 BSET7 2 DIR	3 BIL 2 REL						2 STOP 1 INH		2 LDX 2 IMM	3 LDX 2 DIR	4 LDX 3 EXT	5 LDX 3 IX2	4 LDX 2 IX1 1	LDX IX	E
	F	5 BRCLR7 3 DIR	5 BCLR7 2 DIR	3 BIH 2 REL	5 CLR 2 DIR	3 CLRA 1 INH	CLRX 1 INH 2	6 CLR 2 IX1	CLR	2 WAIT 1 INH	2 TXA 1 INH		4 STX 2 DIR	STX 5	6 STX	5 STX 2 IX1 1	STX IX	F
29-cpu		DIR = Dire	nediateIX ectIX1 = In	= Indexed dexed, 8-E	, No Offset Bit Offset , 16-Bit Offs	set		l	_SB of Opc	code in He	kadecimal	MSB LSB 0	0 BRSET0 3 DIR	MSB of (Number o Opcode M	Opcode in I f Cycles			

Resets and Interrupts

Contents

Resets	13
Power-on reset	13
RESET pin	13
Computer operating properly (COP) reset4	14
Clock monitor reset4	15
Interrupts	17
Non-maskable software interrupt (SWI)4	18
Maskable hardware interrupts	18
Hardware controlled interrupt sequence	19
Low power modes	50
STOP	50
WAIT	50
Data retention mode5	50

Resets

The MCU can be reset in four ways: by the initial power-on reset function, by an active low input to the RESET pin, by a COP watchdog timer reset and by an internal clock monitor reset. See Figure 12.

Power-on resetA power-on reset occurs when a positive transition is detected on VDD.
The power-on reset function is strictly for power turn-on conditions and
should not be used to detect drops in the power supply voltage. The
power-on circuitry provides a stabilization delay (t_{PORL}) from when the
oscillator becomes active. If the external RESET pin is low at the end of
this delay then the processor remains in the reset state until RESET
goes high. The user must ensure that the voltage on VDD has risen to a
point where the MCU can operate properly by the time t_{PORL} has elapsed.

Resets and Interrupts

If there is doubt, the external RESET pin should remain low until the voltage on VDD has reached the specified minimum operating voltage. This may be accomplished by connecting an external RC-circuit to this pin to generate a power-on reset (POR). In this case, the time constant must be great enough (at least 100 ms) to allow the oscillator circuit to stabilise.

At power-up, the RESET pin is pulled active low by an internal open drain n-channel device driven from the power-on reset signal. This pin can be used as a reset output.

RESET pin

When the oscillator is running in a stable state, the MCU is reset when a logic zero is applied to the RESET input for a minimum period of 8 machine cycles (t_{CYC}). This pin contains an internal Schmitt trigger as part of its input to improve noise immunity.

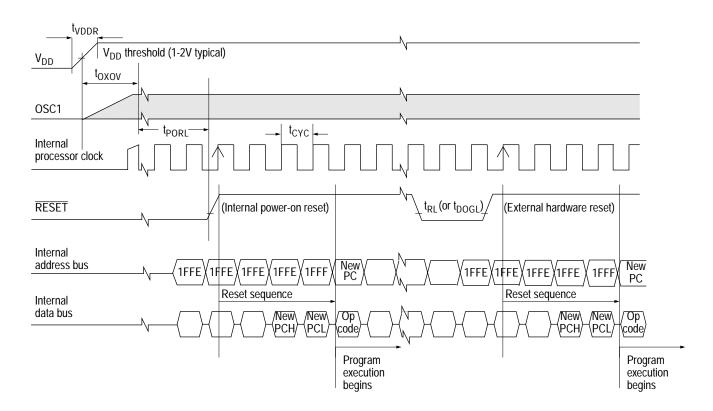


Figure 12. Reset timing diagram

Computer	
operatingproperly	
(COP) reset	

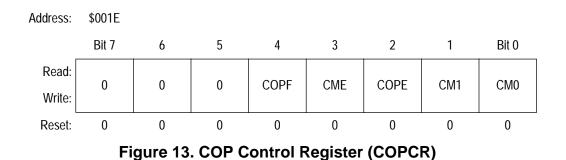
The MCU contains a watchdog timer that automatically times out unless it is reset within a specific time by a program reset sequence. If the COP watchdog timer is allowed to timeout, a reset is generated which drives the RESET pin low to reset the MCU and the external system. The COPF flag in the COP control register (COPCR) is set whenever a COP timeout or clock monitor reset occurs; this allows COP and clock monitor resets to be distinguished from external and power-on resets.

The COP reset function can be enabled by programming the COPE control bit in the COP control register. This bit can be written once only after reset, but can be read at any time. Control bits CM0 and CM1 in COPCR allow the user to select one of four COP timeout periods. **Table 11** shows the relationship between CM0 and CM1 and the timeout period for various system clock frequencies.

The sequence for resetting the watchdog timer is as follows:

- Write \$55 to the COP reset register (COPRST)
- Write \$AA to the COP reset register

Both writes must occur in this sequence prior to the timeout, but any number of instructions may be executed between the two writes.


Clock monitorThe MCU contains a clock monitor circuit that measures the bus clock
frequency (f_{OP}). The clock monitor function is enabled by the CME
control bit in COPCR. Upon detection of a slow or absent clock, the clock
monitor circuit (if enabled by CME = 1) will cause a system reset to be
generated. If the bus clock input rate is above approximately 200 kHz,
then the clock monitor does not generate a reset. If the bus clock is lost
or its frequency falls below 10 kHz, then a reset is generated, and the
RESET pin is driven low to reset the external system.

Special considerations are needed when using STOP and the clock monitor in the same system. Since the STOP function causes the clocks to be halted, the clock monitor function will generate a reset sequence if it is enabled prior to the STOP mode being entered. For systems that do not expect nor want a STOP function, this interaction can be useful to detect the unauthorized execution of a STOP instruction that could not be detected by the COP watchdog system. On the other hand, in

3-resets

systems that use both the STOP and clock monitor functions, this interaction means that the CME bit must be written to zero just prior to executing a STOP instruction and should be written back to one as soon as the MCU resumes execution.

COP control register (COPCR)

NOTE: Bits 5, 6 and 7 are not used; these bits always read zero.

COPF — Computer operating properly failure

The COPF flag in the COP control register is set whenever a COP timeout or clock monitor reset occurs; this allows COP and clock monitor resets to be distinguished from external and power-on resets. COPF is cleared by reading COPCR.

- 1 = COP or clock monitor reset has occurred
- 0 = COP or clock monitor reset has not occurred

CME — Clock monitor enable

This bit enables the clock monitor circuitry to generate a reset whenever the clock frequency falls below a specified level. CME can be read or written at any time.

1 = Clock monitor enabled

0 =Clock monitor disabled

COPE — Computer operating properly enable

This bit enables the COP circuitry to generate a reset whenever the COP timer times out. COPE can be read at any time, but can be written only once after reset.

1 = COP timeout enabled

0 = COP timeout disabled

CM1, CM0 - COP mode bits

The COP mode bits select one of four timeout durations for the COP timer. CM1 and CM0 are cleared by reset and can only be written once. Table 11 shows examples of COP timeout periods for several different bus frequencies (f_{OP}).

CM1	СМО	f _{OP} /2 ¹⁵ divided by	XTAL = 4.0MHz ^f OP = 2.0MHz	XTAL = 3.5795MHz ^f op = 1.7897MHz	XTAL = 2.0MHz ^f op = 1.0MHz	XTAL = 1.0MHz ^f OP = 0.5MHz
0	0	1	16.38 ms	18.31 ms	32.77 ms	65.54 ms
0	1	4	65.54 ms	73.24 ms	131.07 ms	262.14 ms
1	0	16	262.14 ms	292.95 ms	524.29 ms	1.048 s
1	1	64	1.048 s	1.172 s	2.097 s	4.194 s

Table 11. COP timeout periods (examples)

Interrupts

The MCU can be interrupted by four different sources, three maskable hardware interrupts and one non-maskable software interrupt:

- External signal on the IRQ pin
- 16-bit programmable timer
- Serial communications interface
- Software interrupt instruction (SWI)

Interrupts cause the processor to save the register contents on the stack and to set the interrupt mask (I-bit) to prevent additional interrupts. The RTI instruction (return from interrupt) causes the register contents to be recovered from the stack and normal processing to resume.

Unlike reset, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction is complete. The current instruction is the one already fetched and being operated on. When the current instruction is complete, the processor checks all pending hardware interrupts. If interrupts are not

5-resets

masked (CCR I-bit clear) and the corresponding interrupt enable bit is set, the processor proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.

If both an external interrupt and a timer interrupt are pending after an instruction execution, the external interrupt is serviced first.

Table 12 shows the relative priority of all the possible interrupt sources.**Figure 14** shows the interrupt processing flow.

Source	Register	Flags	Vector address	Priority
Reset	—	_	\$3FFE, \$3FFF	highest
COP/Clock monitor reset	COPCR	COPF	\$3FFE, \$3FFF	▲
Software interrupt (SWI)	—	—	\$3FFC, \$3FFD	
External interrupt (IRQ)	—	—	\$3FFA, \$3FFB	
16-bit programmable timer	TSR	ICF, OFC, TOF	\$3FF8, \$3FF9	
SCI	SCSR	TDRE, TC, RDRF, IDLE, OR	\$3FF6, \$3FF7	lowest

Table 12. Interrupt priorities

Non-maskable software interrupt (SWI)	The software interrupt (SWI) is an executable instruction and a non-maskable interrupt: it is executed regardless of the state of the I-bit in the CCR. If the I-bit is zero (interrupts enabled), SWI is executed after interrupts that were pending when the SWI was fetched, but before interrupts generated after the SWI was fetched. The SWI interrupt service routine address is specified by the contents of memory locations \$3FFC and \$3FFD (\$7FFC and \$7FFD on the MC68HC05D24, MC68HC05D32 and MC68HC705D32).
Maskable hardware interrupts	If the interrupt mask bit (I-bit) of the CCR is set, all maskable interrupts (internal and external) are disabled. Clearing the I-bit enables interrupts.
NOTE:	The internal interrupt latch is cleared in the first part of the interrupt service routine; therefore, one external interrupt pulse could be latched and serviced as soon as the I-bit is cleared.

MC68HC05D9 Rev 3.0

6-resets

External interrupt (IRQ)	The interrupt request is latched immediately following the active edge or level on the IRQ pin. It is then synchronized internally and handled by the interrupt service routine, located at the address specified by the contents of \$3FFA and \$3FFB (\$7FFA and \$7FFB on the MC68HC05D24, MC68HC05D32 and MC68HC705D32). An IRQ interrupt will cause the MPU to exit from STOP mode.
16-bit programmable timer interrupt	There are three different timer interrupt flags that cause a timer interrupt whenever they are set and enabled. The timer interrupt enable bits are located in the timer control register (TCR) and the timer interrupt flags are located in the timer status register (TSR). All three interrupts will vector to the same service routine, located at the address specified by the contents of memory locations \$3FF8 and \$3FF9 (\$7FF8 and \$7FF9 on the MC68HC05D24, MC68HC05D32 and MC68HC705D32).
Serial communications interface interrupt	There are five different SCI interrupt flags that cause an SCI interrupt whenever they are set and enabled. The SCI interrupt enable bits are located in the serial communication control register 2 (SCCR2) and the SCI interrupt flags are located in the serial communication status register (SCSR). All three interrupts will vector to the same service routine, located at the address specified by the contents of memory locations \$3FF6 and \$3FF7 (\$7FF6 and \$7FF7 on the MC68HC05D24, MC68HC05D32 and MC68HC705D32).
Hardware controlled interrupt sequence	The following three functions (RESET, STOP, and WAIT) are not in the strictest sense interrupts. However, they are acted upon in a similar manner. Flowcharts for STOP and WAIT are shown in Figure 15 .
RESET:	A reset condition causes the program to vector to its starting address, which is specified by the contents of memory locations \$3FFE (MSB) and \$3FFF (LSB). The I-bit in the condition code register is also set.
STOP:	The STOP instruction causes the oscillator to be turned off and the processor to 'sleep' until an external interrupt (IRQ), if enabled, or a reset occurs.

WAIT: The WAIT instruction causes all processor clocks to stop, but leaves the timer clock running. This 'rest' state of the processor can be cleared by reset, an external interrupt (IRQ), if enabled, or a timer or SCI interrupt. There are no special wait vectors for these individual interrupts.

Low power modes

STOP	The STOP instruction places the MCU in its lowest power consumption mode. In STOP mode, the internal oscillator is turned off, halting all internal processing, including timer (and COP watchdog timer) operation.
	During the STOP mode, all interrupt enable bits in TCR and SCCR2 are cleared by internal hardware to remove any pending timer or SCI interrupt requests and to disable any further interrupts from these sources. The timer prescaler is cleared. The I-bit in the CCR is cleared to enable external interrupts. All other bits, registers and memory contents remain unaltered. All input/output lines remain unchanged. The processor can be brought out of the STOP mode only by an external interrupt on (IRQ) or by a reset.
WAIT	The WAIT instruction places the MCU in a low-power consumption mode, but the WAIT mode consumes more power than the STOP mode. All CPU action is suspended, but the timer remains active. Any enabled interrupt from the timer or the SCI can cause the MCU to exit the WAIT mode.
	During the WAIT mode, the I-bit in the CCR is cleared to enable interrupts. All other registers, memory, and input/output lines remain in their previous state.
Data retention mode	The contents of the RAM are retained at supply voltages as low as $2.0V V_{DD}$. This is called the data retention mode, in which data is maintained but the device is not guaranteed to operate.

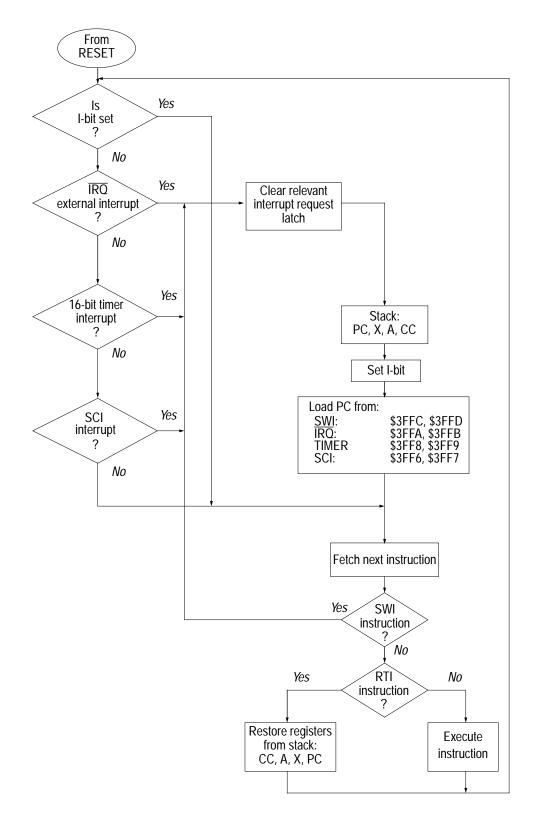
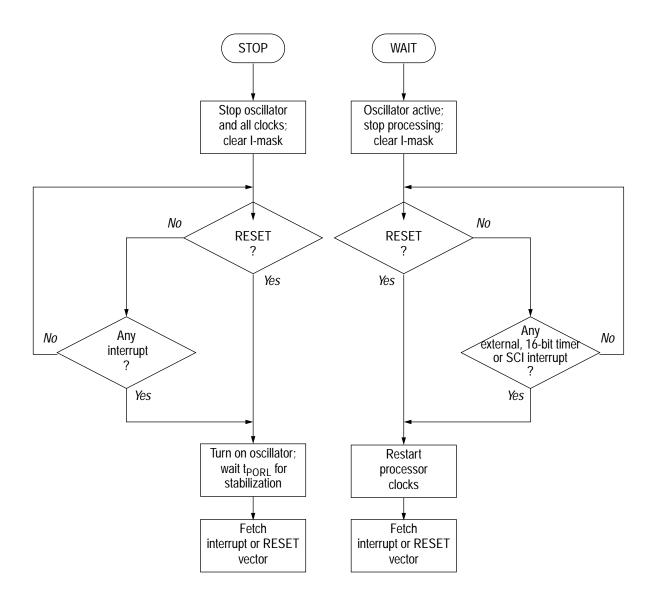



Figure 14. Interrupt flowchart

9-resets

For lowest power consumption in data retention mode the device should be put into STOP mode before reducing the supply voltage, to ensure that all the clocks are stopped. If the device is not in STOP mode then it is recommended that RESET be held low whilst the power supply is outwith the normal operating range, to ensure that processing is suspended in an orderly manner.

Recovery from data retention mode, after the power supply has been restored, is by an external interrupt, or by pulling the RESET line high.

Memory and Registers

Contents

Introduction	. 53
RAM	. 53
ROM	. 54
Registers	. 54

Introduction

The MCU has a 16K byte memory map consisting of registers (for I/O, control and status), User RAM, user ROM, self-check ROM and reset and interrupt vectors as shown in Figure 16.

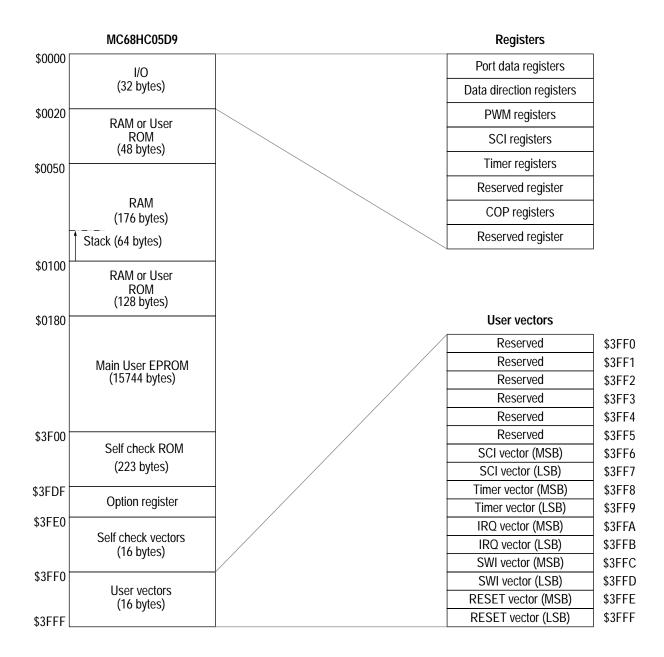
Two control bits in the option register (\$3FDF) allow the user to switch between RAM and ROM/EPROM, at any time, in two special areas of the memory map, \$0020–\$004F (48 bytes) and \$0100–\$017F (128 bytes).

RAM

The main user RAM consists of 176 bytes at \$0050–\$00FF. This RAM array is always present in the memory map and includes a 64 byte stack area. The stack pointer can access 64 bytes of RAM in the range \$00FF to \$00C0.

NOTE: Using the stack area for data storage or temporary work locations requires care to prevent it from being overwritten due to stacking from an interrupt or subroutine call.

Two additional RAM arrays are available at \$0020–\$004F (48 bytes) and \$0100–\$017F (128 bytes). These may be accessed at any time by setting the RAM0 and RAM1 bits, respectively, in the option register (see **Software-selectable options**).


ROM

The main user ROM/EPROM occupies 15744 bytes in the memory space from \$017F to \$3FFF. This array includes 15744 bytes of main User ROM, 128 bytes of User ROM that are mapped into the memory space when the RAM0 bit in the option register is cleared and the User reset and interrupt vectors (\$3FF6–\$3FFF). It also includes the self-check ROM and vectors and the option register.

Two additional ROM arrays are mapped into the address space at \$0020–\$004F (48 bytes) and \$0100–\$017F (128 bytes) when RAM0 and RAM1, respectively, in the option register are cleared (see **Software-selectable options**).

Registers

Except for the option register, all I/O, control and status registers are contained within one 32-byte block in page zero of the address space (\$0000–\$001F). These registers are shown in Table 13.

Figure 16. Memory map of the MC68HC05D9

3-mem

Register name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset
Port A data (PORTA)	\$0000									undefined
Port B data (PORTB)	\$0001									undefined
Port C data (PORTC)	\$0002									undefined
Port D data (PORTD)	\$0003									undefined
Data direction A (DDRA)	\$0004									0000 0000
Data direction B (DDRB)	\$0005									0000 0000
Data direction C (DDRC)	\$0006									0000 0000
Data direction D (DDRD)	\$0007									0u00 0000
PWM mode (PWMM)	\$0008	0	0	SCIB	PWM4	PWM3	PWM2	PWM1	PWM0	0010 0000
PWM channel 0 (PWM0)	\$0009	0	0							0000 0000
PWM channel 1 (PWM1)	\$000A	0	0							0000 0000
PWM channel 2 (PWM2)	\$000B	0	0							0000 0000
PWM channel 3 (PWM3)	\$000C	0	0							0000 0000
PWM channel 4 (PWM4)	\$000D ⁽¹⁾	0	0							0000 0000
SCI baud rate (BAUD)	\$0000			SCP1	SCP0		SCR2	SCR1	SCR0	นน00 นนนน
SCI control 1 (SCCR1)	\$000E	R8	T8	0	М	WAKE	0	0	0	uu0u u000
SCI control 2 (SCCR2)	\$000F	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	0000 0000
SCI status (SCSR)	\$0010	TDRE	TC	RDRF	IDLE	OR	NF	FE	0	1100 0000
SCI data (SCDR)	\$0011									undefined
Timer control (TCR)	\$0012	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL	0000 0000
Timer status (TSR)	\$0013	ICF	OCF	TOF	0	0	0	0	0	uuu0 0000
	\$0014									undefined
Input capture (ICR)	\$0015									undefined
	\$0016									undefined
Output compare (OCR)	\$0017									undefined
	\$0018									1111 1111
Timer counter (TCNT)	\$0019									1111 1100
	\$001A									1111 1111
Alternate counter (ALTCNT)	\$001B									1111 1100
Reserved	\$001C									undefined
COP reset (COPRST)	\$001D	ICAF	ICBF	OCAF	TOF	0	0	0	0	0000 0000
COP control (COPCR)	\$001E	0	0	0	COPF	CME	COPE	CM1	CM0	0000 0000
Reserved	\$001F									undefined
<u></u>	1	1	1	1	1	1	1	1		
OPTION	\$3FDF	RAM0	RAM1	0	0	0		IRQ	0	0000 0u10
									u	= undefined

Table 13. MC68HC05D9 register assignment

1. If SCIB = 0, the PWM4 register is available at location \$000D If SCIB = 1, the SCI baud rate generator register is available at location \$000D

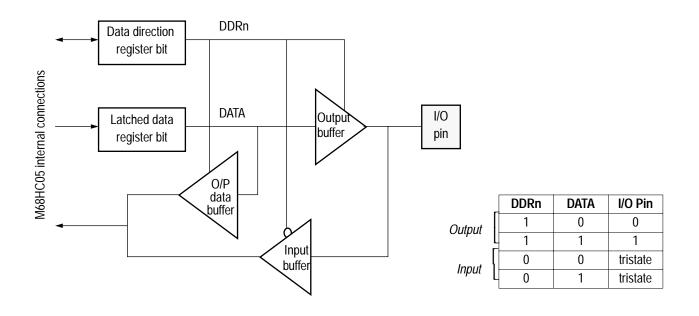
Input/Output Ports

Contents

Introduction	. 57
Input/output programming	. 57
Port D	. 59
Ports A, B and C	. 59
Port registers	. <mark>60</mark>
Port data registers (PORTA, PORTB, PORTC and PORTD)	
Data direction registers (DDRA, DDRB, DDRC and DDRD)	
Other port considerations	. 61

Introduction

In single chip mode there are four 8-bit wide parallel ports comprising 31 bidirectional I/O lines and one output-only line. The bidirectional ports are programmable as either inputs or outputs under software control, via the data direction registers.


To prevent glitches on the output pins, data should be written to the I/O port data register before configuring the port as outputs, by setting the corresponding data direction register bits.

Input/output programming

Bidirectional port lines may be programmed as inputs or outputs under software control. The direction of each pin is determined by the state of the corresponding bit in the port data direction register (DDR). Each port has an associated DDR. Any I/O port pin is configured as an output if its

corresponding DDR bit is set to a logic one ('1'). A pin is configured as an input if its corresponding DDR bit is cleared to a logic zero ('0').

At power-on or reset, all DDRs are cleared, thus configuring all port pins as inputs. The data direction registers can be written to or read by the processor. During the programmed output state, a read of the data register reads the value of the output data latch and not the I/O pin (see **Figure 17** and **Table 14**).

Figure 17. Standard I/O port structure

Table 14	. Bidirectional	I/O pin	functions
----------	-----------------	---------	-----------

R/W ⁽¹⁾	DDR	I/O Pin function
0	0	The I/O pin is in input mode. Data is written into the output data latch.
0	1	Data is written into the output data latch, and output to the I/O pin.
1	0	The state of the I/O pin is read.
1	1	The I/O pin is in output mode. The output data latch is read.

1. Note that R/\overline{W} is an internal signal, not available to the user.

Ports A, B and C

Ports A, B and C are 8-bit bidirectional ports (see **Table 14**). Their data registers reside at addresses \$0000–\$0002 and their data direction registers (DDRn) at \$0004–\$0006, respectively. Reset does not affect the data register, but clears the data direction register, thereby returning the ports to inputs. Writing a '1' to a data direction register bit sets the corresponding port bit to output mode.

Port D

Port D is an 8-bit wide port that shares pins with the on-board sub-systems (timer, SCI and PWM). When a sub-system function is enabled, the associated pin or pins are configured to support the input/output requirements of that function (see PD0–PD7). In particular, a bit whose pin is shared with the timer, SCI or PWM sub-system can be used to read the level on the pin, even when the associated sub-system is enabled. When a sub-system is enabled, certain pins associated with that sub-system are capable of becoming outputs. These pins then get their drive signals directly from the sub-system rather than from the port D data register. These pins, however, remain under the control of the data direction register and can be configured as input pins when driven directly from the sub-system.

The port D data register is located at address \$0003 and the port D data direction register (DDR) at \$0007. Bits 0–5 and 7 are bidirectional lines, their direction controlled by the corresponding bits in DDRD. Bit 6 is dedicated to the timer output compare function as an output; as an input, reading this bit returns the instantaneous level on the TCMP pin. Consequently, bit 6 does not have a corresponding data direction register bit in DDRD. Reset does not affect the data register, but clears the data direction register, thereby returning the ports to inputs. Writing a '1' to a DDR bit sets the corresponding bit in the data register monitors the level on the pin at all times.

NOTE: The operation of the timer and PWM sub-systems can cause transitions on the port D pins that are asynchronous with respect to the read cycles on the port D data register. User software should be written in such a way as not to depend on the value of any bit on port D that was read while the operation of one of the sub-systems may have been causing transitions on the pin.

Port registers

The following sections explain in detail the individual bits in the data and control registers associated with the ports.

Port data registers (PORTA, PORTB, PORTC and PORTD)

	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset
Port A data (PORTA)	\$0000									undefined
Port B data (PORTB)	\$0001									undefined
Port C data (PORTC)	\$0002									undefined
Port D data (PORTD)	\$0003									undefined

Each bit can be configured as input or output via the corresponding data direction bit in the port data direction register (DDRx).

Reset does not affect the state of the port data registers.

Data direction registers (DDRA, DDRB, DDRC and DDRD)

	Audress	DILO	DIL 5	DIL 4	DIL 3		DILU	on reset
Data direction A (DDRA)	\$0004							0000 0000
Data direction B (DDRB)	\$0005							0000 0000
Data direction C (DDRC)	\$0006							0000 0000
Data direction D (DDRD)	\$0007							0u00 0000

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 State

Writing a '1' to any bit configures the corresponding bit in the port data register as an output; conversely, writing any bit to '0' configures the corresponding port data bit as an input.

Reset clears these registers, thus configuring all pins as inputs.

Other port considerations

All input/output ports can emulate open-drain outputs. This is done by writing a '0' to the relevant output port latch. By toggling the corresponding data direction bit, the port pin will be either output a '0' or be tri-state (i.e. an input). (See Figure 18.)

When using a port pin as an open-drain output, certain precautions must be taken in the user software. If a read-modify-write instruction is used on a port where the open-drain is assigned and the pin at this time is programmed as an input, it will read it as a '1'. The read-modify-write instruction will then write this '1' into the output data latch on the next cycle. This would cause the open-drain pin not to output a "0" when desired.

NOTE: 'Open-drain' outputs should not be pulled above V_{DD} .

5-ports

DDRn	Α	Y	ן
1	0	0	
1	1	1	 No
0	0	tristate	
0	1	tristate	J
			1 I
1	0	low	
1	1		}
0	0	high	
0	1	high	j

Normal operation - tristate

Open drain

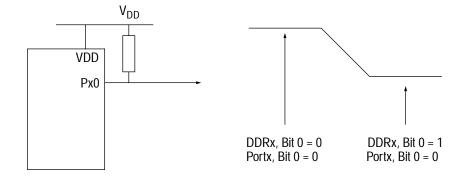


Figure 18. Port logic levels

16-bit Programmable TImer

Contents

troduction
ounter
Counter registers
mer functions
Timer control register (TCR)67
Timer status register (TSR)68
Input capture register
Output compare register
mer during WAIT mode72
mer during STOP mode
mer state diagrams73

Introduction

The programmable input capture/output compare timer on the MC68HC05D9 consists of a 16-bit read-only free-running counter, preceded by a fixed divide-by-four prescaler. Selected input edges cause the current counter value to be latched into a 16-bit input capture register so that software can later read this value to determine when the edge occurred. When the free running counter value matches the value in the output compare registers, the programmed pin action takes place. Refer to **Figure 19** for a block diagram of the timer.

The timer has a 16-bit architecture hence each specific functional segment is represented by two registers. These registers contain the high and low byte of that functional segment. Accessing the low byte of a specific timer function allows full control of that function; however, an access of the high byte inhibits that specific timer function until the low byte is also accessed.

1-timer

NOTE: The I-bit in the CCR should be set while manipulating both the high and low byte register of a specific timer function to ensure that an interrupt does not occur.

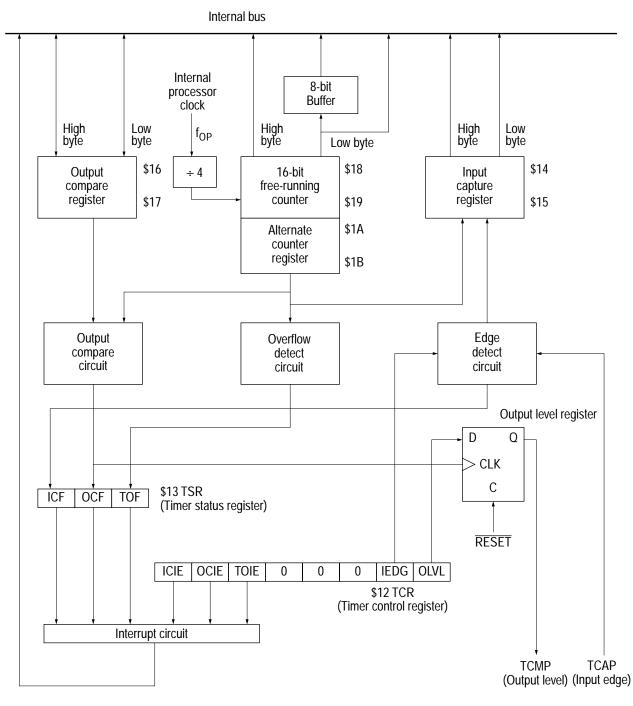


Figure 19. 16-bit programmable timer block diagram

Counter

The key element in the programmable timer is a 16-bit, free-running counter or counter register, preceded by a prescaler that divides the internal processor clock by four. The prescaler gives the timer a resolution of 2μ s if the internal bus clock is 2 MHz. The counter is incremented during the low portion of the internal bus clock. Software can read the counter at any time without affecting its value.

The free-running counter is set to \$FFFC during reset and is always read-only. During a power-on reset, the counter is also preset to \$FFFC and begins running after the oscillator start-up delay. Because the free-running counter is 16 bits preceded by a fixed divide-by-four prescaler, the value in the free-running counter repeats every 262,144 internal bus clock cycles. TOF is set when the counter overflows (from \$FFFF to \$0000); this will cause an interrupt if TOIE is set.

Counter registers The double-byte, free-running counter can be read from either of two locations, \$18–\$19 (counter register) or \$1A–\$1B (alternate counter register). A read from only the less significant byte (LSB) of the free-running counter (\$19 or \$1B) receives the count value at the time of the read. If a read of the free-running counter or alternate counter register first addresses the more significant byte (MSB) (\$18 or \$1A), the LSB is transferred to a buffer. This buffer value remains fixed after the first MSB read, even if the user reads the MSB several times. This buffer is accessed when reading the free-running counter or alternate counter register LSB and thus completes a read sequence of the total counter value. In reading either the free-running counter or alternate counter register, if the MSB is read, the LSB must also be read to complete the sequence.

16-bit Programmable TImer

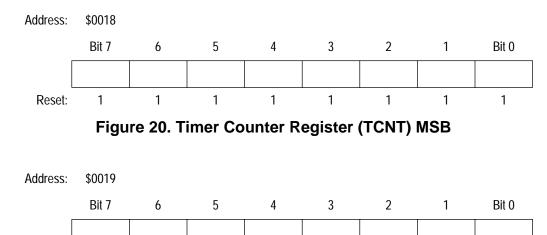


Figure 21. Timer Counter Register (TCNT) LSB

The alternate counter register differs from the counter register only in that a read of the LSB will not clear the timer overflow flag (TOF). Therefore, to avoid the possibility of missing timer overflow interrupts due to clearing of TOF, the alternate counter register should be used where this is a critical issue.

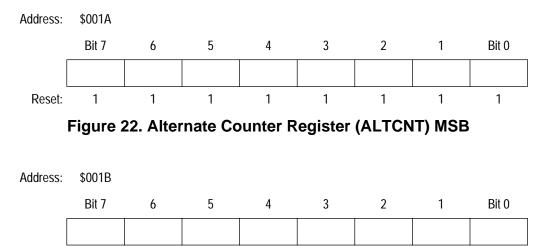


Figure 23. Alternate Counter Register (ALTCNT) LSB

1

1

1

0

Reset:

1

1

1

0

Timer functions

I

The 16-bit programmable timer is monitored and controlled by a group of ten registers, full details of which are contained in the following paragraphs. An explanation of the timer functions is also given.

Timer controlThe timer control register (\$12) is used to enable the input captureregister (TCR)(ICIE), output compare (OCIE), and timer overflow (TOIE) functions as
well as selecting input edge sensitivity (IEDG) and output level polarity
(OLVL).

Address:	\$0012							
	Bit 7	6	5	4	3	2	1	Bit 0
	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL
Reset:	0	0	0	0	0	0	u	0

Figure 24. Timer Control Register (TCR)

ICIE — Input capture interrupt enable

ICIE is a read/write control bit that is used to enable or disable interrupts coming from the input capture circuitry. Reset clears this bit.

- 1 = Input capture interrupt enabled.
- 0 = Input capture interrupt disabled.

OCIE — Output compare interrupt enable

OCIE is a read/write control bit that is used to enable or disable interrupts coming from the output compare circuitry. Reset clears this bit.

- 1 = Output compare interrupt enabled.
- 0 = Output compare interrupt disabled.
- TOIE Timer overflow interrupt enable

TOIE is a read/write control bit that is used to enable or disable interrupts coming from the timer overflow detection circuitry. Reset clears this bit.

- 1 = Timer overflow interrupt enabled.
- 0 = Timer overflow interrupt disabled.

MOTOROLA

	IEDG — Input edge
	 IEDG is a read/write control bit that is used to specify the input capture trigger mechanism. Reset clears this bit. 1 = A positive going edge on the TCAP pin will trigger free-running counter transfer to the input capture register. 0 = A negative going edge on the TCAP pin will trigger free-running counter transfer to the input capture register.
	OLVL — Output level
	 OLVL is a read/write control bit that is used to specify whether a logic high or logic low level will appear on the TCMP pin following the next successful output compare. Reset clears this bit. 1 = A high output value will be clocked into the output level register by the next successful output compare and will appear on the TCMP pin. 0 = A low output value will be clocked into the output level register by the next successful output compare and will appear on the TCMP pin.
Timer status register (TSR)	The timer status register (\$13) contains the status bits for the above three interrupt conditions – ICF, OCF, TOF.

Accessing the timer status register satisfies the first condition required to clear the status bits. The remaining step is to access the register corresponding to the status bit.

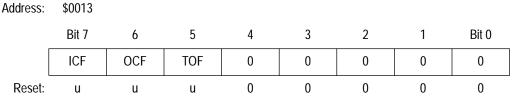


Figure 25. Timer Status Register (TSR)

ICF — Input capture flag

ICF is a read-only bit that is set whenever an input capture occurs. If input capture interrupts are enabled (via ICIE in TCR), the setting of this bit will interrupt the processor. It is cleared by the sequence of reading TSR followed by the input capture low register (\$15).

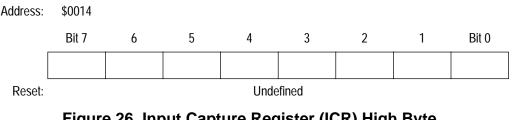
- 1 = Input capture has occurred.
- 0 = No interrupt capture has occurred.
- OCF Output compare flag

OCF is a read-only bit that is set whenever an output compare occurs. If output compare interrupts are enabled (via OCIE in TCR), the setting of this bit will interrupt the processor. It is cleared by the sequence of reading TSR followed by the output compare low register (\$17).

- 1 = Output compare has occurred.
- 0 = No output compare has occurred.
- TOF Timer overflow flag

TOF is a read-only bit that is set whenever a timer overflow occurs. If timer overflow interrupts are enabled (via TOIE in TCR), the setting of this bit will interrupt the processor. It is cleared by the sequence of reading TSR followed by the counter low register (\$19).

1 = Timer overflow has occurred.


0 = No timer overflow has occurred.

NOTE: When using the timer overflow function and reading the free-running counter at random times to measure an elapsed time, a problem could occur where the timer overflow flag may be cleared unintentionally if the timer status register is read or written when TOF is set and the LSB of the free-running counter is read, but not for the purpose of servicing the flag.

7-timer

16-bit Programmable Timer

Input capture 'Input capture' is a technique whereby an external signal (connected to register the TCAP pin) is used to trigger a read of the free running counter. In this way it is possible to relate the timing of an external signal to the internal counter value, and hence to elapsed time.

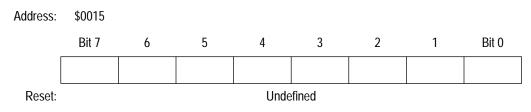


Figure 27. Input Capture Register (ICR) Low Byte

The two 8-bit registers that make up the 16-bit input capture register are read-only, and are used to latch the value of the free-running counter after the input capture edge detector senses a valid transition. The level transition that triggers the counter transfer is defined by the input edge bit (IEDG). The most significant 8 bits are stored in the input capture high register at \$14, the least significant in the input capture low register at \$15.

The result obtained from an input capture will be one greater than the value of the free-running counter on the rising edge of the internal bus clock preceding the external transition. This delay is required for internal synchronization. Resolution is one count of the free-running counter, which is four internal bus clock cycles. The free-running counter contents are transferred to the input capture register on each valid signal transition whether the input capture flag (ICF) is set or clear. The input capture register always contains the free-running counter value that corresponds to the most recent input capture. After a read of the input capture register MSB (\$14), the counter transfer is inhibited until the LSB (\$15) is also read. This characteristic causes the time used in the input

capture software routine and its interaction with the main program to determine the minimum pulse period. A read of the input capture register LSB (\$15) does not inhibit the free-running counter transfer since the two actions occur on opposite edges of the internal bus clock.

Reset does not affect the contents of the input capture register, except when exiting STOP mode.

Output compare'Output compare' is a technique that may be used, for example, to
generate an output waveform, or to signal when a specified time has
elapsed, by presetting the output compare register to the appropriate
value. Note that the output pin used is the shared PD6/TCMP pin.

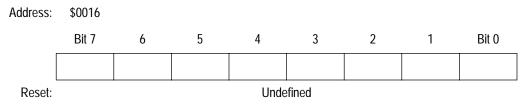


Figure 28. Output Compare Register (OCR) High Byte

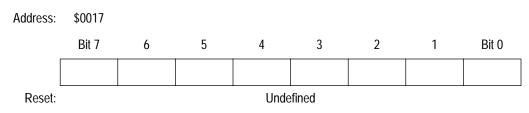


Figure 29. Output Compare Register (OCR) Low Byte

The 16-bit output compare register is made up of two 8-bit registers at locations \$16 (MSB) and \$17 (LSB). The contents of the output compare register are compared with the contents of the free-running counter continually and, if a match is found, the corresponding output compare flag (OCF) in the timer status register is set and the output level (OLVL) bit clocked to the output level register. The output compare register values and the output level bit should be changed after each successful comparison to establish a new elapsed timeout. An interrupt can also accompany a successful output compare provided the corresponding

9-timer

interrupt enable bit (OCIE) is set. (The free-running counter is updated every four internal bus clock cycles.)

After a processor write cycle to the output compare register containing the MSB (\$16), the output compare function is inhibited until the LSB (\$17) is also written. The user must write both bytes (locations) if the MSB is written first. A write made only to the LSB (\$17) will not inhibit the compare function. The processor can write to either byte of the output compare register without affecting the other byte. The output level (OLVL) bit is clocked to the output level register whether the output compare flag (OCF) is set or clear. The minimum time required to update the output compare register is a function of the program rather than the internal hardware. Because the output compare flag and the output compare register are not defined at power on, and not affected by reset, care must be taken when initialising output compare functions with software. The following procedure is recommended:

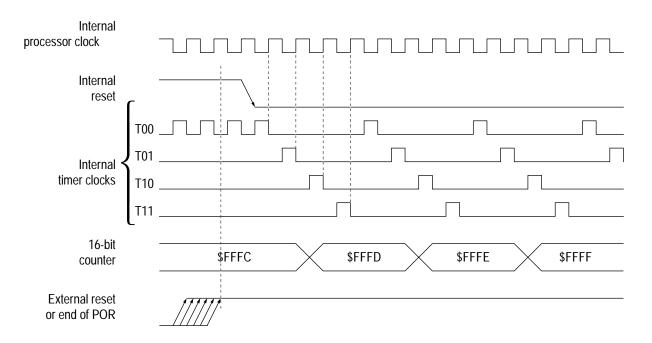
- 1. Write to output compare high to inhibit further compares;
- 2. Read the timer status register to clear OCF (if set);
- 3. Write to output compare low to enable the output compare function.

All bits of the output compare register are readable and writable and are not altered by the timer hardware or reset. If the compare function is not needed, the two bytes of the output compare register can be used as storage locations.

Timer during WAIT mode

Only the CPU clock halts during WAIT mode, hence the timer continues to run. A timer interrupt may be used to bring the CPU out of WAIT mode. If RESET is used to exit WAIT mode, the counters are forced to \$FFFC.

Timer during STOP mode

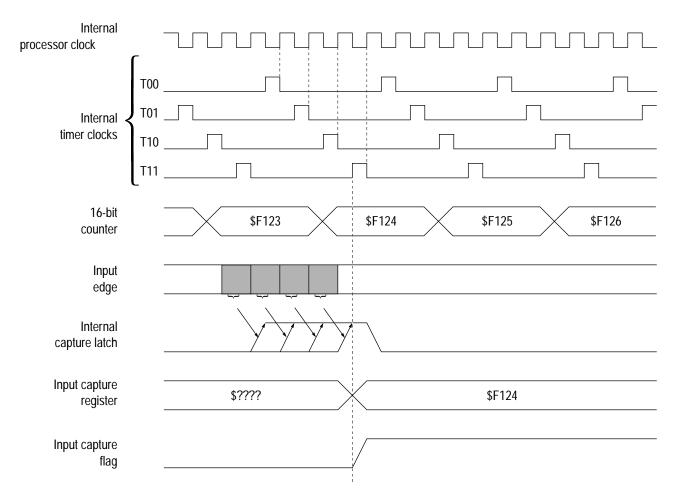

In the STOP mode all MCU clocks are stopped, hence the timer stops counting. If STOP is exited by an interrupt the counter retains the last count value. If the device is reset then the counter is forced to \$FFFC.

During STOP, if at least one valid input capture edge occurs at the TCAP pin, the input capture detection circuitry is armed. This does not set any timer flags nor wake up the MCU. When the MCU does wake up, however, there is an active input capture flag and data from the first valid edge that occurred during the STOP period. If the device is reset to exit STOP mode, then no input capture flag or data remains, even if a valid input capture edge occurred.

Timer state diagrams

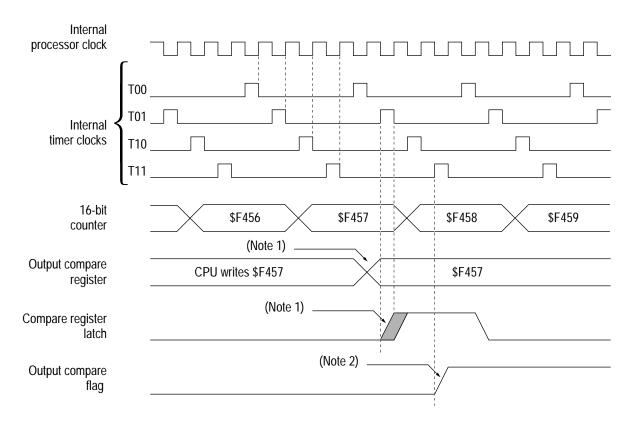
The relationships between the internal clock signals, the counter contents and the status of the flag bits are shown in the following figures.

The signals labelled 'internal' (processor clock, timer clocks and reset) are not available to the user.



Note: The counter and timer control registers are the only ones affected by power-on or external reset.

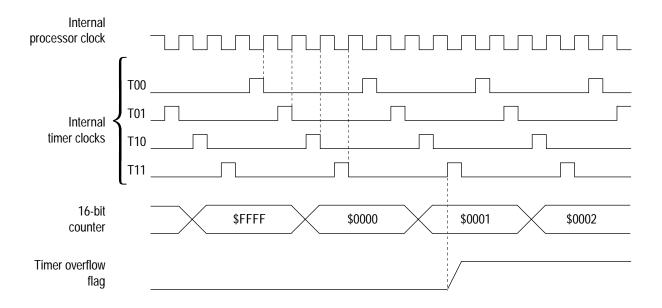
Figure 30. Timer state timing diagram for reset


13-timer

16-bit Programmable TImer

Note: If the input edge occurs in the shaded area from one timer state T10 to the next timer state T10, then the input capture flag will be set during the next T11 state..

Figure 31. Timer state timing diagram for input capture



Note: (1)The CPU write to the compare registers may take place at any time, but a compare only occurs at timer state T01. Thus a four cycle difference may exist between the write to the compare register and the actual compare.

(2) The output compare flag is set at the timer state T11 that follows the comparison match (\$F457 in this example).

Figure 32. Timer state timing diagram for output compare

16-bit Programmable TImer

Note: The timer overflow flag is set at timer state T11 (transition of counter from \$FFFF to \$0000). It is cleared by a read of the timer status register during the internal processor clock high time, followed by a read of the counter low register.

Serial Communications Interface (SCI)

Contents

Introduction
Overview and features
SCI two-wire system features
SCI receiver features80
SCI transmitter features80
Functional description
Data format
Receiver wake-up operation
Idle line wake-up
Address mark wake-up
Receive data (RDI)
Start bit detection
Transmit data (TDO)
SCI registers
PWM mode register (PWMM)89
SCIB — Serial communications interface baud
Serial communications data register (SCDR)
Serial communications control register 1 (SCCR1)90
Serial communications control register 2 (SCCR2)
Serial communications status register (SCSR)
Baud rate register (BAUD)96

Introduction

This section describes the UART type serial communications interface system (SCI). The SCI can be used, for example, to connect a CRT terminal or personal computer to the MCU or to form a serial communication network connecting several widely distributed MCUs.

Overview and features

The SCI on the MCU is a full duplex UART type asynchronous system. The SCI uses standard non-return-to-zero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). An on-chip baud rate generator derives standard baud rate frequencies from the MCU oscillator. Both the transmitter and the receiver are double buffered, so back-to-back characters can be handled easily even if the CPU is delayed in responding to the completion of an individual character. The SCI transmitter and receiver are functionally independent but use the same data format and baud rate.

SCI two-wire Standard NRZ (mark/space) format system features Advanced error detection method includes noise detection for • noise duration of up to 1/16th bit time • Full-duplex operation Software programmable for one of 32 different baud rates • Software selectable word length (eight- or nine-bit words) • Separate transmitter and receiver enable bits Can be interrupt driven Four separate enable bits available for interrupt control **SCI** receiver Receiver wake-up function (idle line or address bit) • *features* • Idle line detect • Framing error detect Noise detect Overrun detect Receiver data register full flag

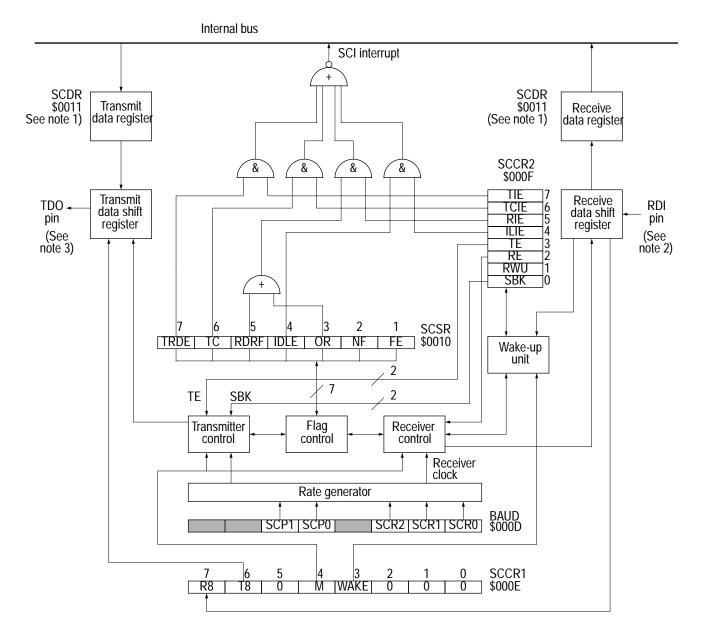
SCI transmitter • Transmit data register empty flag features

MC68HC05D9 Rev 3.0

2-sci

- Transmit complete flag
- Send break

Functional description


A block diagram of the SCI is shown in Figure 8-1. The user has option bits in serial communications control register 1 (SCCR1) to select the "wake-up" method (WAKE bit) and data word length (M bit) of the SCI. Serial communications control register 2 (SCCR2) provides control bits which individually enable/disable the transmitter or receiver (TE and RE, respectively), enable system interrupts (TIE, TCIE, ILIE) and provide the wake-up enable bit (RWU) and the send break code bit (SBK). Control bits in the baud rate register (BAUD) allow the user to select one of 32 different baud rates for the transmitter and receiver.

Data transmission is initiated by a write to the serial communications data register (SCDR). Provided the transmitter is enabled, data stored in the SCDR is transferred to the transmit data shift register. This transfer of data sets the transmit data register empty flag (TDRE) in the SCI status register (SCSR) and may generate an interrupt if the transmit interrupt is enabled. The transfer of data to the transmit data shift register is synchronized with the bit rate clock (Figure 35). All data is transmitted least significant bit first. Upon completion of data transmission, the transmission complete flag (TC) in the SCSR is set (provided no pending data, preamble or break is to be sent), and an interrupt may be generated if the transmit complete interrupt is enabled. If the transmitter is disabled, and the data, preamble or break (in the transmit data shift register) has been sent, the TC bit will also be set. This will also generate an interrupt if the transmission complete interrupt enable bit (TCIE) is set. If the transmitter is disabled in the middle of a transmission, that character will be completed before the transmitter gives up control of the TDO pin.

When SCDR is read, it contains the last data byte received, provided that the receiver is enabled. The receive data register full flag bit (RDRF) in the SCSR is set to indicate that a data byte has been transferred from the input serial shift register to the SCDR, which can cause an interrupt

MOTOROLA

Serial Communications Interface (SCI)

The serial communications data register (SCI SCDR) is controlled by the internal R/W signal. It is the transmit data register when written to and the receive data register when read.

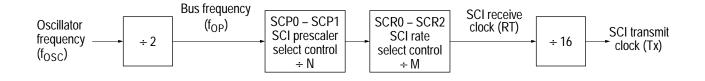
Receive data in (RDI) is served by pin 0 of port B (PD0)

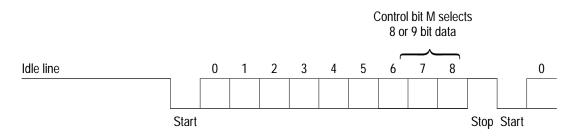
Transmit data out (TDO) is served by pin 1 of port B (PD1)

Figure 34. Serial communications interface block diagram

if the receiver interrupt is enabled. The data transfer from the input serial shift register to the SCDR is synchronized by the receiver bit rate clock. The OR (overrun), NF (noise), or FE (framing) error flags in the SCSR may be set if data reception errors occurred.

An idle line interrupt is generated if the idle line interrupt is enabled and the IDLE bit (which detects idle line transmission) in SCSR is set. This allows a receiver that is not in the wake-up mode to detect the end of a message or the preamble of a new message, or to resynchronize with the transmitter. A valid character must be received before the idle line condition or the IDLE bit will not be set and an idle line interrupt will not be generated.




Figure 35. Rate generator division

Data format

Receive data or transmit data is the serial data that is transferred to the internal data bus from the receive data input pin (RDI) or from the internal bus to the transmit data output pin (TDO). The non-return-to-zero (NRZ) data format shown in Figure 8-3 is used and must meet the following criteria:

- The idle line is brought to a logic one state prior to transmission/reception of a character.
- A start bit (logic zero) is used to indicate the start of a frame.
- The data is transmitted and received least significant bit first.
- A stop bit (logic one) is used to indicate the end of a frame. A frame consists of a start bit, a character of eight or nine data bits, and a stop bit.

 A break is defined as the transmission or reception of a low (logic zero) for at least one complete frame time.

Receiver wake-up operation

The receiver logic hardware also supports a receiver wake-up function which is intended for systems having more than one receiver. With this function a transmitting device directs messages to an individual receiver or group of receivers by passing addressing information as the initial byte(s) of each message. The wake-up function allows receivers not addressed to remain in a dormant state for the remainder of the unwanted message. This eliminates any further software overhead to service the remaining characters of the unwanted message and thus improves system performance.

The receiver is placed in wake-up mode by setting the receiver wake-up bit (RWU) in the SCCR2 register. While RWU is set, all the receiver related status flags (RDRF, IDLE, OR, NF, and FE) are inhibited (cannot become set). Note that the idle line detect function is inhibited while the RWU bit is set. Although RWU may be cleared by a software write to SCCR2, it would be unusual to do so. Normally RWU is set by software and gets cleared automatically with hardware by one of the two methods described below.

Idle line wake-up In idle line wake-up mode, a dormant receiver wakes up as soon as the RDI line becomes idle. Idle is defined as a continuous logic high level on

MC68HC05D9 R	ev 3.0
--------------	--------

the RDI line for ten (or eleven) full bit times. Systems using this type of wake-up must provide at least one character time of idle between messages to wake up sleeping receivers, but must not allow any idle time between characters within a message.

Address mark In address mark wake-up, the most significant bit (MSB) in a character is used to indicate that the character is an address (1) or a data (0) character. Sleeping receivers will wake up whenever an address character is received. Systems using this method for wake-up would set the MSB of the first character of each message and leave it clear for all other characters in the message. Idle periods may be present within messages and no idle time is required between messages for this wake-up method.

Receive data (RDI)

Receive data is the serial data that is applied through the input line and the serial communications interface to the internal bus. The receiver circuitry clocks the input at a rate equal to 16 times the baud rate and this time is referred to as the RT clock.

Once a valid start bit is detected the start bit, each data bit and the stop bit are sampled three times at positions 8 RT, 9 RT and 10 RT (1 RT is the position where the bit is expected to start), as shown in **Figure 37**. The value of the bit is determined by voting logic which takes the value of the majority of the samples.

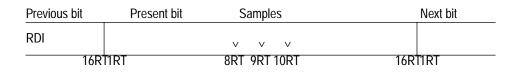


Figure 37. SCI sampling technique used on all bits

7-sci

Start bit detection

When the RDI input is detected low, it is tested for three more sample times (referred to as the start edge verification samples in **Figure 38**). If at least two of these three verification samples detect a logic zero, a valid start bit has been detected, otherwise the line is assumed to be idle. A noise flag is set if all three verification samples do not detect a logic zero. A valid start bit could be assumed with a set noise flag present.

If there has been a framing error without detection of a break (10 zeros for 8-bit format or 11 zeros for 9-bit format), the circuit continues to operate as if there was a stop bit and the start edge will be placed artificially. The last bit received in the data shift register is inverted to a logic one, and the three logic one start qualifiers (shown in Figure 38) are forced into the sample shift register during the interval when detection of a start bit is anticipated (see Figure 39); therefore, the start bit will be accepted no sooner than it is anticipated.

If the receiver detects that a break produced the framing error, the start bit will not be artificially induced and the receiver must detect a logic one before the start bit can be recognised (see Figure 40).

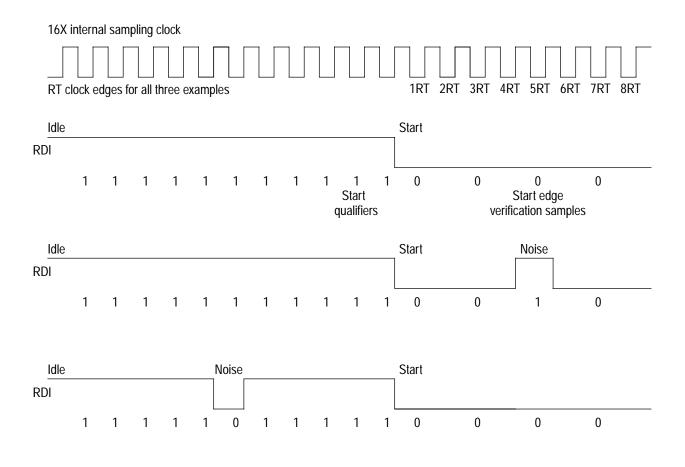
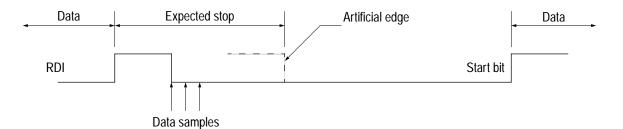
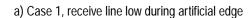
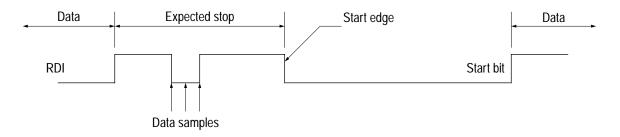






Figure 38. SCI examples of start bit sampling technique

b) Case 2, receive line high during expected start edge

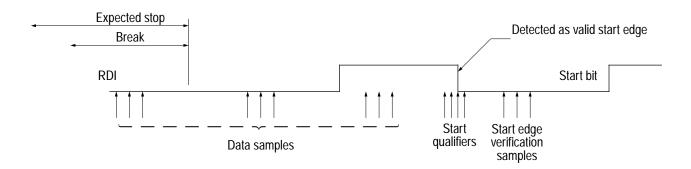


Figure 40. SCI start bit following a break

Transmit data (TDO)

Transmit data is the serial data from the internal data bus that is applied through the serial communications interface to the output line. The transmitter generates a bit time by using a derivative of the RT clock, thus producing a transmission rate equal to 1/16th that of the receiver sample clock.

SCI registers

Primarily the SCI system is configured and controlled by five registers (BAUD, SCCR1, SCCR2, SCSR, and SCDR). In addition, the serial communications interface baud bit (SCIB) in the PWM mode register (PWMM) provides access to the SCI baud rate register (BAUD) at address \$000D (see Figure 8-1).

PWM mode register (PWMM)

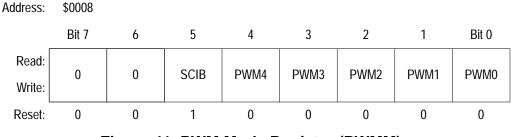


Figure 41. PWM Mode Register (PWMM)

SCIB — Serial communications interface baud

SCIB is a read/write control bit that provides access to either the SCI baud rate register or the PWM4 data register at address \$000D. This bit is set following reset.

1 = SCI baud rate register accessed at address \$000D


0 = SCI PWM4 register accessed at address \$000D

The other control bits in this register are discussed in **Pulse Width Modulator (PWM)**.


11-sci

Serial Communications Interface (SCI)

Serial communications data register (SCDR) The SCI data register (SCDR) is actually two separate registers. When SCDR is read, the read-only receive data register is accessed and when SCDR is written, the write-only transmit data register is accessed. This address is unaffected by reset.

zeros.

The SCI control register 1 (SCCR1) contains control bits related to the

Figure 42. SCI Data Register (SCDR)

nine data bit character format and the receiver wake-up feature.

Serial communications control register 1 (SCCR1)

NOTE: Bits 0–2 and 5 are not implemented in this register and always read as

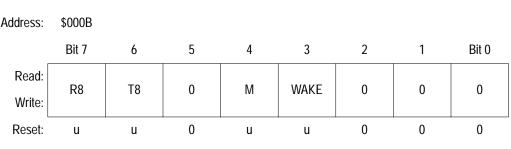


Figure 43. SCI Control Register 1 (SCCR1)

R8 — Receive data bit 8

This read-only bit is the ninth serial data bit received when the SCI system is configured for nine data bit operation (M = 1). The most significant bit (bit 8) of the received character is transferred into this bit at the same time as the remaining eight bits (bits 0–7) are transferred from the serial receive shifter to the SCI receive data register.

90

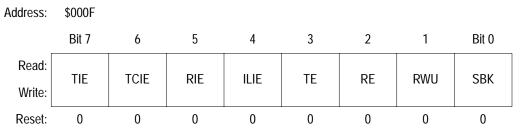
T8 — Transmit data bit 8

This read/write bit is the ninth data bit to be transmitted when the SCI system is configured for nine data bit operation (M = 1). When the eight low order bits (bits 0–7) of a transmit character are transferred from the SCI data register to the serial transmit shift register, this bit (bit 8) is transferred to the ninth bit position of the shifter.

M — Mode (select character format)

The M bit is a read/write bit which controls the character length for both the transmitter and receiver at the same time. The 9th data bit is most commonly used as an extra stop bit or in conjunction with the "address mark" wake-up method. It can also be used as a parity bit.

- 1 = 1 start bit, 8 data, 9th data bit, 1 stop bit
- 0 = 1 start bit, 8 data bits, 1 stop bit


WAKE — Wake-up mode select

This read/write bit is used to select the wake-up mode used by the receiver.

- 1 = Wake-up on address mark; if RWU is set, SCI will wake-up if the 8th (if M=1) or 9th (if M=0) bit received on the Rx line is set
- 0 = Wake-up on idle line; if RWU is set, SCI will wake-up after 11 (if M=0) or 12 (if M=1) consecutive '1's on the Rx line

Serial communications control register 2 (SCCR2)

The SCI control register 2 (SCCR2) contains the control bits that enable/disable individual SCI functions. SCCR2 is cleared during reset and can be read or written at any time.

TIE — Transmit interrupt enable

This bit allows the processor to be interrupted by the SCI when the contents of the transmit data register are transferred to the transmit shift register, i.e. when the transmit data register is ready to accept the next byte to be transmitted.

- 1 = Transmit interrupt enabled (interrupt if TDRE = 1)
- 0 = Transmit interrupt disabled

TCIE — Transmit complete interrupt enable

This bit allows the processor to be interrupted by the SCI when the last bit has been transferred out of the transmit shift register to the TDO line.

- 1 = Transmit complete interrupt enabled (interrupt if TC = 1)
- 0 = Transmit complete interrupt disabled
- RIE Receiver interrupt enable

This bit allows the processor to be interrupted by the SCI when the contents of the receive shift register are transferred to the receive data register or when an overrun occurs (i.e. when a byte is ready to be transferred from the receive shift register but the receive data register still contains the previously received byte.

- 1 = Receiver interrupt enabled (interrupt if RDRF or OR = 1)
- 0 = Receiver interrupt disabled
- ILIE Idle line interrupt enable

This bit allows the processor to be interrupted by the SCI when the receiver detects an idle line condition.

1 = Idle line interrupt enabled (interrupt if IDLE = 1)

0 =Idle line interrupt disabled

TE — Transmitter enable

When the transmitter enable bit is set, the transmit shift register output is applied to the TDO line. Depending on the state of control bit M (SCCR1), a preamble of 10 (M = 0) or 11 (M = 1) consecutive ones is transmitted when software sets the TE bit from a cleared state. After loading the last byte in the serial communications data register and receiving the TDRE flag, the user can clear TE. Transmission of the last byte will then be completed before the transmitter gives up control of the TDO pin. While the transmitter is active, the data direction register control for Port D bit 1 is overridden and the line is forced to be an output.

- 1 = Transmitter enabled
- 0 = Transmitter disabled
- RE Receiver enable

When the receiver enable bit is set, the RDI line is applied to the receiver shift register input. When RE is clear, the receiver is disabled and all the status bits associated with the receiver (RDRF, IDLE, OR, NF and FE) are inhibited. While the receiver is enabled, the data direction register control for Port D bit 0 is overridden and the line is forced to be an input. After writing to RE, at least 10 RT cycles must occur before data can be received correctly

- 1 = Receiver enabled
- 0 = Receiver disabled
- RWU Receiver wake-up

When the receiver wake-up bit is set by the user software, it puts the receiver to sleep and enables the wake-up function. If the WAKE bit is cleared, RWU is cleared by the SCI logic after receiving 10 (M = 0) or 11 (M = 1) consecutive ones. If the WAKE bit is set, RWU is cleared by the SCI logic after receiving a data word whose MSB is set.

- 1 = Receiver wake-up enabled
- 0 = Receiver wake-up disabled
- SBK Send break

If the send break bit is toggled set and cleared, the transmitter sends 10 (M = 0) or 11 (M = 1) zeros and then reverts to idle sending data. If SBK remains set, the transmitter will continually send whole blocks of zeros (sets of 10 or 11) until cleared. At the completion of the break code, the transmitter sends at least one high bit to guarantee recognition of a valid start bit. If the transmitter is empty and idle, setting and clearing SBK is likely to queue two character times of break because the first break transfers almost immediately to the shift register and the second is then queued into the parallel transmit buffer.

- 1 = Send break
- 0 = Do not send break

MOTOROLA

Serial Communications Interface (SCI)

Serial communications status register (SCSR) This read-only register contains all the flag bits that indicate the status of the SCI and are used to generate interrupts from the SCI to the processor.

Address: \$0010

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	0
Write:	TURE	10	RDR	IDEE	ÖK	111		Ū
Reset:	1	1	0	0	0	0	0	0

TDRE — Transmit data register empty flag

This bit is set when the byte in the transmit data register is transferred to the serial shift register. New data will not be transmitted unless the SCSR register is read before writing to the transmit data register. Reset sets this bit.

- 1 = Transmit data register empty
- 0 = Transmit data register full

TC — Transmission complete flag

This bit is set to indicate that the SCI transmitter has no meaningful information to transmit (no data in shifter, no preamble, no break). When TC is set the serial line will go idle (continuous MARK). Reset sets this bit.

- 1 = Transmission complete
- 0 = Transmission not complete

RDRF — Receive data register full flag

This bit is set when the contents of the receiver serial shift register is transferred to the receiver data register. Reset clears this bit.

- 1 = Receive data register full
- 0 = Receive data register empty

IDLE — Idle line detected flag

This bit is set when a receiver idle line is detected (the receipt of a minimum of ten/eleven consecutive "1"s). This bit will not be set by the idle line condition when the RWU bit is set. Once cleared, IDLE will not be set again until after RDRF has been set, (until after the line has been active and becomes idle again). Reset clears this bit.

- 1 = Idle line detected
- 0 =Idle line not detected

OR — Overrun error flag

This bit is set when a new byte is ready to be transferred from the receiver shift register to the receiver data register and the receive data register is already full (RDRF bit is set). Data transfer is inhibited until this bit is cleared. Reset clears this bit.

1 = Overrun error has occurred

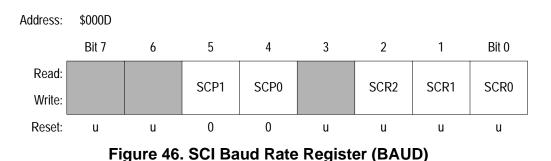
0 = Overrun error has not occurred

NF — Noise error flag

This bit is set if there is noise on a "valid" start bit, any of the data bits, or on the stop bit. The NF bit is set during the same cycle as the RDRF bit but does not get set if an overrun (OR) occurs. Reset clears this bit.

1 = Noise error has occurred

0 = Noise error has not occurred


FE — Framing error flag

This bit is set when the word boundaries in the bit stream are not synchronized with the receiver bit counter (generated by the reception of a logic zero bit where a stop bit was expected). The FE bit reflects the status of the byte in the receive data register. It is set during the same cycle as the RDRF bit but does not get set if an overrun (OR) has occurred. The transfer from the receive shifter to the receive data register is also inhibited if an overrun has occurred. The framing error flag inhibits further transfer of data into the receive data register until it is cleared. Reset clears this bit.

1 = Framing error has occurred

0 = Framing error has occurred

Baud rate registerThe baud rate register (BAUD) is used to set the bit rate for the SCI
system. Normally this register is written once, during initialisation, to set
the baud rate for SCI communications. Both the receiver and the
transmitter use the same baud rate which is derived from the MCU bus
rate clock. A two stage divider is used to develop custom baud rates from
normal MCU crystal frequencies so it is not necessary to use special
baud rate crystal frequencies. (See Figure 35.)

NOTE: This register shares address \$000D with PWM4. Access to the baud rate register is gained by setting the SCIB bit in the PWM mode register to 1. The SCIB bit defaults to 1 on reset.

SCP1, SCP0 — Serial prescaler select bits

These read/write bits select one of four division ratios for the first prescaler stage (N) shown in **Figure 35**. The bus frequency clock (f_{OP}) is divided by the factor N shown in **Table 15**. This prescaled output provides an input to the second prescaler stage which is controlled by the SCI rate select bits (SCR2–SCR0)

SCP1	SCP0	SCI prescaler division ratio (N)
0	0	1
0	1	3
1	0	4
1	1	13

SCR2, SCR1, SCR0 — SCI rate select bits

These three read/write bits select one of eight division ratios for the second prescaler stage (M) shown in **Figure 35**. The prescaler output described above is divided by the factors shown in **Table 16**.

SCR2	SCR1	SCR0	SCI rate select division ratio (M)
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

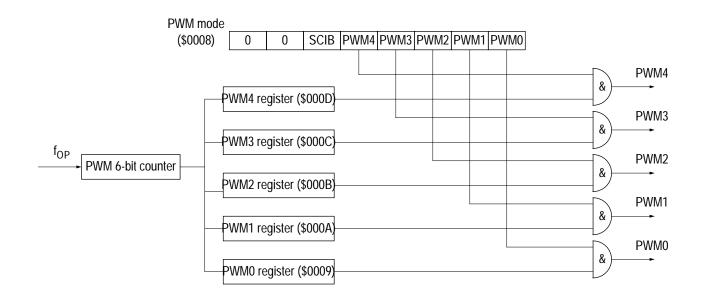
Table 16. Second prescaler stage

20-sci

Pulse Width Modulator (PWM)

Contents

Introduction	. 99
PWM counter	. 99
PWM registers	100
PWM mode register	100
PWM channel data registers (PWM0–PWM4)	102

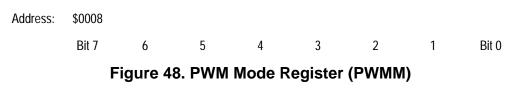

Introduction

The pulse width modulation unit on the MC68HC05D9 is a self-contained sub-system providing 5 PWM channels of six bits to be used as independent D to A converters. It consists of a 6-bit counter, a PWM mode control register and 5 PWM channel data registers (see **Figure 47**). The PWM output signals, PWM0–4, appear on port D pins 2–5 and 7, respectively, provided they are enabled.

PWM counter

The PWM counter, which has a range of \$00 to \$3F, is driven by the bus frequency clock, f_{OP} . The output pulse level on each channel is set to 1 (high) when the counter value equals \$00. The counter value is continuously compared with the contents of each data register. When the counter value equals that of the PWM data register, the output pulse is reset to 0 (low).

Pulse Width Modulator (PWM)



PWM registers

PWM mode register

This register contains five bits, PWM0–PWM4, that enable the PWM output waveforms to appear on the associated port D pins and one bit, SCIB, which allows either the PWM4 data register or the SCI baud register to be accessible at address \$000D. On reset, the SCI baud register is available at this address.

When not being used for the PWM outputs, the associated pins can be configured as normal I/O pins by clearing the corresponding PWM bit in the PWM mode register, where a 1 dedicates the pin to PWM output. Due to the port D data direction register being set to input on reset, the PWM channels present a high impedance until the PWM mode register is rewritten.

Read:	0	0	SCIE	PWM4	PWM3	PWM2	PWM1	PWM0
Write:	U	0	JUL		1 11113			
Reset:	0	1	0	0	0	0	0	0

Figure 48. PWM Mode Register (PWMM)

SCIB — Serial communications interface baud

SCIB is a read/write control bit that provides access to either the SCI baud rate register or the PWM4 data register at address \$000D. This bit is set following reset.

1 = SCI baud rate register accessed at address \$000D

0 = PWM4 register accessed at address \$000D

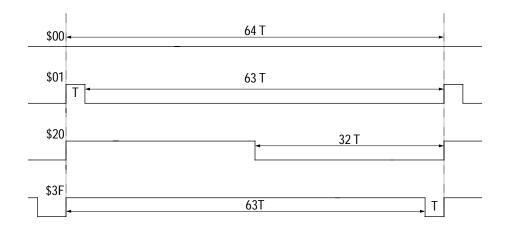
PWM0 – 4 — PWM channel enable bits

These read/write bits allow the corresponding PWM channels to be enabled or disabled.

1 = PWM channel enabled

0 = PWM channel disabled

PWM channel data registers (PWM0–PWM4)


PWM channel 0 (PWM0) PWM channel 1 (PWM1) PWM channel 2 (PWM2) PWM channel 3 (PWM3)

Address	bit 7	6	5	4	3	2	1	bit 0	Reset
\$0009	0	0							0000 0000
\$000A	0	0							0000 0000
\$000B	0	0							0000 0000
\$000C	0	0							0000 0000
\$000D	0	0							0000 0000

The PWM4 data register shares its address at \$000D with the SCI baud register. Read or write access to the PWM4 register is gained by setting the SCIB bit in the PWM mode register to 0. On reset, this bit defaults to a 1 and the PWM rate is set at $f_{OP}/64$, corresponding to a maximum rate of 31.3 kHz.

A value of \$00 loaded into the data registers results in a continuously low output, whereas a value of \$20 results in a 50% duty cycle output and so on. The maximum value is \$3F which corresponds to an output which is at 1 for 63/64 of the cycle. (See Figure 49.)

When the MCU makes a write to a PWM register, the new value will only be picked up by the D to A converters at the end of a conversion cycle. The counter is cleared to \$00 on reset and the data latches are set to \$00. Therefore, on power-on and on each subsequent reset of the device, the PWM channels resume their zero values.

Figure 49. PWM output waveform examples.

Electrical Specifications

Contents

Introduction	. 103
Maximum ratings	. 103
Thermal characteristics and power considerations	. 103
DC electrical characteristics	. 106
Control timing	. 107

Introduction

This section contains the electrical specifications and associated timing information for the MC68HC05D9, MC68HC05D24, MC68HC05D32 and MC68HC705D32.

Maximum ratings

Thermal characteristics and power considerations

The average chip junction temperature, T_J , in degrees Celsius can be obtained from the following equation:

$$T_{J} = T_{A} + (P_{D} \bullet \theta_{JA})$$
^[1]

where:

 T_A = Ambient temperature (°C)

1-elec

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	– 0.3 to +7.0	V
Input voltage (ports, OSC1)	V _{IN}	V _{SS} – 0.3 to V _{DD} + 0.3	V
Input voltage – RESET, IRQ	V _{IN}	V _{SS} – 0.3 to 2 x V _{DD} + 0.3	V
Input voltage – VPP – MC68HC705D32	V _{PP}	V _{SS} – 0.3 to 19	V
Operating temperature range	T _A	T _L to T _H –40 to +85 (all devices except MC68HC05D9) –40 to +105 (MC68HC05D9 only)	°C
Storage temperature range	T _{STG}	– 65 to +150	°C
Current drain per pin (note 2) $-$ excluding V _{DD} and V _{SS}	۱ _D	25	mA

Table 17. Maximum ratings

(1)All voltages are with respect to V_{SS} .

(2)Maximum current drain per pin is for one pin at a time, limited by an external resistor.

 θ_{JA} = Package thermal resistance, junction-to-ambient (°C/W)

 $P_{D} = P_{INT} + P_{I/O} (W)$

 P_{INT} = Internal chip power = $I_{DD} \bullet V_{DD}$ (W)

 $P_{I/O}$ = Power dissipation on input and output pins (User determined)

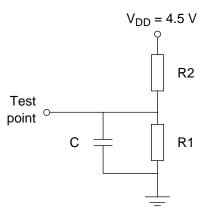
An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = \frac{K}{T_{I} + 273}$$
[2]

Solving equations [1] and [2] for K gives:

$$K = P_{D} \bullet (T_{A} + 273) + \theta_{JA} \bullet P_{D}^{2}$$
^[3]

MC68HC05D9 Rev 3.0


2-elec

⁽³⁾This device contains circuitry designed to protect against damage due to high electrostatic voltages or electric fields. However, it is recommended that normal precautions be taken to avoid the application of any voltages higher than those given in the maximum ratings table to this high impedance circuit. For maximum reliability all unused inputs should be tied to either V_{SS} or V_{DD}.

where K is a constant for a particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained for any value of T_A by solving the above equations. The package thermal characteristics are shown in **Table 18**.

Table 18. Package thermal characteristics

Characteristics	Symbol	Value	Unit
Thermal resistance – 40-pin plastic DIL package – 44-pin PLCC package	θ_{JA}	50	°C/W

Pins	R1	R2	С
PA0-7, PC0-7, PD0-7	3.26kΩ	2.38kΩ	50pF
PB0–7	520Ω	130Ω	50pF

Figure 50. Equivalent test load

DC electrical characteristics

Table 19. DC electrical characteristics (5.0 V operation)

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H$ Characteristic Symbol Min Тур Max Unit Output voltage $I_{LOAD} = -25 \ \mu A$ VOH $V_{DD} - 0.1$ V $I_{LOAD} = +25 \,\mu A$ V_{OL} 0.1 V Output high voltage ($I_{LOAD} = -0.8 \text{ mA}$) V_{OH} $V_{DD} - 0.8$ V ____ ____ PA0-7, PB0-7, PC0-7, PD0-7 Output low voltage ($I_{I OAD} = +1.6 \text{ mA}$) V_{OL} 0.4 V ____ ____ PA0-7, PB0-7, PC0-7, PD0-7 Output low voltage ($I_{LOAD} = +25 \text{ mA}$) V_{OL} V 1.0 PB0-7 Input high voltage PA0-7, PB0-7, PC0-7, PD0-7, V_{H} 0.7V_{DD} V OSC1, TCAP, IRQ, RESET Input low voltage PA0-7, PB0-7, PC0-7, PD0-7, V_{IL} V_{SS} $0.2V_{DD}$ V OSC1, TCAP, IRQ, RESET Supply current (see notes) RUN 5.5 9.5 mΑ RUN (MC68HC05D32) 12 mΑ I_{DD} WAIT 1 4 mΑ STOP 2 10 μΑ STOP (MC68HC705D32) 150 μA High-Z leakage current ±1 μΑ Ц ____ ____ PA0-7, PB0-7, PC0-7, PD0-7 Input current I_{IN} ±1 μΑ OSC1, TCAP, IRQ, RESET Total port B sink current to V_{SS} 200 mΑ ISS ____ Data retention mode voltage V_{RM} 2.0 V ____ ____ Capacitance Ports (as input or output) pF 12 COUT pF **IRQ**, **RESET** 8 CIN MC68HC705D32 EPROM Programming voltage V VPP 14 15 16 Programming current I_{PP} 2 mΑ ____ Programming time 4 t_{PROG} ms

Table 19. DC electrical characteristics (5.0 V operation)

 $(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H$

Characteristic Symbol Min Typ Max Unit
--

 All I_{DD} measurements taken with suitable decoupling capacitors across the power supply to suppress the transient switching currents inherent in CMOS designs (see VDD and VSS).

(2)Typical values are at mid point of voltage range and at 25°C only.

(3)RUN and WAIT IDD: measured using an external square-wave clock source (fOSC = 4MHz); all inputs 0.2V from rail; no DC loads; maximum load on outputs 50pF (except OSC2 load 20pF).

(4)WAIT IDD: only the timer system active; current varies linearly with the OSC2 capacitance.

(5)WAIT and STOP IDD: all ports configured as inputs; VIL = 0.2V and VIH = VDD - 0.2V.

(6)STOP IDD: measured with OSC1 = VDD.

Control timing

Table 20. DC electrical characteristics (3.3 V operation)

 $(V_{DD} = 3.3 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H$

	Symbol	Min	Тур	Max	Unit
Output voltage $I_{LOAD} = -25 \ \mu A$ $I_{LOAD} = +25 \ \mu A$	V _{OH} V _{OL}	V _{DD} – 0.1		 0.1	V V
Output high voltage ($I_{LOAD} = -0.8 \text{ mA}$) PA0-7, PB0-7, PC0-7, PD0-7	V _{OH}	V _{DD} – 0.3		_	V
Output low voltage (I _{LOAD} = +1.6 mA) PA0–7, PB0–7, PC0–7, PD0–7	V _{OL}	_		0.3	V
Output low voltage (I _{LOAD} = +25 mA) PB0–7	V _{OL}	_		0.5	V
Input high voltage PA0–7, PB0–7, PC0–7, PD0–7, OSC1, TCAP, IRQ, RESET	V _{IH}	0.7V _{DD}		_	V
Input low voltage PA0–7, PB0–7, PC0–7, PD0–7, OSC1, TCAP, IRQ, RESET	V _{IL}	V _{SS}	_	0.2V _{DD}	V
Supply current (see notes) RUN WAIT STOP	I _{DD}			3 1.4 5	mA mA μA
High-Z leakage current PA0–7, PB0–7, PC0–7, PD0–7	IIL			±1	μΑ
Input current OSC1, TCAP, IRQ, RESET	I _{IN}		_	±1	μΑ
Total port B sink current to V _{SS}	I _{SS}	—	_	200	mA
Data retention mode voltage	V _{RM}	2.0	—	_	V
Capacitance Ports (as input or output) IRQ, RESET	C _{OUT} C _{IN}		_	12 8	pF pF
MC68HC705D32 EPROM Programming voltage Programming current Programming time	VPP IPP ^t PROG	14 	15 2	16 	V mA ms

(1) All I_{DD} measurements taken with suitable decoupling capacitors across the power supply to suppress the transient switching currents inherent in CMOS designs (see VDD and VSS).

(2)Typical values are at mid point of voltage range and at 25°C only.

(3)RUN and WAIT IDD: measured using an external square-wave clock source (fOSC = 4MHz); all inputs 0.2V from rail; no DC loads; maximum load on outputs 50pF (except OSC2 load 20pF).

(4)WAIT IDD: only the timer system active; current varies linearly with the OSC2 capacitance.

(5)WAIT and STOP IDD: all ports configured as inputs; VIL = 0.2V and VIH = VDD - 0.2V.

(6)STOP IDD: measured with OSC1 = VDD.

$(V_{DD} = 5.0 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H)$										
Characteristic	Symbol	Min	Max	Unit						
Frequency of operation										
Crystal	f _{OSC}	_	4.0	MHz						
External clock	fosc	dc	4.0	MHz						
Internal operating frequency										
Crystal (f _{OSC} /2)	f _{OP}	_	2.0	MHz						
External clock (f _{OSC} /2)	f _{OP}	dc	2.0	MHz						
Processor cycle time	t _{CYC}	500	_	ns						
Crystal oscillator start-up time	t _{OXOV}		100	ms						
RESET pulse width	t _{RL}	8		t _{CYC}						
Power-on reset delay	t _{PORL}	3968	3968	t _{CYC}						
Interrupt pulse width low (edge-triggered)	t _{ILIH}	125		ns						
Interrupt pulse period	t _{ILIL}	(1)		t _{CYC}						
OSC1 pulse width	t _{OH} , t _{OL}	100		ns						

Table 21. Control timing (5.0 V operation)

1. The minimum period t_{ILIL} should not be less than the number of cycles it takes to execute the interrupt service routine plus t_{CYC}.

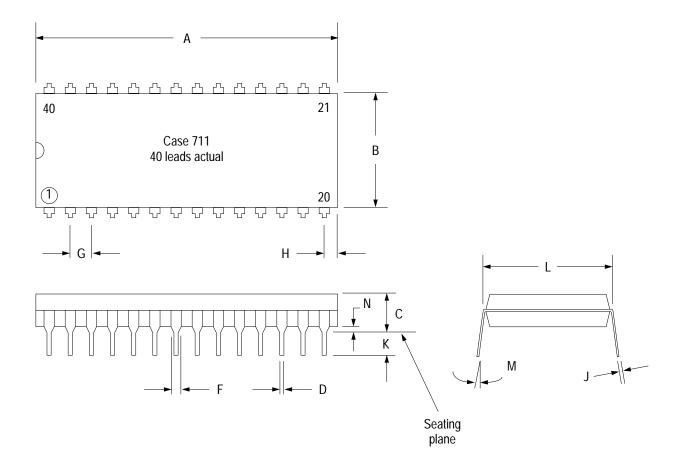
Table 22. Control timing (3.0 V operation)

$(V_{DD} = 3.3 \text{ Vdc} \pm 10\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H)$

Characteristic	Symbol	Min	Max	Unit
Frequency of operation				
Crystal	fosc	—	2.0	MHz
External clock	fosc	dc	2.0	MHz
Internal operating frequency				
Crystal (f _{OSC} /2)	f _{OP}	—	1.0	MHz
External clock (f _{OSC} /2)	f _{OP}	dc	1.0	MHz
Processor cycle time	t _{CYC}	1000		ns
Crystal oscillator start-up time	t _{OXOV}		100	ms
RESET pulse width	t _{RL}	8		t _{CYC}
Power-on reset delay	t _{PORL}	3968	3968	t _{CYC}
Interrupt pulse width low (edge-triggered)	t _{ILIH}	250		ns
Interrupt pulse period	t _{ILIL}	(1)		t _{CYC}
OSC1 pulse width	t _{OH} , t _{OL}	200		ns

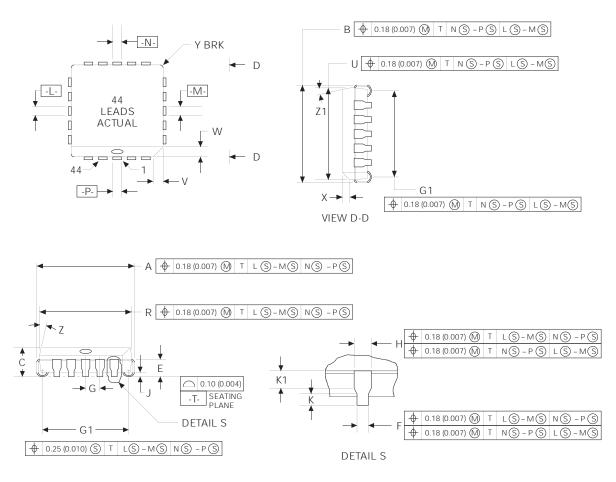
1. The minimum period t_{ILIL} should not be less than the number of cycles it takes to execute the interrupt service routine plus t_{CYC}.

7-elec


110

Mechanical Data and Ordering Information

Contents


Mechanical Data	12
Ordering information	15
EPROMs	15
Verification media 1	15

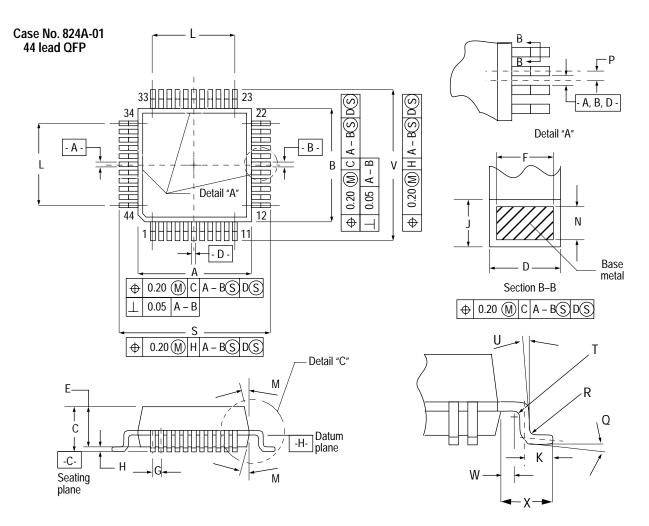
Mechanical Data

Dim.	Min.	Max.	Notes	Dim.	Min.	Max.
A	51.69	52.45	1 Due to space limitations, case no. 711 shall be repre-	Н	1.65	2.16
В	13.72	14.22	1.Due to space limitations, case no. 711 shall be repre- sented by a general case outline, rather than one showing all the leads.	J	0.20	0.38
С	3.94	5.08	2.All dimensions in mm.	K	2.92	3.43
D	0.36	0.56		L	15.24	BSC
F	1.02	1.52	3.Positional tolerance of leads ('D') shall be within 0.25 mm at maximum material condition, in relation to	М	0°	15°
			seating plane and to each other.			
G	G 2.54 BSC		4. Dimension 'L' is to centre of leads when formed parallel.	Ν	0.51	1.02
			5.Dimension 'B' does not include mould protrusion.			

Figure 51. 40-pin PDIP mechanical dimensions

Dim	Millin	neters	Inc	Inches		Millin	neters	Inc	hes
	Min	Max	Min	Мах	Dim	Min	Max	Min	Мах
Α	17.40	17.65	0.685	0.695	U	16.51	16.66	0.650	0.656
В	17.40	17.65	0.685	0.695	V	1.07	1.21	0.042	0.048
C	4.20	4.57	0.165	0.180	W	1.07	1.21	0.042	0.048
E	2.29	2.79	0.090	0.110	X	1.07	1.42	0.042	0.056
F	0.33	0.48	0.013	0.019	Y	—	0.50	—	0.020
G	1.27	BSC	0.050	BSC	Z	2°	10°	2°	10°
H	0.66	0.81	0.026	0.032	G1	15.50	16.00	0.610	0.630
J	0.51	—	0.020	—	K1	1.02	_	0.040	-
K	0.64	—	0.025	_	Z1	2°	10°	2°	10°
R	16.51	16.66	0.650	0.656					

- 1.Due to space limitation, case 777-02 shall be represented by a general (smaller) case outline drawing rather than showing all 44 leads.
- 2.Datums -L-, -M-, -N- and -P- determine where top of lead shoulder exits plastic body at mould parting line.
- 3.Dim G1: True position to be measured at datum -T-, seating plane.
- 4.Dim R and U do not include mould protrusion. Allowable mould protrusion is 0.25 (0.010) per side.
- 5.Dimensioning and tolerancing per ANSI Y14.5M, 1982.


6.Controlling dimension: inch.

7.777-01 is obsolete; new standard 777-02.

Figure 52. 44-pin PLCC mechanical dimensions

MOTOROLA

Mechanical Data and Ordering Information

Dim.	Min.	Max.	Notes	Dim.	Min.	Max.
Α	9.90	10.10	1.Datum plane –H– is located at bottom of lead and is coincident	М	5°	10°
В	9.90	10.10	with the lead where the lead exits the plastic body at the bottom of	Ν	0.130	0.170
С	2.10	2.45	the parting line.	Q	0°	7°
D	0.30	0.45	2.Datums A–B and –D to be determined at datum plane –H–. 3.Dimensions S and V to be determined at seating plane –C–.	R	0.13	0.30
E	2.00	2.10	4.Dimensions A and B do not include mould protrusion. Allowable			13.45
F	0.30	0.40	mould protrusion is 0.25mm per side. Dimensions A and B do	Т	0.13	
G	0.80	BSC	include mould mismatch and are determined at datum plane –H–.	U	0°	—
Н		0.250	5.Dimension D does not include dambar protrusion. Allowable	V	12.95	13.45
J	0.130	0.230	dambar protrusion shall be 0.08 total in excess of the D dimension	W	0.40	—
K	0.65	0.95	at maximum material condition. Dambar cannot be located on the lower radius or the foot.	Х	1.6 REF	
L	8.00 REF		6.Dimensions and tolerancing per ANSI Y 14.5M, 1982. 7.All dimensions in mm.			

Figure 53 44-pin QFP mechanical dimensions

Ordering information

This section describes the information needed to order the MCU.

To initiate a ROM pattern for the MCU, it is necessary first to contact your local field service office, local sales person or Motorola representative. Please note that you will need to supply details such as mask option selections, temperature range, oscillator frequency, package type, electrical test requirements and device marking details, so that an order can be processed and a customer specific part number allocated.

- **NOTE:** The MC68HC705D32 has no customer specific ROM, or options, and may therefore be ordered as a standard part.
- EPROMs For the MC68HC05D9, a 16K byte EPROM programmed with the customer's software (positive logic for address and data) should be submitted for pattern generation. All unused bytes should be programmed to zeros. For the MC68HC05D24 and the MC68HC05D32, a 32K byte EPROM should be used.
 - **NOTE:** The EPROM must be programmed such that the user's software is mapped exactly as it will appear in the masked ROM, e.g. the reset vector must be located at \$3FFE and \$3FFF in the EPROM submitted for an MC68HC05D32.

The EPROM should be clearly labelled, placed in a conductive IC carrier and securely packed.

Verification media All original pattern media (EPROMs) are filed for contractual purposes and are not returned. A computer listing of the ROM code will be generated and returned with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed and returned to Motorola. The signed verification form constitutes the contractual agreement for creation of the custom mask. If desired, Motorola will program blank EPROMs (supplied by the customer) from the data file used to create the custom mask, to aid in the verification process.

Mechanical Data and Ordering Information

6-mech

Contents

Introduction	117
Memory map and registers	117
Programming model	117

Introduction

The MC68HC05D24 is similar to the MC68HC05D9, but with 24K bytes of masked ROM instead of 16K bytes. Apart from the extended ROM and the resulting changes to the memory map and register addresses, which are discussed in this appendix, the MC68HC05D24 is identical to the MC68HC05D9 (see Figure 54).

Memory map and registers

The memory map for this device is shown in **Figure 54**. The registers are shown in more detail in **Table 23**. Note that the address locations of the self-check ROM, the option register and the self-check and user vectors are \$4000 higher than in the MC68HC05D9.

Programming model

The programming model of the MC68HC05D24 is identical to that of the MC68HC05D9, except for the program counter (see Figure 55). Only bit 15 of the program counter (PC) in the MC68HC05D24 is permanently

1-05D24

Figure 54. Memory map of the MC68HC05D24

Register name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset
Port A data (PORTA)	\$0000									undefined
Port B data (PORTB)	\$0001									undefined
Port C data (PORTC)	\$0002									undefined
Port D data (PORTD)	\$0003									undefined
Data direction A (DDRA)	\$0004									0000 0000
Data direction B (DDRB)	\$0005									0000 0000
Data direction C (DDRC)	\$0006									0000 0000
Data direction D (DDRD)	\$0007									0u00 0000
PWM mode (PWMM)	\$0008	0	0	SCIB	PWM4	PWM3	PWM2	PWM1	PWM0	0010 0000
PWM channel 0 (PWM0)	\$0009	0	0							0000 0000
PWM channel 1 (PWM1)	\$000A	0	0							0000 0000
PWM channel 2 (PWM2)	\$000B	0	0							0000 0000
PWM channel 3 (PWM3)	\$000C	0	0							0000 0000
PWM channel 4 (PWM4)	\$000D	0	0							0000 0000
SCI baud rate (BAUD)	(1)			SCP1	SCP0		SCR2	SCR1	SCR0	นน00 นนนน
SCI control 1 (SCCR1)	\$000E	R8	T8	0	М	WAKE	0	0	0	uu0u u000
SCI control 2 (SCCR2)	\$000F	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	0000 0000
SCI status (SCSR)	\$0010	TDRE	тс	RDRF	IDLE	OR	NF	FE	0	1100 0000
SCI data (SCDR)	\$0011									undefined
Timer control (TCR)	\$0012	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL	0000 0000
Timer status (TSR)	\$0013	ICF	OCF	TOF	0	0	0	0	0	uuu0 0000
Input capture (ICR)	\$0014									undefined
	\$0015									undefined
Output compare (OCR)	\$0016									undefined
	\$0017									undefined
Timer counter (TCNT)	\$0018									1111 1111
	\$0019									1111 1100
Alternate counter (ALTCNT)	\$001A									1111 1111
	\$001B									1111 1100
Reserved	\$001C									undefined
COP reset (COPRST)	\$001D	ICAF	ICBF	OCAF	TOF	0	0	0	0	0000 0000
COP control (COPCR)	\$001E	0	0	0	COPF	CME	COPE	CM1	CM0	0000 0000
Reserved	\$001F									undefined

Table 23. MC68HC05D24 register assignment

u = undefined

Register name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset	
OPTION	\$7FDF	RAM0	RAM1	0	0	0		IRQ	0	0000 0u10	
	u = undefined										

Table 23. MC68HC05D24 register assignment

1. If SCIB = 0, the PWM4 register is available at location \$000D

If SCIB = 1, the SCI baud rate generator register is available at location \$000D

set to zero, thus restricting the address range to \$0000–\$7FFF (32K bytes).

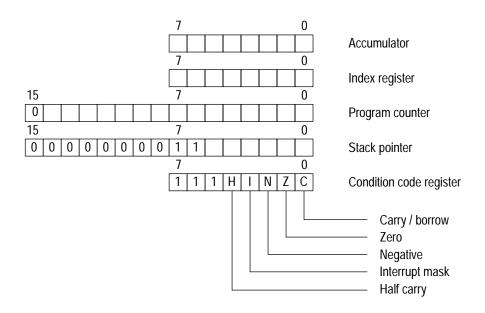


Figure 55. Programming model of the MC68HC05D24

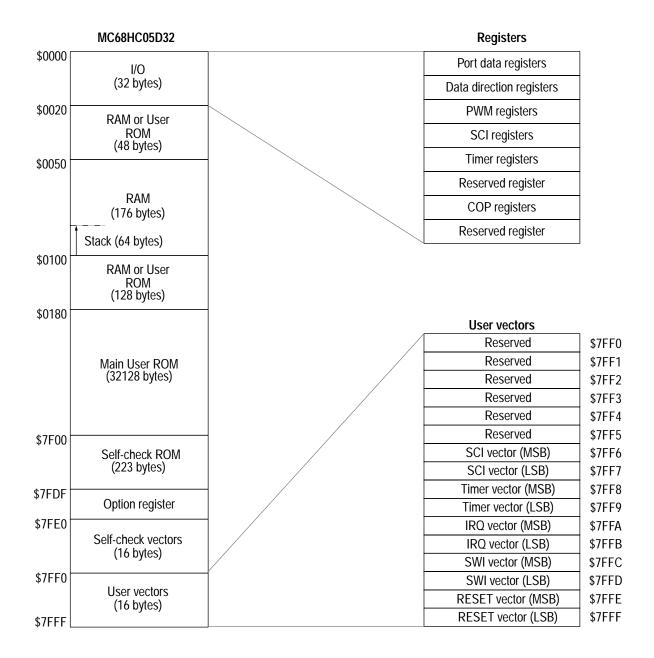
MOTOROLA

Contents

Introduction	121
Memory map and registers	121
Programming model	121

Introduction

The MC68HC05D24 is similar to the MC68HC05D9, but with 32K bytes of masked ROM instead of 16K bytes. Apart from the extended ROM and the resulting changes to the memory map and register addresses, which are discussed in this appendix, the MC68HC05D24 is identical to the MC68HC05D9 (see Figure 56).


Memory map and registers

The memory map for this device is shown in **Figure 56**. The registers are shown in more detail in **Table 24**. Note that the address locations of the self-check ROM, the option register and the self-check and User vectors are \$4000 higher than in the MC68HC05D9.

Programming model

The programming model of the MC68HC05D24 is identical to that of the MC68HC05D9, except for the program counter (see Figure 57). Only bit 15 of the program counter (PC) in the MC68HC05D24 is permanently

1-05D32

Figure 56. Memory map of the MC68HC05D24

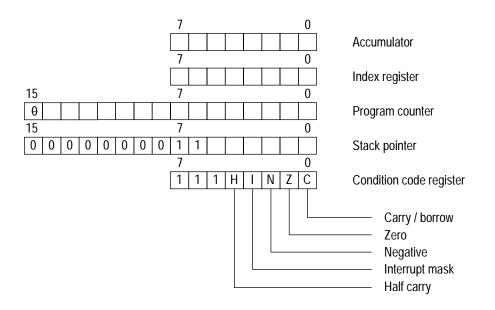
set to zero, thus restricting the address range to \$0000–\$7FFF (32K bytes).

Register name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset
Port A data (PORTA)	\$0000									undefined
Port B data (PORTB)	\$0001									undefined
Port C data (PORTC)	\$0002									undefined
Port D data (PORTD)	\$0003									undefined
Data direction A (DDRA)	\$0004									0000 0000
Data direction B (DDRB)	\$0005									0000 0000
Data direction C (DDRC)	\$0006									0000 0000
Data direction D (DDRD)	\$0007									0u00 0000
PWM mode (PWMM)	\$0008	0	0	SCIB	PWM4	PWM3	PWM2	PWM1	PWM0	0010 0000
PWM channel 0 (PWM0)	\$0009	0	0							0000 0000
PWM channel 1 (PWM1)	\$000A	0	0							0000 0000
PWM channel 2 (PWM2)	\$000B	0	0							0000 0000
PWM channel 3 (PWM3)	\$000C	0	0							0000 0000
PWM channel 4 (PWM4)	\$000D ⁽¹⁾	0	0							0000 0000
SCI baud rate (BAUD)	\$0000			SCP1	SCP0		SCR2	SCR1	SCR0	นน00 นนนน
SCI control 1 (SCCR1)	\$000E	R8	T8	0	М	WAKE	0	0	0	uu0u u000
SCI control 2 (SCCR2)	\$000F	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	0000 0000
SCI status (SCSR)	\$0010	TDRE	тс	RDRF	IDLE	OR	NF	FE	0	1100 0000
SCI data (SCDR)	\$0011									undefined
Timer control (TCR)	\$0012	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL	0000 0000
Timer status (TSR)	\$0013	ICF	OCF	TOF	0	0	0	0	0	uuu0 0000
	\$0014									undefined
Input capture (ICR)	\$0015									undefined
	\$0016									undefined
Output compare (OCR)	\$0017									undefined
	\$0018									1111 1111
Timer counter (TCNT)	\$0019									1111 1100
	\$001A									1111 1111
Alternate counter (ALTCNT)	\$001B									1111 1100
Reserved	\$001C									undefined
COP reset (COPRST)	\$001D	ICAF	ICBF	OCAF	TOF	0	0	0	0	0000 0000
COP control (COPCR)	\$001E	0	0	0	COPF	CME	COPE	CM1	CM0	0000 0000
Reserved	\$001F									undefined

Table 24. MC68HC05D24 register assignment

u = undefined

MC68HC05D9 Rev 3.0


MOTOROLA

Register name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset
OPTION	\$7FDF	RAM0	RAM1	0	0	0		IRQ	0	0000 0u10
u = undefined										

Table 24. MC68HC05D24 register assignment

1. If SCIB = 0, the PWM4 register is available at location \$000D

If SCIB = 1, the SCI baud rate generator register is available at location \$000D

Figure 57. Programming model of the MC68HC05D24

Contents

Introduction	25
Operating mode selection	25
Pin descriptions	26
VPP	26
OSC1/OSC2	
Crystal	27
External clock	
Memory	27
MC68HC705D32 EPROM description	30
Programming sequence	30
EPROM security	30
Program control register (PCR)	
EPROM mask option register (MOR)	
Bootloader mode	32
Bootloader functions	32

Introduction

The MC68HC705D32 is similar to the MC68HC05D32, but with 32K bytes of UV-erasable EPROM instead of masked ROM. The MC68HC705D32 is identical to the MC68HC05D32 (see Figure 58) apart from the EPROM replacing ROM.

Operating mode selection

Single chip mode on the MC68HC705D32 is identical to single chip mode on the MC68HC05D32. However, on the MC68HC705D32 a bootloader ROM replaces the self-check ROM on the MC68HC05D32.

1-705D32

The bootloader mode provides for self-programming of the EPROM array and allows software to be loaded into, and run from, the on-board RAM. The voltage level on the \overline{IRQ} pin determines whether single chip mode or bootloader mode is selected (see Table 25).

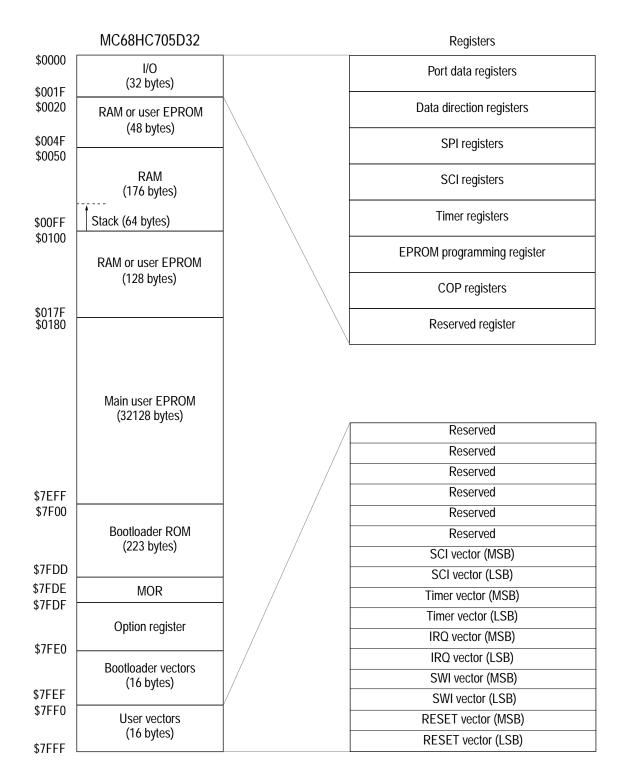
- **NOTE:** The TCAP pin must be tied to V_{DD} to ensure correct selection of the bootloader mode. Failure to do so could result in unpredictable operation.
- **CAUTION:** For the MC68HC705D32, all vectors are fetched from the EPROM (locations \$7FF6–\$7FFF) in single chip mode; therefore, the EPROM must be programmed (via the bootloader mode) before the device is powered up in single chip mode.

Table 25	. Operating	mode entry	conditions
----------	-------------	------------	------------

IRQ	RESET	Mode		
V_{SS} to V_{DD}		Don't care	Single chip	
2 V _{DD}		V _{DD}	Bootloader	

Note: The voltage level on the \overline{IRQ} pin should be maintained for at least 7x t_{cyc} after the rising edge of the reset signal to guarantee proper mode selection.

Pin descriptions


VPP Programming power is supplied to the EPROM array on the MC68HC705D32 via this pin. The nominal programming voltage is 15 Volts. The voltage level on the VPP pin should never be allowed to fall below V_{DD}.

MC68HC05D9 Rev 3.0

- **OSC1/OSC2** These pins provide control input for an on-chip clock oscillator circuit. A crystal or an external clock signal connected to these pins provides the oscillator clock. The oscillator frequency is divided by 2 to provide the internal bus frequency.
- Crystal The circuit shown in Figure 5(b) is recommended when using a crystal. The internal oscillator is designed to interface with an AT-cut parallel-resonant quartz crystal resonator in the frequency range specified for f_{OSC} (see Control timing). Use of an external CMOS oscillator is recommended when crystals outside the specified ranges are to be used. The crystal and components should be mounted as close as possible to the input pins to minimise output distortion and start-up stabilizing time.
- External clockAn external clock should be applied to the OSC1 input with the OSC2 pin
not connected, as shown in Figure 5(d). The t_{OXOV} specification does not
apply when using an external clock input. The equivalent specification of
the external clock source should be used in lieu of t_{OXOV}.
 - **NOTE:** A ceramic resonator should not be used with the MC68HC705D32.

Memory

The memory map for this device is shown in **Table 25**. The registers are shown in more detail in **Table 26**. Note that the MC68HC705D32 has an additional register to control the programming of the EPROM array.The circuit diagram for this self-programming mode is shown in **Figure 58**.

Figure 58. Memory map of the MC68HC705D32

MC68HC05D9 Rev 3.0

Register Name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	State on reset
Port A data (PORTA)	\$0000									Unaffected
Port B data (PORTB)	\$0001									Unaffected
Port C data (PORTC)	\$0002									Unaffected
Port D data (PORTD)	\$0003									Unaffected
Data direction A (DDRA)	\$0004									0000 0000
Data direction B (DDRB)	\$0005									0000 0000
Data direction C (DDRC)	\$0006									0000 0000
Data direction D (DDRD)	\$0007									0u00 0000
Unused	\$0008									
Unused	\$0009									
SPCR SPI control register	\$000A	SPIE	SPE	DWOM	MSTR	CPOL	CPHA	SPR1	SPR0	0000 uuuu
SPSR SPI status register	\$000B	SPIF	WCOL		MODF					0000 uuuu
SPDR SPI data register	\$000C	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0	Unaffected
SCI baud rate (BAUD)	\$000D*	_	_	SCP1	SCP0	_	SCR2	SCR1	SCR0	นน00 นนนน
SCI control 1 (SCCR1)	\$000E	R8	T8	0	М	WAKE	0	0	0	uu0u u000
SCI control 2 (SCCR2)	\$000F	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	0000 0000
SCI status (SCSR)	\$0010	TDRE	тс	RDRF	IDLE	OR	NF	FE	0	1100 0000
SCI data (SCDR)	\$0011									Unaffected
Timer control (TCR)	\$0012	ICIE	OCIE	TOIE	0	0	0	IEDG	OLVL	0000 0000
Timer status (TSR)	\$0013	ICF	OCF	TOF	0	0	0	0	0	uuu0 0000
	\$0014	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Unaffected
Input capture (ICR)	\$0015	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Unaffected
	\$0016	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Unaffected
Output compare (OCR)	\$0017	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Unaffected
	\$0018	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	1111 1111
Timer counter (TCNT)	\$0019	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	1111 1100
	\$001A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	1111 1111
Alternate counter (ALTCNT)	\$001B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	1111 1100
EPROM programming register	\$001C						LATCH		EPGM	0000 0000
COP reset (COPRST)	\$001D	ICAF	ICBF	OCAF	TOF	0	0	0	0	0000 0000
COP control (COPCR)	\$001E	0	0	0	COPF	CME	COPE	CM1	CM0	0000 0000
Reserved	\$001F									
OPTION	\$7FDF	RAM0	RAM1	0	0	0		IRQ	0	0000 0u10

Table 26. MC68HC705D32 register assignment

u = undefined

Note: If SCIE = 0, the PWM4 register is available at location \$000D. If SCIE = 1, the SCI Baud Rate Generator register is available at this location.

MC68HC705D32 EPROM description

	The 32k byte EPROM is positioned at locations \$0020 to \$004F and \$0100 to \$7EFF, with 16 bytes of the EPROM located at \$7FF0 to \$7FFF for user vectors. Location \$7FDE is reserved for the mask option register. The erased state of EPROM reads as \$00 and EPROM power is supplied by the VPP pin and the VDD pin.				
	The program control register (PCR) is provided for EPROM programming and testing.				
	Access to the EPROM in bootloader and test mode is controlled by a security bit in the mask option register called SEC. For further information on EPROM security, see EPROM security .				
Programming	The sequence includes:				
sequence	 Setting the ELAT bit 				
	 Writing the data to the address to be programmed 				
	 Setting the PGM bit 				
	 Delaying for an appropriate amount of time Clearing the ELAT and PGM bit 				
	It is important to remember that an external programming voltage must be applied to the VPP pin while programming, but it should be equal to V_{DD} during normal operations.				
EPROM security	A security feature has been incorporated into the MC68HC705D32 to prevent externally accessing the contents of the EPROM in any non-user mode of operation. This feature, once enabled, can only be disabled by completely erasing the EPROM.				
NOTE:	For OTP (plastic) packaged parts, once the security feature has been enabled it cannot be disabled				

Program controlThe program control register is provided for EPROM programming inregister (PCR)BOOT modes. This register is available only in the MC68HC705D32
(EPROM device).

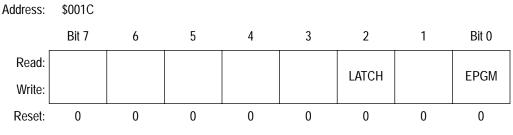
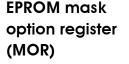


Figure 59. Program Control Register (PCR)


LATCH — EPROM latch control

- 1 = EPROM address and data bus configured for programming (writes to EPROM cause address and data to be latched).
 EPROM is in programming mode and cannot be read if LATCH is set. This bit should not be set if no programming voltage is being applied to the VPP pin. Reset clears this bit.
- 0 = EPROM address and data bus configured for normal reads.

EPGM — EPROM program command

- 1 = Programming power is switched ON to EPROM array. This bit can be set only if the LATCH bit has been previously set. Reset clears this bit.
- 0 = Programming power is switched OFF from EPROM array.

The option register MOR is implemented as EPROM bits in the main EPROM array at address \$7DFE.

Figure 60. EPROM Mask Option Register (MOR)⁽¹⁾

1. This register is implemented in EPROM, therefore reset has no effect on the state of the individual bits.

SEC — Security bit

This bit is used to control the security of the EPROM code when the device is in test or bootloader mode.

- 1 = EPROM contents not available in bootloader/test mode
- 0 = EPROM contents available in bootloader/test mode

Bootloader mode

Bootloader mode is entered upon the rising edge of RESET if the VPP pin is at V_{TST} and the TCAP pin is at logic one. The bootloader code and vectors reside in the ROM from \$7F00 to \$7FEF. This program handles copying of user code from an external EPROM into the on-chip EPROM. The bootloader function has to be done from an external EPROM. The bootloader performs one programming pass at 2 ms per byte then does a verify pass.

The user code must be a one-to-one correspondence with the internal EPROM addresses. The designer MUST disable the COP hardware in bootloader mode. In the erase state the COP is disabled.

Bootloader functions

	Po	rt D	Bootloader	
Pin 5	Pin 4	Pin 3	Pin 3	Program operation
1	х	х	х	Program MOR
0	1	х	0	Load RAM and execute
0	0	1	0	Verify
0	0	0	0	Program/verify
х	х	х	1	JMP to RAM

Table 27. Bootloader functions

The EPROM must be erased before performing a program cycle

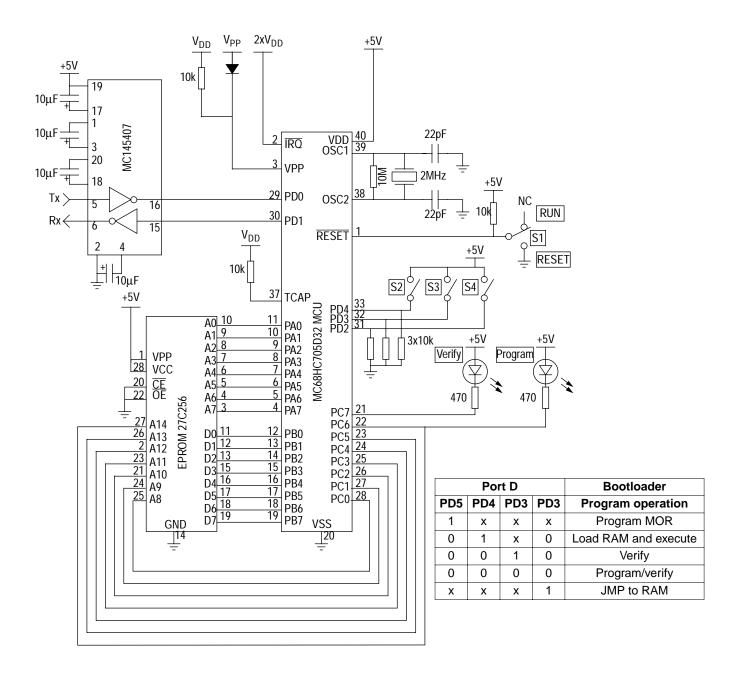


Figure 61. Self-programming via the bootstrap loader (40-pin PDIP)

MC68HC05D9 Rev 3.0

A — See "accumulator (A)."

- accumulator (A) An 8-bit general-purpose register in the CPU08. The CPU08 uses the accumulator to hold operands and results of arithmetic and logic operations.
- acquisition mode A mode of PLL operation during startup before the PLL locks on a frequency. Also see "tracking mode."
- address bus The set of wires that the CPU or DMA uses to read and write memory locations.
- addressing mode The way that the CPU determines the operand address for an instruction. The M68HC08 CPU has 16 addressing modes.
- **ALU** See "arithmetic logic unit (ALU)."
- arithmetic logic unit (ALU) The portion of the CPU that contains the logic circuitry to perform arithmetic, logic, and manipulation operations on operands.
- **asynchronous** Refers to logic circuits and operations that are not synchronized by a common reference signal.
- **baud rate** The total number of bits transmitted per unit of time.
- BCD See "binary-coded decimal (BCD)."
- **binary** Relating to the base 2 number system.
- **binary number system** The base 2 number system, having two digits, 0 and 1. Binary arithmetic is convenient in digital circuit design because digital circuits have two permissible voltage levels, low and high. The binary digits 0 and 1 can be interpreted to correspond to the two digital voltage levels.
- **binary-coded decimal (BCD)** A notation that uses 4-bit binary numbers to represent the 10 decimal digits and that retains the same positional structure of a decimal number. For example,

234 (decimal) = 0010 0011 0100 (BCD)

bit — A binary digit. A bit has a value of either logic 0 or logic 1.

- **branch instruction** An instruction that causes the CPU to continue processing at a memory location other than the next sequential address.
- **break module** A module in the M68HC08 Family. The break module allows software to halt program execution at a programmable point in order to enter a background routine.
- **breakpoint** A number written into the break address registers of the break module. When a number appears on the internal address bus that is the same as the number in the break address registers, the CPU executes the software interrupt instruction (SWI).
- **break interrupt** A software interrupt caused by the appearance on the internal address bus of the same value that is written in the break address registers.
- **bus** A set of wires that transfers logic signals.
- **bus clock** The bus clock is derived from the CGMOUT output from the CGM. The bus clock frequency, f_{op}, is equal to the frequency of the oscillator output, CGMXCLK, divided by four.
- **byte** A set of eight bits.
- C The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some logical operations and data manipulation instructions also clear or set the carry/borrow bit (as in bit test and branch instructions and shifts and rotates).
- CCR See "condition code register."
- **central processor unit (CPU)** The primary functioning unit of any computer system. The CPU controls the execution of instructions.
- CGM See "clock generator module (CGM)."
- **clear** To change a bit from logic 1 to logic 0; the opposite of set.
- **clock** A square wave signal used to synchronize events in a computer.

- clock generator module (CGM) A module in the M68HC08 Family. The CGM generates a base clock signal from which the system clocks are derived. The CGM may include a crystal oscillator circuit and or phase-locked loop (PLL) circuit.
- **comparator** A device that compares the magnitude of two inputs. A digital comparator defines the equality or relative differences between two binary numbers.
- **computer operating properly module (COP)** A counter module in the M68HC08 Family that resets the MCU if allowed to overflow.
- **condition code register (CCR)** An 8-bit register in the CPU08 that contains the interrupt mask bit and five bits that indicate the results of the instruction just executed.
- **control bit** One bit of a register manipulated by software to control the operation of the module.
- **control unit** One of two major units of the CPU. The control unit contains logic functions that synchronize the machine and direct various operations. The control unit decodes instructions and generates the internal control signals that perform the requested operations. The outputs of the control unit drive the execution unit, which contains the arithmetic logic unit (ALU), CPU registers, and bus interface.
- COP See "computer operating properly module (COP)."
- **counter clock** The input clock to the TIM counter. This clock is the output of the TIM prescaler.
- **CPU** See "central processor unit (CPU)."
- **CPU08** The central processor unit of the M68HC08 Family.
- **CPU clock** The CPU clock is derived from the CGMOUT output from the CGM. The CPU clock frequency is equal to the frequency of the oscillator output, CGMXCLK, divided by four.
- **CPU cycles** A CPU cycle is one period of the internal bus clock, normally derived by dividing a crystal oscillator source by two or more so the high and low times will be equal. The length of time required to execute an instruction is measured in CPU clock cycles.

- **CPU registers** Memory locations that are wired directly into the CPU logic instead of being part of the addressable memory map. The CPU always has direct access to the information in these registers. The CPU registers in an M68HC08 are:
 - A (8-bit accumulator)
 - H:X (16-bit index register)
 - SP (16-bit stack pointer)
 - PC (16-bit program counter)
 - CCR (condition code register containing the V, H, I, N, Z, and C bits)
- CSIC customer-specified integrated circuit
- **cycle time** The period of the operating frequency: $t_{CYC} = 1/f_{OP}$.
- decimal number system Base 10 numbering system that uses the digits zero through nine.
- **direct memory access module (DMA)** A M68HC08 Family module that can perform data transfers between any two CPU-addressable locations without CPU intervention. For transmitting or receiving blocks of data to or from peripherals, DMA transfers are faster and more code-efficient than CPU interrupts.
- DMA See "direct memory access module (DMA)."
- **DMA service request** A signal from a peripheral to the DMA module that enables the DMA module to transfer data.
- **duty cycle** A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is usually represented by a percentage.
- **EEPROM** Electrically erasable, programmable, read-only memory. A nonvolatile type of memory that can be electrically reprogrammed.
- **EPROM** Erasable, programmable, read-only memory. A nonvolatile type of memory that can be erased by exposure to an ultraviolet light source and then reprogrammed.
- **exception** An event such as an interrupt or a reset that stops the sequential execution of the instructions in the main program.

- external interrupt module (IRQ) A module in the M68HC08 Family with both dedicated external interrupt pins and port pins that can be enabled as interrupt pins.
- fetch To copy data from a memory location into the accumulator.
- firmware Instructions and data programmed into nonvolatile memory.
- free-running counter A device that counts from zero to a predetermined number, then rolls over to zero and begins counting again.
- **full-duplex transmission** Communication on a channel in which data can be sent and received simultaneously.
- **H** The upper byte of the 16-bit index register (H:X) in the CPU08.
- H The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from the low-order four bits of the accumulator value to the high-order four bits. The half-carry bit is required for binary-coded decimal arithmetic operations. The decimal adjust accumulator (DAA) instruction uses the state of the H and C bits to determine the appropriate correction factor.
- **hexadecimal** Base 16 numbering system that uses the digits 0 through 9 and the letters A through F.
- high byte The most significant eight bits of a word.
- illegal address An address not within the memory map
- illegal opcode A nonexistent opcode.
- I The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts are disabled.
- index register (H:X) A 16-bit register in the CPU08. The upper byte of H:X is called H. The lower byte is called X. In the indexed addressing modes, the CPU uses the contents of H:X to determine the effective address of the operand. H:X can also serve as a temporary data storage location.
- input/output (I/O) Input/output interfaces between a computer system and the external world. A CPU reads an input to sense the level of an external signal and writes to an output to change the level on an external signal.

- instructions Operations that a CPU can perform. Instructions are expressed by programmers as assembly language mnemonics. A CPU interprets an opcode and its associated operand(s) and instruction.
- **interrupt** A temporary break in the sequential execution of a program to respond to signals from peripheral devices by executing a subroutine.
- **interrupt request** A signal from a peripheral to the CPU intended to cause the CPU to execute a subroutine.
- I/O See "input/output (I/0)."
- IRQ See "external interrupt module (IRQ)."
- jitter Short-term signal instability.
- **latch** A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power is applied to the circuit.
- latency The time lag between instruction completion and data movement.
- **least significant bit (LSB)** The rightmost digit of a binary number.
- **logic 1** A voltage level approximately equal to the input power voltage (V_{DD}).
- **logic 0** A voltage level approximately equal to the ground voltage (V_{ss}).
- **low byte** The least significant eight bits of a word.
- **low voltage inhibit module (LVI)** A module in the M68HC08 Family that monitors power supply voltage.
- LVI See "low voltage inhibit module (LVI)."
- M68HC08 A Motorola family of 8-bit MCUs.
- mark/space The logic 1/logic 0 convention used in formatting data in serial communication.
- **mask** 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used in integrated circuit fabrication to transfer an image onto silicon.

- **mask option** A optional microcontroller feature that the customer chooses to enable or disable.
- **mask option register (MOR)** An EPROM location containing bits that enable or disable certain MCU features.
- MCU Microcontroller unit. See "microcontroller."
- **memory location** Each M68HC08 memory location holds one byte of data and has a unique address. To store information in a memory location, the CPU places the address of the location on the address bus, the data information on the data bus, and asserts the write signal. To read information from a memory location, the CPU places the address of the location on the address bus and asserts the read signal. In response to the read signal, the selected memory location places its data onto the data bus.
- **memory map** A pictorial representation of all memory locations in a computer system.
- **microcontroller** Microcontroller unit (MCU). A complete computer system, including a CPU, memory, a clock oscillator, and input/output (I/O) on a single integrated circuit.
- **modulo counter** A counter that can be programmed to count to any number from zero to its maximum possible modulus.
- **monitor ROM** A section of ROM that can execute commands from a host computer for testing purposes.
- MOR See "mask option register (MOR)."
- most significant bit (MSB) The leftmost digit of a binary number.
- **multiplexer** A device that can select one of a number of inputs and pass the logic level of that input on to the output.
- N The negative bit in the condition code register of the CPU08. The CPU sets the negative bit when an arithmetic operation, logical operation, or data manipulation produces a negative result.
- **nibble** A set of four bits (half of a byte).
- **object code** The output from an assembler or compiler that is itself executable machine code, or is suitable for processing to produce executable machine code.

opcode — A binary code that instructs the CPU to perform an operation.

- **open-drain** An output that has no pullup transistor. An external pullup device can be connected to the power supply to provide the logic 1 output voltage.
- **operand** Data on which an operation is performed. Usually a statement consists of an operator and an operand. For example, the operator may be an add instruction, and the operand may be the quantity to be added.
- **oscillator** A circuit that produces a constant frequency square wave that is used by the computer as a timing and sequencing reference.
- **OTPROM** One-time programmable read-only memory. A nonvolatile type of memory that cannot be reprogrammed.
- overflow A quantity that is too large to be contained in one byte or one word.
- page zero The first 256 bytes of memory (addresses \$0000-\$00FF).
- parity An error-checking scheme that counts the number of logic 1s in each byte transmitted. In a system that uses odd parity, every byte is expected to have an odd number of logic 1s. In an even parity system, every byte should have an even number of logic 1s. In the transmitter, a parity generator appends an extra bit to each byte to make the number of logic 1s odd for odd parity or even for even parity. A parity checker in the receiver counts the number of logic 1s in each byte. The parity checker generates an error signal if it finds a byte with an incorrect number of logic 1s.
- PC See "program counter (PC)."
- **peripheral** A circuit not under direct CPU control.
- **phase-locked loop (PLL)** A oscillator circuit in which the frequency of the oscillator is synchronized to a reference signal.
- PLL See "phase-locked loop (PLL)."
- pointer Pointer register. An index register is sometimes called a pointer register because its contents are used in the calculation of the address of an operand, and therefore points to the operand.
- **polarity** The two opposite logic levels, logic 1 and logic 0, which correspond to two different voltage levels, V_{DD} and V_{SS} .
- **polling** Periodically reading a status bit to monitor the condition of a peripheral device.

port — A set of wires for communicating with off-chip devices.

- **prescaler** A circuit that generates an output signal related to the input signal by a fractional scale factor such as 1/2, 1/8, 1/10 etc.
- **program** A set of computer instructions that cause a computer to perform a desired operation or operations.
- **program counter (PC)** A 16-bit register in the CPU08. The PC register holds the address of the next instruction or operand that the CPU will use.
- **pull** An instruction that copies into the accumulator the contents of a stack RAM location. The stack RAM address is in the stack pointer.
- **pullup** A transistor in the output of a logic gate that connects the output to the logic 1 voltage of the power supply.
- pulse-width The amount of time a signal is on as opposed to being in its off state.
- **pulse-width modulation (PWM)** Controlled variation (modulation) of the pulse width of a signal with a constant frequency.
- **push** An instruction that copies the contents of the accumulator to the stack RAM. The stack RAM address is in the stack pointer.
- **PWM period** The time required for one complete cycle of a PWM waveform.
- RAM Random access memory. All RAM locations can be read or written by the CPU. The contents of a RAM memory location remain valid until the CPU writes a different value or until power is turned off.
- **RC circuit** A circuit consisting of capacitors and resistors having a defined time constant.
- read To copy the contents of a memory location to the accumulator.
- **register** A circuit that stores a group of bits.
- **reserved memory location** A memory location that is used only in special factory test modes. Writing to a reserved location has no effect. Reading a reserved location returns an unpredictable value.
- reset To force a device to a known condition.

- **ROM** Read-only memory. A type of memory that can be read but cannot be changed (written). The contents of ROM must be specified before manufacturing the MCU.
- SCI See "serial communication interface module (SCI)."
- **serial** Pertaining to sequential transmission over a single line.
- serial communications interface module (SCI) A module in the M68HC08 Family that supports asynchronous communication.
- serial peripheral interface module (SPI) A module in the M68HC08 Family that supports synchronous communication.
- **set** To change a bit from logic 0 to logic 1; opposite of clear.
- shift register A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to them and that can shift the logic levels to the right or left through adjacent circuits in the chain.
- signed A binary number notation that accommodates both positive and negative numbers. The most significant bit is used to indicate whether the number is positive or negative, normally logic 0 for positive and logic 1 for negative. The other seven bits indicate the magnitude of the number.
- **software** Instructions and data that control the operation of a microcontroller.
- **software interrupt (SWI)** An instruction that causes an interrupt and its associated vector fetch.
- **SPI** See "serial peripheral interface module (SPI)."
- **stack** A portion of RAM reserved for storage of CPU register contents and subroutine return addresses.
- stack pointer (SP) A 16-bit register in the CPU08 containing the address of the next available storage location on the stack.
- start bit A bit that signals the beginning of an asynchronous serial transmission.
- **status bit** A register bit that indicates the condition of a device.
- **stop bit** A bit that signals the end of an asynchronous serial transmission.

- subroutine A sequence of instructions to be used more than once in the course of a program. The last instruction in a subroutine is a return from subroutine (RTS) instruction. At each place in the main program where the subroutine instructions are needed, a jump or branch to subroutine (JSR or BSR) instruction is used to call the subroutine. The CPU leaves the flow of the main program to execute the instructions in the subroutine. When the RTS instruction is executed, the CPU returns to the main program where it left off.
- **synchronous** Refers to logic circuits and operations that are synchronized by a common reference signal.
- TIM See "timer interface module (TIM)."
- timer interface module (TIM) A module used to relate events in a system to a point in time.
- timer A module used to relate events in a system to a point in time.
- toggle To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.
- **tracking mode** Mode of low-jitter PLL operation during which the PLL is locked on a frequency. Also see "acquisition mode."
- two's complement A means of performing binary subtraction using addition techniques. The most significant bit of a two's complement number indicates the sign of the number (1 indicates negative). The two's complement negative of a number is obtained by inverting each bit in the number and then adding 1 to the result.
- **unbuffered** Utilizes only one register for data; new data overwrites current data.
- unimplemented memory location A memory location that is not used. Writing to an unimplemented location has no effect. Reading an unimplemented location returns an unpredictable value. Executing an opcode at an unimplemented location causes an illegal address reset.
- V The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow bit.
- **variable** A value that changes during the course of program execution.
- VCO See "voltage-controlled oscillator."

Glossary

- **vector** A memory location that contains the address of the beginning of a subroutine written to service an interrupt or reset.
- **voltage-controlled oscillator (VCO)** A circuit that produces an oscillating output signal of a frequency that is controlled by a dc voltage applied to a control input.
- **waveform** A graphical representation in which the amplitude of a wave is plotted against time.
- **wired-OR** Connection of circuit outputs so that if any output is high, the connection point is high.
- **word** A set of two bytes (16 bits).
- write The transfer of a byte of data from the CPU to a memory location.
- X The lower byte of the index register (H:X) in the CPU08.
- **Z** The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when an arithmetic operation, logical operation, or data manipulation produces a result of \$00.

Index

Numerics

Numeries
16-bit timer interrupt
40-pin PDIP
mechanical dimensions
pinout
44-pin PLCC
mechanical dimensions
pinout

Α

accumulator	24
addressing modes	28
ALU — arithmetic/logic unit	27

В

BAUD – baud rate register
SCP1, SCP0 – serial prescaler select bits.
96
SCR2, SCR1, SCR0 – SCI rate select bits
97
bit manipulation instructions
block diagrams
40-pin PDIP pinout
44-pin PLCC pinout
MC68HC05D9
PWM100
bootloader
functions
mode
self-programming133

С

carry/borrow flag
C-bit in CCR
ceramic resonator
clock monitor reset
condition code register (CCR)26
control instructions
COP
COPCR – COP control register46
CM1, CM0 – COP mode bits46
CME – clock monitor enable
COPE – COP enable46
COPF – COP failure46
CPU
programming model120, 124
crystal

D

_	
direct addressing mode.	

Ε

ELAT bit in PCR131
EPGM bit in PCR131
EPROM
MOR – EPROM mask option register .131
PCR – program control register130
programming sequence
test features130
EXCOL, EXROW bits in PCR
extended addressing mode29

F

features	
MC68HC05D9	.10
flowcharts	
interrupt	.51
STOP and WAIT	.52

Н

half-carry flag.	 				 		÷		.26
H-bit in CCR .	 	 					÷		.26

I.

I/O port structure
immediate addressing mode
index register
indexed addressing mode
inherent addressing mode
Input
instruction types
interrupt priorities
interrupts
interrupt flowchart
interrupt priorities
maskable hardware interrupts
SWI – non-maskable software interrupt.48
IRQ
IRQ – external interrupt

J

L	
literature distribution centers	151
low power modes	. 50
data retention mode	50
STOP	50
WAIT	50

Μ

maskable hardware interrupts48
16-bit timer interrupt49
IRQ – external interrupt
SCI interrupt
MC68HC05D24
block diagram11
memory map
register assignment
MC68HC05D32
block diagram11
memory map
register assignment
MC68HC05D9
block diagram11
MC68HC705D32
block diagram11
memory map
register assignment
MC68HC705D9
block diagram11
memory
EPROM
memory map
RAM53
ROM54
memory map
MC68HC05D24118
MC68HC05D32122
MC68HC705D32128
modes of operation
self-check14
single chip14

Ν

N-bit in CCR	27
negative flag	27

0

OCF
opcode map
OPTION — option register
IRQ16
RAM016
RAM116
ordering information
literature distribution centers
Mfax152
Web server
Web site
OSC1, OSC2
oscillator connections

Ρ

PA0–PA7
packages
QFP
PB0–PB7
PC0–PC7
PCR
ELAT – EPROM latch control131
EPGM – EPROM program command .131
EXCOL, EXROW
PD0-PD7
pins
IRQ
OSC1, OSC2 19, 126
PA0–PA7
PB0–PB7
PC0–PC7
PD0–PD7
RESET
TCAP
VDD, VSS14, 19

VPP
port registers
data direction registers61
port data registers60
ports
I/O port structure
I/O programming57
port D
ports A, B and C59
power-on reset
program counter
programmable timer
block diagram64
counter
during STOP mode73
during WAIT mode
input capture register
output compare register
TCR – timer control register67
timer state diagrams
TSR – timer status register
programming model24 PWM
block diagram
counter
output waveforms
ters
PWMM – PWM mode register 100
PWMM
PWM0–4 – PWM channel enable bits . 100
SCIB – serial communications interface
baud

R

RAM
read-modify-write instructions
register assignment56
register summary
register/memory instructions
relative addressing mode
RESET
RESET pin
resets
clock monitor reset
COP
power-on reset
RESET pin
reset timing diagram44
timing diagram
ROM

S

SCCR1
M – mode
R8 – receive data bit 8
T8 – transmit data bit 8
WAKE – wake-up mode select
SCCR2
ILIE – idle line interrupt enable
RE – receiver enable
RIE – receiver interrupt enable
RWU – receiver wake up
SBK – send break
TCIE – transmit complete interrupt enable
TCIE – transmit complete interrupt enable 92
TCIE – transmit complete interrupt enable 92 TE – transmitter enable
 TCIE – transmit complete interrupt enable 92 TE – transmitter enable
TCIE – transmit complete interrupt enable 92 TE – transmitter enable
TCIE – transmit complete interrupt enable92TE – transmitter enableTIE – transmit interrupt enableSCIBAUD – baud rate register
TCIE – transmit complete interrupt enable 92 TE – transmitter enable
TCIE – transmit complete interrupt enable92TE – transmitter enable92TIE – transmit interrupt enable92SCI80BAUD – baud rate register96block diagram83
TCIE – transmit complete interrupt enable92TE – transmitter enable92TIE – transmit interrupt enable92SCI80BAUD – baud rate register96block diagram82data format83RDI – receive data
TCIE – transmit complete interrupt enable92TE – transmitter enable92TIE – transmit interrupt enable92SCI80BAUD – baud rate register96block diagram83

SCCR1 – serial communications control
register190
SCCR2 – serial communications control
register291
SCDR – serial communications data regis-
ter
SCSR – serial communications status reg-
ister94
start bit detection
TDO – transmit data
transmitter
two-wire system
SCI interrupt
SCSR – serial communications status register
FE – framing error flag
IDLE – idle line detected flag
NF – noise error flag
OR – overrun error flag
RDRF - receive data register full flag94
TC – transmission complete flag 94
TDRE – transmit data register empty flag. 94
self-check mode
single chip mode14
stack pointer
start bit detection

т

MC68HC05D9 Rev 3.0

V

VDD, VSS	4
VPP14, 19	
VSS, VSS	9

W

Web server																		.1	52	2
Web site	 •	•	•	ł	•	•	•	•	•	•	•	•	•	•	•			.1	52	2

Ζ

Z-bit in CCR.	27
zero flag	27

MC68HC05D9 Rev 3.0

Index

Literature Updates

This document contains the latest data available at publication time. For updates, contact one of the centers listed below:

Literature Distribution Centers

Order literature by mail or phone.

- USA/Europe Motorola Literature Distribution P.O. Box 5405 Denver, Colorado, 80217 Phone 1-303-675-2140
- US & Canada only http://sps.motorola.com/mfax
- Japan Nippon Motorola Ltd. Tatsumi-SPD-JLDC Toshikatsu Otsuki 6F Seibu-Butsuryu Center 3-14-2 Tatsumi Koto-Ku Tokyo 135, Japan Phone 03-3521-8315

Hong Kong Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park 51 Ting Kok Road Tai Po, N.T., Hong Kong Phone 852-26629298

Customer Focus Center

1-800-521-6274

Mfax

To access this worldwide faxing service call or contact by electronic mail or the internet:

RMFAX0@email.sps.mot.com TOUCH-TONE 1-602-244-6609 http://sps.motorola.com/mfax

Motorola SPS World Marketing World Wide Web Server

Use the Internet to access Motorola's World Wide Web server. Use the following URL:

http://design-net.com

Microcontroller Division's Web Site

Directly access the Microcontroller Division's web site with the following URL:

http://design-net.com/csic/CSIC_home.html

MC68HC05D9 Rev 3.0

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **expenses** of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 **Mfax:** RMFAX0@email.sps.mot.com – TOUCHTONE 1- 602-244-6609, http://sps.motorola.com/mfax

US & CANADA ONLY: http://sps.motorola.com/mfax

HOME PAGE: http://motorola.com/sps/

JAPAN: Motorola Japan Ltd.; SPS, Technial Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-8573

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-266668334

CUSTOMER FOCUS CENTER: 1-800-521-6274

Mfax is a trademark of Motorola, Inc. © Motorola, Inc., 1999

MC68HC05D9/D