
MC145572 9–1MOTOROLA

�

��
��	 ���
��

��
 ��

	������

��� ������������

This section is a guide for writing software for the MC145572. It provides several pseudo–code exam-
ples on how to initialize and activate the MC145572 U–interface transceiver. NT and LT initiated activa-
tion procedures are given using both the automatic and non–automatic eoc modes. This section also
contains sample initialization routines for IDL–2 timeslot assignment procedures, GCI Electrical mode
timeslot assignment, Block Error Rate calculation, and non–ISDN D channel communications.

��� ���������� ��� ��������������

The MC145572 provides easy microcontroller read and write access to the maintenance channel via
the SCP or PCP Interface. This permits the maintenance channel to be easily updated and changes
in ANSI T1.601–1992 defined default values to be implemented simply by modifying software. Note
that there are many proprietary applications where the maintenance channel can be used in any man-
ner whatsoever. For a discussion of the Maintenance Channel, see Sections 5 and 7 .

The MC145572 should be initialized before Activation Request, NR2(b2), is set to 1, when Activation
in Progress (NR1(b0)) is first detected set to 1, or when deactivation has been confirmed. This ensures
that the correct data appears on the maintenance channels when Linkup is achieved and the
U–interface is activated.

The Software Reset bit (NR0(b3)), need only be set to 1, then reset to 0, as part of the power–up
initialization routines.

The MC145572 should be initialized so that when it activates, the correct data is present on all of
the maintenance channels at the time activation occurs. The ANSI T1.601–1992 specification indicates
the default and operational data that should appear on these channels. A microcontroller write to the
specified register puts maintenance data onto the indicated U–interface maintenance channel. A micro-
controller read of the specified register obtains maintenance data from the indicated U–interface main-
tenance channel. These channels are:

1) Embedded Operations Channel (eoc) : This channel is accessed via register R6. It is used to con-
vey eoc messages from the LT to the NT. The NT conveys its acknowledgment of eoc messages
back to the LT on this channel. Typically this channel is used by the LT to send loopback and other
maintenance messages to the NT. See ANSI T1.601–1992 for currently defined eoc messages and
other eoc procedures.

2) The M4 Maintenance Channel : Data is put on this channel by writing to BR0. Data is read from
this channel by reading BR1. This channel is used by the LT to signal its activation status to the NT.
The LT also uses this channel to tell the NT when it is intending to deactivate the U–interface. The
NT uses this channel to send its activation status to the LT. The NT also uses this channel to send
its power supply status, its warm start capability, and if it is in a test mode back to the LT. There are
several reserved bits which the ANSI T1.601–1992 specification indicates should be set to 1s.

3) The M5 and M6 Maintenance Channels : Data is put onto these channels by writing to BR2. Data
is read from these channels by reading BR3. Currently all bits in these channels are defined by ANSI
T1.601–1992 as reserved and should be set to 1s.

Sample initialization routines are provided on how to initialize the MC145572 when operated in the
LT or NT modes. Procedure NTINIT1 in Section 9.2.1 initializes the MC145572 for automatic eoc
operation when configured as an NT. The corresponding sample high level embedded operations

MC1455729–2 MOTOROLA

channel interrupt service routine, NTISR1, is also provided in Section 9.2.1 . Procedure NTINIT2 in
Section 9.2.2 initializes the MC145572 for non–automatic eoc operation when in the NT mode. The
corresponding sample high level embedded operations channel interrupt service routine, NTISR2,
is also provided in Section 9.2.2 . Procedure LTINIT1 in Section 9.3 initializes the MC145572 when
it is operated in LT mode.

The sample initialization and operation examples given here are to be used as a guide only. All data
written to or read from registers is in hexadecimal. User eoc, M channel, and activation handlers are
implementation specific. In this example, M4 channel is initialized to $77 in NT mode and $7F in LT
mode. The $77 in NT mode indicates act bit not asserted, ps1 and ps2 status normal, NT1 not in
test mode, warm start capability, and all ANSI T1.601–1988 reserved bits set to 1s. The $7F in LT
mode indicates the act bit is not asserted, the dea bit is not asserted, and all ANSI T1.601–1988 re-
served bits set to 1s. The bits in the M5 and M6 channels are all initialized to 1s and R6 is initialized
to $1FF (Return to Normal) when in the LT mode. It is not necessary to initialize R6 in the NT mode
since the specific eoc handler used will respond to the incoming eoc messages from the LT.

When the U–interface transceiver first activates after a cold or warm start the febe and nebe counters,
BR4 and BR5, should be cleared by the software. Provision must be made so these two registers
are not cleared if there has been a temporary dropout of data transparency or loss of frame sync;
i.e., only clear these counters upon initial activation. When a temporary loss of frame sync or signal
occurs without the U–interface transceiver going to the full reset state it is important that the febe
and nebe count values accurately reflect CRC errors during this time. A reasonable time to clear the
febe and nebe counters is when the M4 channel act bits are first exchanged after initial activation
from warm or cold start. If the febe and nebe counters in the NT are cleared when linkup occurs
it is possible to get febe counts due to the LT transceiver not having completed its activation sequence.

����� 	
 ��������� ��� ��
� �������������� ��
 ����������

The MC145572 provides a mode for trinal checking and automatic invoking of NT1 eoc functions as
defined in ANSI T1.601–1992. In this mode, the external microcontroller does not need to perform
trinal checking, decoding, and implementation of eoc messages. The M4 trinal consecutive check
mode is used in this example. Note that only the act , dea and uoa M4 bits are verified three consecu-
tive times. The following three code segments: NTACT1(), NTINIT1(), and NTISR1() configure the
MC145572 in the above modes and are an example implementation of an NT initiated full activation
in an NT1. The NT1 initiates activation of the U–interface only when requested to do so by the terminal
equipment (TE) or upon cycling of NT1 power.

An initialization and activation procedure for an NT1 follows. A suggested interrupt service routine
outline, NTISR1, is also given.

Procedure NTACT1();

/*

PURPOSE:

The activation procedure NTACT1 resets the U–interface transceiver, calls the initializa-
tion routine NTINIT1, sets activate request, and waits for interrupts.

*/

BEGIN

NR0(b3) <– 1; /* Assert software reset. Only required
at power–up initialization/

NR0(b3) <– 0; /* De–assert software reset. Only required at power–up
initialization/

CALL NTINIT1();

NR2(b3) <– 1; /* Set activation request bit.*/

Wait for interrupt; /* Wait for result of Activation */

Other code;

END;

MC145572 9–3MOTOROLA

Procedure NTINIT1()

/*

PURPOSE:

The initialization procedure NTINIT1 puts the NT configured U–interface transceiver into
automatic eoc mode and selects the M4 channel trinal consecutive check mode of operation.
It also sets default values for the M4, M5, and M6 channels. Activation interrupts are also
enabled. This routine should always be executed just prior to setting Activation Request
NR2(b3) = 1 or when the activation in progress interrupt occurs in response to the MC145572
detecting a wakeup tone.

*/

BEGIN

BR0 <– 77; /* M4 transmit: act = 0, power normal, normal mode (ntm = 1), warm start
capable, unused bits = 1 */

BR1 <– 7F; /* Set initial conditions on M4 channel receive. This (BR0 = 7F) will
force an M channel interrupt to occur when the M4 act bit from the LT
changes from a 0 to a 1, signifying Layer 2 communication readiness/

BR2 <– F0; /* M5 and M6 channels set to ANSI T1.605–1992 reserved condition. febe
input = 1.*/

BR9 <– 1C; /* Select automatic eoc mode, M4 dual consecutive check, M5/M6 update on
every frame and transmitted febe is computed nebe. */

BR10(b0) <– 1; /* Select init group registers. */

OR7(b0) <– 1; /* Enable trinal checking of M4 act, dea and uoa bits. The remaining M4
bits are dual consecutive checked as defined in BR9(b4:b5) */

BR10(b0) <– 0; /* Return to normal byte register operation. */

NR4 <– A; /* Enable IRQ3, activation/D channel interrupt and IRQ2 – M4 Channel
interrupt. */

END;

Procedure NTISR1()

/*

PURPOSE:

The interrupt service routine NTISR1 handles activation and checks for Linkup with Super
frame Sync or for an Error Indication. If linkup is achieved, the febe and nebe counters
are cleared and the M4 act bit is set to a 1 if a check of the S/T–interface indicates that
it is active. If the Error Indication status bit, NR1(b2), is set to 1, appropriate mea-
sures can be taken. Also, when act = 1 from the LT, NTISR1 will enable data transparency.
*/

BEGIN

IF NR3(b3) = 1 THEN /* Test for activation interrupt */
BEGIN

IF NR1 = A or B AND
initial activation THEN /* Test for successful initial activation */
BEGIN

BR4 <– 00; /* Clear febe counter */
BR5 <– 00; /* Clear nebe counter */
IF S/T interface is
active THEN

BR0 <– F7; /* Send M4 act status to LT */
END
ELSE IF NR1 = 4 THEN /* Test for error indication */
BEGIN

Take appropriate measures:
* disable interrupts
* report unsuccessful
 activation attempt

END
END
IF NR3(b1) = 1 /* Test for M4 channel interrupt */
BEGIN

IF BR1(b7) = 1 AND /* test for act bit 0 to 1 transition and */
last received BR1(b7) = 0 AND /* dea = 1 from LT */
BR1(b6) = 1 THEN

NR2(b0) <– 1; /* Set Customer Enable bit for NT1 data
 transparency */

ELSE
handle other M4
status changes here

END
return();

END

MC1455729–4 MOTOROLA

����� 	
 	������������ ��� ��
� �������������� ��
 ����������

The MC145572 can be operated with eoc frame trinal checking and eoc interrupts enabled so an
external microcontroller may handle all eoc commands in software. Note that the MC145572 still per-
forms eoc frame trinal checking thus relieving the external microcontroller of this task. The M4 channel
dual consecutive check mode is enabled. The examples in this section configure an NT U–interface
transceiver in these modes and activate it.

The eoc message processor given as an example here covers a very limited implementation of an
eoc command set.

The activation procedure NTACT2 resets the U–interface transceiver, calls the initialization routine
NTINIT2, sets activate request, and waits for interrupts.

An initialization and activation procedure for an NT1 follows with numbers in hexadecimal. A suggested
interrupt service routine outline, NTISR2, is also given.

Procedure NTACT2();

/*

PURPOSE:

The activation procedure NTACT2 resets the U–interface transceiver, calls the initializa-
tion routine NTINIT2, sets activate request, and waits for interrupts.

*/

BEGIN

NR0(b3) <– 1; /* Assert software reset. Only required
at power–up initialization/

NR0(b3) <– 0; /* De–assert software reset. Only required at power–up initialization/

CALL NTINIT2();

If NR1 = 0 then NR2 (b3) <– 1; /* Set activation request bit */

Wait for interrupt; /* Wait for result of Activation */

Other code;

END;

Procedure NTINIT2()

/*

PURPOSE:

The initialization procedure NTINIT2 puts the NT configured U–interface transceiver into
eoc trinal–check mode and selects the M4 channel trinal consecutive check mode of opera-
tion. It also sets default values for the M4, M5, and M6 channels. Activation interrupts
are also enabled. This routine should always be executed just prior to setting Activation
Request NR2(b3) = 1 or when the activation in progress interrupt occurs in response to the
MC145572 detecting a wakeup tone.

*/

BEGIN

BR0 <– 77; /* M4 transmit: act = 0, power normal, normal mode (ntm = 1), warm start
capable, unused bits = 1 */

BR1 <– 7F; /* Set initial conditions on M4 channel receive. This (BR0 = 7F) will
force an M channel interrupt to occur when the M4 act bit from the LT
changes from a 0 to a 1, signifying Layer 2 communication readiness/

BR2 <– F0; /* M5 and M6 channels set to ANSI T1.605–1992 reserved condition. febe
input = 1.*/

BR9 <– 1C; /* Select automatic eoc mode, M4 dual consecutive check, M5/M6 update on
every frame and transmitted febe is computed nebe. */

BR10(b0) <– 1; /* select init group registers */

OR7(b0) <– 1; /* enable trinal checking of M4 act, dea and uoa bits. The remaining M4
bits are dual consecutive checked as defined in BR9(b4:b5) */

BR10(b0) <– 0; /* return to normal byte register operation */

NR4 <– E; /* Enable activation/D channel, M4 channel and eoc interrupts */

END;

MC145572 9–5MOTOROLA

Procedure NTISR2()

/*

PURPOSE:

The interrupt service routine NTISR2 checks for Linkup with Super frame Sync or for an Er-
ror Indication. If linkup is achieved, the febe and nebe counters are cleared and the M4
act bit is set to a 1 if a check of the S/T–interface indicates that it is active. If the
Error Indication status bit, NR1(b2), is set to 1, appropriate measures can be taken. A
sample outline of the ANSI complaint eoc message handler is also included. Note that if the
D channel SCP access (BR10(b1) = 1) and IRQ3 (NR4(b3) = 1) are enabled then NR1 must be
checked for the hex code F before any other IRQ3 interrupt is serviced.

*/
BEGIN

IF NR3(b3) = 1 THEN /* Test for activation interrupt */
BEGIN

IF NR1 = F THEN /* Check for D channel interrupt.*/
BEGIN

* read/write D channel
 data from/to OR12
* clear D channel interrupt

END
ELSE IF NR1 = A or B AND
initial activation THEN /* Test for successful initial activation */
BEGIN

BR4 <– 00; /* Clear febe counter */
BR5 <– 00; /* Clear nebe counter */
IF S/T interface is
active THEN

BR0 <– F7; /* Send M4 act status to LT */
END
ELSE IF NR1 = 4 THEN /* Test for error indication */
BEGIN

Take appropriate measures:
* disable interrupts
* report unsuccessful
 activation attempt

END
END
IF NR3(b1) = 1 /* Test for M4 channel interrupt */
BEGIN

IF BR1(b7) = 1 AND /* test for act bit 0 to 1 transition and */
last received BR1(b7) = 0 AND /* dea = 1 from LT */
BR1(b6) = 1 THEN

NR2(b0) <– 1; /* Set Customer Enable bit for NT1 data
 transparency */

ELSE
handle other M4
status changes here

END

IF NR3(b2) = 1 THEN /* Test for eoc interrupt */
BEGIN

IF R6(B11:B9) = 1 OR 7 THEN /* Test for eoc message, address = NT1 or
 broadcast, respectively. */

BEGIN
IF (R6(B8)=1 AND R6(B7:B0) = a defined eoc message THEN
BEGIN

R6 <– R6; /* Echo eoc message to LT (Time critical!) */
* take appropriate
 actions depending on
 message

END
ELSE

R6 <– 1AA; /* Send Unable to Comply back to LT. */
END
ELSE

R6 <– 100; /* eoc address not equal to 000 or 111. Send
 Hold state back to LT */

END

return();

END

MC1455729–6 MOTOROLA

����� �
 	�
� �������������� ��
 ����������

LT initialization is very similar to NT initialization except that the automatic eoc mode is not available.
Trinal checking of received eoc commands is enabled. When the U–interface transceiver is operated
as an LT, the software initiates eoc messages by writing into R6. Correct operation of the eoc message
at the NT1, as defined in ANSI T1.601–1992, is indicated by the LT receiving the echoed eoc message
in R6. This is shown at a very high level in LTISR1.

An initialization and activation procedure for LT mode follows with numbers in hexadecimal:

Procedure LTACT1();

/*

PURPOSE:

The activation procedure LTACT1 resets the U–interface transceiver, calls the initializa-
tion routine LTINIT1, sets activate request, and waits for interrupts.

*/

BEGIN

NR0(b3) <– 1; /* Assert software reset. Only required
at power–up initialization.*/

NR0(b3) <– 0; /* De–assert software reset. Only required at power–up initialization.*/

CALL LTINIT1();

If NR1 = 0 then NR2 (b3) <– 1; /* Set activation request bit */

Wait for interrupt; /* Wait for result of Activation */

Other code;

END;

Procedure LTINIT1()

/*

PURPOSE:

The initialization procedure LTINIT1 puts the LT configured U–interface transceiver into
eoc trinal–check mode and selects the M4 channel trinal consecutive check mode of opera-
tion. It also sets default values for the M4, M5, and M6 channels. Activation interrupts
are also enabled. This routine should always be executed just prior to setting Activation
Request NR2(b3) = 1 or when the activation in progress interrupt occurs in response to the
MC145572 detecting a wakeup tone.

*/

BEGIN

BR0 = 7F; /* act = 0, dea = 1, other bits to ANSI T1.601–1992 reserved status. */

BR1 = 7F; /* Force an M4 channel interrupt to occur when received act changes to a
1 from a zero. */

BR2 = F0; /* M5 and M6 channels to ANSI T1.601–1992 reserved condition. febe Input
= one. */

BR9 = 8C; /* Select eoc trinal check, M4 Verified act mode, M5/M6 update on every
frame, and transmited febe is Computed nebe. */

BR10(b0) = 1; /* Select Init Group of registers */

OR7(b0) = 1; /* Enable trinal checking of M4 act and sai bits. */

BR10(b0) = 0; /* Deselect Init Group. */

R6 = 1FF; /* Eoc defaults to Return to Normal message with NT1 addressed and d/m
bit set to one. */

NR4 = E; /* Enable eoc, M4 and activation interrupts. */

return () ;

END;

MC145572 9–7MOTOROLA

Procedure LTISR1()

/*

PURPOSE:

The interrupt service routine LTISR1 checks for Linkup with Super frame Sync or for an
Error Indication. If linkup is achieved, the febe and nebe counters are cleared and the M4
act bit is set to a 1. A check is made for correct reception of the eoc message by the NT1.
Correct reception is indicated when the received eoc message in R6 is the same as the eoc
message originally written to R6. This is per ANSI T1.601–1992. Note that this is one of
many possible implementations. Note that the M4 channel act bit towards the NT is set to a
1 only if the LT is receiving M4 act bit equal to 1 from the NT. This is per ANSI
T1.601–1992 section 6.4.6.4. If the Error Indication status bit, NR1(b2), is set to 1,
appropriate measures can be taken.

It is not necessary to reset the MC145572 after an activation failure occurs. A reset only
needs to be applied after initial power up.

*/

BEGIN

IF NR3(b3) = 1 THEN /* Test for activation interrupt */

BEGIN

IF NR1 = B THEN /* Test for successful activation */

Notify central office

processor;

ELSE IF NR1 = 4 THEN /* Test for failed activation (Error

BEGIN /* Indication) */

NR4 <– 0; /* Disable interrupts. */

* report failed

 activation attempt

END

END

IF NR3(b1) = 1 /* Test for M4 Channel Interrupt */

BEGIN

IF BR1(b7) = 1 AND /* test for act bit 0 to 1 transition */

last received BR1(b7) = 0 THEN

BEGIN

BR4 <– 00; /* Clear febe Counter */

BR5 <– 00; /* Clear nebe counter */

BR0(b7) <– 1; /* Send M4 act = 1 status to NT */

NR2(b0) <– 1; /* Enable data transparency at LT */

END

ELSE /* handle other M4 status changes */

handle other M4 channel

status changes here

END

IF NR3(b2) = 1 THEN /* Test for eoc channel interrupt */

BEGIN

If the value read from R6

is the same as the last value

written to R6 then the NT1

executed the eoc message

correctly. Take appropriate

measures

If the value read from R6 is

not the same as the last value

written to R6 then the NT1 did

not execute the eoc message

correctly. Take appropriate

measures

END

return();

END

MC1455729–8 MOTOROLA

��� ��
	���� ����
�	� ������ ���
��

��
 	��
��	

In modern Central Office Switches (COs) or Private Branch Exchanges (PBXs) a Time Division Multi-
plex (TDM) bus may carry data from several different U–interfaces. the MC145572 is designed with
a flexible Timeslot Assigner (TSAC) allowing it to transmit and receive 2B+D data in any timeslot on
a TDM bus.

With the MC145572’s TSAC, B and D channel timeslots can be assigned an any two bit boundary.
Figure 9.2 shows an 8 KHz TDM frame divided into 2–bit timeslots labeled TS0 through TSn–1. ‘n’
is the maximum number of 2–bit timeslots. Programming the MC145572’s TSAC is accomplished by
writing the 2–bit timeslot number that corresponds to the first two bits of a B or D channel timeslot
to one of the TSAC registers (OR0 through OR5).

A typical arrangement of timeslots for four U–interface devices is shown in Figure 9.2. The procedure
TSACinit() shows how to configure the MC145572 as if it occupies the timeslots highlighted in Figure
9.3.

Procedure TSACinit();

/*

PURPOSE:

 select IDL format and timeslots for B1, B2 and D channels

INITIAL CONDITIONS:

 MC145572 configured for IDL–2 slave mode

 DCL clock rate = 4.096 MHz

TIMESLOT assignment

B1 channel transmit –> TS8 through TS11

B1 channel receive –> TS8 through TS11

B2 channel transmit –> TS12 through TS15

B2 channel receive –> TS12 through TS15

D channel transmit –> TS33

D channel receive –> TS33

The transmit and receive starting timeslot for each channel is programmed into registers
OR0 through OR5.

*/

Begin

NR0(b3) <– 1; /* Assert software reset. Only required
at power–up initialization.*/

NR0(b3) <– 0; /* De–assert software reset. Only required at power–up initialization.*/

BR10(b0) <– 1; /* Select Init Group Overlay registers.*/

OR0 <– 08; /* B1 transmit starts in TS8 */

OR1 <– 0C; /* B2 transmit starts in TS12 */

OR2 <– 11; /* D transmit is in TS33 */

OR3 <– 08; /* B1 receive starts in TS8 */

OR4 <– 0C; /* B2 receive starts in TS12 */

OR4 <– 11; /* D receive is in TS33 */

OR6 <– E0; /* Enable B1, B2, and D timeslots.*/

OR10(b0) <– 0; /* Timeslot initialization over. Deselect overlay registers and return
to normal byte register operation */

End;

MC145572 9–9MOTOROLA

Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î

Î
Î

Î
Î

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ

TS
n–

1
TS

n–
2

TS
n–

3
TS

16
TS

15
TS

14
TS

13
TS

12
TS

11
TS

10
TS

9
TS

8
TS

7
TS

6
TS

5
TS

4
TS

3
TS

2
TS

1
TS

0

D
C

L

FS
R

/F
SX

AV
AI

LA
BL

E
TI

M
ES

LO
TS

Figure 9–1.

MC1455729–10 MOTOROLA

Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î

Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

Î
Î
Î
Î
Î
Î

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

Î
Î

Î
Î

Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ

ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ

ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ

ÏÏ
ÏÏ
ÏÏ
ÏÏ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ

ÎÎ
ÎÎ

ÎÎ
ÎÎ

TS
n

TS
n–

1
TS

n–
2

TS
35

TS
34

TS
33

TS
32

TS
15

TS
14

TS
13

TS
12

TS
11

TS
10

TS
9

TS
8

TS
2

TS
1

TS
0

D
B1

B2
D

B1

B2

TR
AN

SC
EI

VE
R

 #
1

B1
 +

 B
2

TR
AN

SC
EI

VE
R

 #
2

B1
 +

 B
2

TR
AN

SC
EI

VE
R

 #
3

B1
 +

 B
2

TR
AN

SC
EI

VE
R

 #
4

B1
 +

 B
2

TR
AN

SC
EI

VE
R

#1
,..

.,4
D

-C
H

AN
N

EL

FS
R

/F
SX D
C

L

AV
AI

LA
BL

E
TI

M
E

SL
O

TS

D
O

U
T

D
IN

FS
R

/F
SX D
C

L

TI
M

E
SL

O
T

AS
SI

G
N

M
EN

T
(4

 T
R

AN
SC

EI
VE

R
S)

Figure 9–2.

MC145572 9–11MOTOROLA

�� �
� ���� ���� ����������� �������

This example shows how to program the MC145572 when the GCI 2B+D format is selected instead
of IDL 8– and 10–bit modes. See Section 5.4.3 for a description of GCI 2B+D mode.

Procedure GCI2B+Dinit();

/*

PURPOSE:

 program GCI timeslot in IDL–2 GCI 2B+D data format

INITIAL CONDITIONS:

 MC145572 configured for IDL–2 slave mode

 DCL clock rate = 4.096 MHz

Timeslot assignment:

When the DCL clock frequency = 4.096MHz there are 8 possible 32–bit GCI timeslots. In this
example we will program the MC145572 to transmit and receive in the 4th GCI timeslot.

*/

BEGIN

NR0(b3) <– 1; /* Assert software reset. Only required at power–up initialization.*/

NR0(b3) <– 0; /* De–assert software reset. Only required at power–up initialization.*/

BR10(b0) <– 1; /* Select Init Group Overlay registers.*/

OR5 <– 03; /* Select the 4th GCI timeslot */

OR6(3) <– 1; /* Enable 4th GCI timeslot */

OR10(b0) <– 0; /* Timeslot initialization over. Deselect overlay registers and return
to normal byte register operation */

END;

�	 ���
� ����� ����� ������
��
������� ����� febe �nebe

�������

This example shows how to use the MC145572 febe (far–end block error) and nebe (near–end block
error) counters to calculate a BLock–Error Ratio (BLER). The BLER is a useful measure of the channel
quality as well as a measure of the far–end and near–end receiver’s performance. Using a timed inter-
rupt, the procedures BLER_init and BLER_ISR determine the BLER by calculating the number of far–
end and near–end block errors that occurred in the last 100 superframes. By subtracting the value
of the febe /nebe counters read during an interrupt from the value read in the previous interrupt, the
error count over a specific time interval can easily be determined.

The MC145572 has febe and nebe status bits as well as febe and nebe counters. BR3 contains
the status bits, BR4 is the febe counter and BR5 is the nebe counter. When a febe or nebe is de-
tected, the status bit is set and the counters are incremented. Section 7.5 describes the operation
of the febe /nebe bits in detail. The MC145572 adds a febe /nebe counter rollover feature which
was not available in the MC145472. When this feature is enabled the febe /nebe counters will rollover
from $FF to 00 instead of saturating at $FF. The interrupt period of this example has been set to
1.2 seconds to guarantee that the febe /nebe counters do not roll over more than once between inter-
rupts.

Since the superframe period is 12 ms, 100 superframes will be transmitted or received in 1.2 seconds.
The 1.2 second interrupt can easily be implemented using the timer function on any Motorola
MC68HC05 series microcontroller. For greater accuracy, the BLER generated at each interrupt can
be summed over longer periods of time.

By reading BR4 and BR5 once per second it is easy to modify the above procedure to calculate error
seconds and error free seconds.

MC1455729–12 MOTOROLA

Procedure BLER_init

/*

PURPOSE: BLER_init initializes the febe/nebe counters, enables febe/nebe rollover and en-
ables the 1.2 second interrupt. Initialization of the febe/nebe registers should be done
upon activation as shown in the NT and TE activation examples previously mentioned in this
section.

*/

BEGIN

BR4 <– 00; /* Clear febe counter.*/

BR5 <– 00; /* Clear nebe counter */

BR10(b0) <– 1; /* Enable init group registers */

OR7(b1) <– 1; /* Enable febe/nebe rollover */

BR10(b0) <– 0; /* Disable init group registers */

* program timer for 1.2 sec interrupt

* enable timer interrupt

END

Procedure BLER_ISR

/*

PURPOSE: BLER_ISR handles the 1.2 second timer interrupt. It calculates the current far end
and near end block error rates and stores them in the memory locations: FE_BLER and
NE_BLER. The febe/nebe values from the last interrupt are stored in the memory locations:
last_febe and last_nebe. These memory locations should be initialized prior to enabling the
interrupt. If the result of subtracting the last febe/nebe from the current febe/nebe is
negative then the result is adjusted module 256.

OUTPUT:

FE_BLER : far end block error rate in errors/100 blocks

NE_BLER : near end block error rate in errors/100 blocks

last_febe : BR4 value recorded from previous interrupt

last_nebe : BR5 value recorded from previous interrupt

*/

BEGIN

IF BLER_timer_int THEN

BEGIN

febe <– BR4; /* store current febe */

FE_BLER <– febe – last_febe /* calculate far end BLER of last 1.2 sec */

IF FE_BLER <= 0 THEN /* test for febe counter rollover */

FE_BLER <– 256 – FE_BLER /* adjust far end BLER for counter
rollover */

last_febe <– BR4 /* update last_febe */

nebe <– BR5; /* store current nebe */

NE_BLER <– nebe – last_nebe /* calculate near end BLER of last 1.2 sec */

IF NE_BLER <= 0 THEN /* test for nebe counter rollover */

NE_BLER <– 256 – NE_BLER /* adjust near end BLER for counter
rollover */

last_nebe <– BR5 /* update last_nebe */

END

END

MC145572 9–13MOTOROLA

��� 	 �����

 ������������� ��� ��
 �
���
 �� ����

������
 ���� ���� �� ����

In non–ISDN applications such as pair–gain multiplexing it is often necessary to communicate low–
speed status information. The MC145572 provides a simple means to transmit this type of status in-
formation over the D channel of the U–interface.

CENTRAL
OFFICE
SWITCH

COT
(CENTRAL
OFFICE

TERMINAL)

RT
(REMOTE

TERMINAL)

OFF–HOOK STATUS

RING–DETECT STATUS

U–INTERFACE

Figure 9–3. Status Information Flow in a 4:1 Pair–Gain Application

In pair–gain applications, the off–hook status is transmitted from the Remote Terminal (RT) to the
Central Office Terminal (COT) and the ring detect status is transmitted from the COT to the RT as
shown in Figure 9–3 .

In MCU mode the MC145572 provides a means to transmit and receive D channel information through
the Serial or Parallel Control Ports (SCP or PCP). This allows an MCU to access the D channel without
using the D channel port or the IDL interface. Once activation is achieved, transparent data is enabled
and BR10(b1) is set, D channel data is accessible through the overlay register OR12. If IRQ3 is enabled
and BR10(b1) = 1, a special code is loaded into NR1 (NR1 = 1111) to indicate that a new byte of
D channel data was received. This interrupt occurs every 500 µsec. When an activation interrupt (also
IRQ3) occurs at the same time as a D channel interrupt, it is latched and generates an interrupt to
the MCU after the D channel register OR12 has been read. This must be taken into account when
writing the Interrupt Service Routine.

The following two procedures are a basic example of how to communicate over the D channel using
the PCP/SCP registers. DCH_init is used to enable IRQ3 and initiate activation. The interrupt service
routine, DCH_ISR then enables customer data when activation is achieved and handles the D channel
communications through overlay register OR12.

MC1455729–14 MOTOROLA

procedure DCH_init

/* PURPOSE: DCH_init initializes the D channel SCP/PCP communications and also activates
the MC145572.

BEGIN

NR0(b3) <– 1; /* Assert software reset. Only required
at power–up initialization.*/

NR0(b3) <– 0; /* De–assert software reset. Only required at power–up initialization.*/

BR10(b1) <– 1; /* Enable SCP/PCP D channel read/write access through OR12 */

NR4 <– 8; /* Enable IRQ3, activation/D channel interrupt */

NR2(b3) <– 1; /* Set activation request bit.*/

Wait for interrupt; /* Wait for result of Activation */

Other code;

END

procedure DCH_ISR

BEGIN

IF NR3(b3) = 1 THEN /* Test for activation interrupt */

BEGIN

IF NR1 = F THEN /* Check for D channel interrupt.*/

BEGIN

* get OFF HOOK (RT) or RING DETECT (COT)

 status from hardware and write

 to OR12

* read OR12 and initiate

 OFF HOOK to central office (from COT)

 or RING DETECT to end phone (from RT)

 if necessary

END

ELSE IF NR1 = A or B AND initial activation THEN

/* Test for successful initial activation */

NR2(b0) <– 1; /* set customer enable bit */

ELSE IF NR1 = 4 THEN /* Test for error indication */

BEGIN

Take appropriate measures:

* disable interrupts

* report unsuccessful

 activation attempt

END

END

END

