

#### **General Description**

The MAX774 evaluation kit (EV kit) is a fully assembled and tested surface-mount printed circuit board that provides a regulated -5.0V output voltage from a +5.0V input source. It drives loads up to 1A with conversion efficiency greater than 80%.

Additional pads are provided on the board's solder side to accommodate external feedback resistors for setting different output voltages.

The MAX774 EV kit can also be used to evaluate the MAX775 (-12V output) or MAX776 (-15V output).

#### **Component List**

| DESIGNATION | QTY | DESCRIPTION                                                                                                   |
|-------------|-----|---------------------------------------------------------------------------------------------------------------|
| C1          | 1   | 150µF, 10V low-ESR tantalum capacitor Sprague 595D157X0010D7                                                  |
| C3          | 1   | 330µF, 10V low-ESR tantalum capacitor Sprague 595D337X0010R7                                                  |
| C2, C4      | 2   | 0.1µF, 50V ceramic capacitors                                                                                 |
| R1          | 1   | $0.075\Omega$ resistor (low inductance) IRC LR2010-01-R075-F                                                  |
| R2, R3      | 0   | Open                                                                                                          |
| L1          | 1   | 22µH, 2.3A power inductor<br>Sumida CDR125-220                                                                |
| D1          | 1   | 3A Schottky diode<br>1N5820 or Nihon NSQ03A03                                                                 |
| Q1          | 1   | P-channel FET (BV <sub>DS</sub> = 30V, $r_{DS(ON)}$ = 130m $\Omega$ at 4.5V <sub>GS)</sub> , Siliconix Si9435 |
| U1          | 1   | MAX774CSA (8-pin SO)                                                                                          |
| JU1         | 1   | 3-pin header                                                                                                  |
| None        | 1   | Shunt                                                                                                         |
| None        | 1   | PC board                                                                                                      |
| None        | 1   | MAX774 data sheet                                                                                             |

#### **Component Suppliers**

| SUPPLIER    | PHONE          | FAX            |
|-------------|----------------|----------------|
| AVX         | (800) 282-4975 | (207) 283-1941 |
| Coilcraft   | (708) 639-6400 | (708) 639-1469 |
| Coiltronics | (407) 241-7876 | (407) 241-9339 |
| Harris      | (407) 724-3739 | (407) 724-3937 |
| IRC         | (704) 264-8861 | (704) 264-8866 |
| Matsuo      | (714) 969-2491 | (714) 960-6492 |
| Motorola    | (800) 521-6274 | (602) 244-4015 |
| Nihon       | (805) 867-2555 | (805) 867-2556 |
| Siliconix   | (408) 988-8000 | (408) 970-3950 |
| Sprague     | (603) 224-1961 | (603) 224-1430 |
| Sumida      | (708) 956-0666 | (708) 956-0702 |

#### **Features**

- ♦ -5.0V or Adjustable Output Voltage
- ♦ Up to 1A Output Current
- ♦ 5µA Max Shutdown Current
- ♦ 100µA Max Supply Current
- ♦ 300kHz Switching Frequency
- ♦ 8-Pin DIP and SO Packages
- **♦ Surface-Mount Construction**
- ♦ Fully Assembled and Tested

#### **Ordering Information**

| PART           | TEMP. RANGE  | BOARD TYPE    |
|----------------|--------------|---------------|
| MAX774EVKIT-SO | 0°C to +70°C | Surface Mount |

**EV** Kit



# **MAX774 Evaluation Kit**

#### **Quick Reference**

The MAX774 EV kit is a fully assembled and tested surface-mount board. Follow the steps below to verify board operation.

# Do not turn on the power supply until all connections are completed.

- 1. Connect a +5.0V supply to the pad marked VIN. Ground connects to the GND pad.
- 2. Connect a voltmeter and load (if any) to the VOUT pad.
- 3. Place the shunt on JU1 across pins 1 and 2 for normal operation.
- 4. Turn on the power and verify the output voltage is -5.0V.
- 5. Refer to the sections *Evaluating the MAX775 and MAX776* and *Other Output Voltages* to modify the board for different output voltages.

#### \_Detailed Description

#### **Jumper Selections**

The 3-pin header JU1 selects shutdown mode. Table 1 lists the selectable jumper options.

#### **Inductor Selection**

The 22µH Sumida CDR125-220 inductor mounted on the EV kit is a low-resistance, shielded, medium-current inductor. It provides excellent performance over the line and load ranges of the MAX774/MAX775/MAX776. See the *Choosing an Inductor* section of the MAX774/MAX775/MAX776 data sheet for more inductor selection information.

**Table 1. Jumper JU1 Functions** 

| SHUNT LOCATION | SHDN PIN         | MAX774 OUTPUT                   |
|----------------|------------------|---------------------------------|
| 2 & 3          | Connected to VIN | Shutdown mode,<br>VOUT = 0V     |
| 1 & 2          | Connected to GND | MAX774 enabled,<br>VOUT = -5.0V |

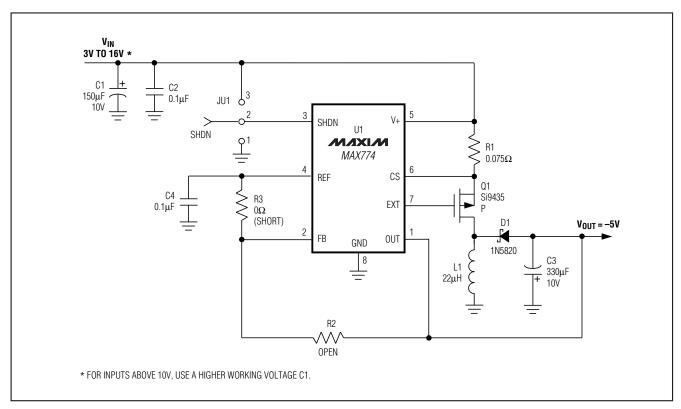



Figure 1. MAX774 EV Kit Schematic Diagram

### **MAX774 Evaluation Kit**

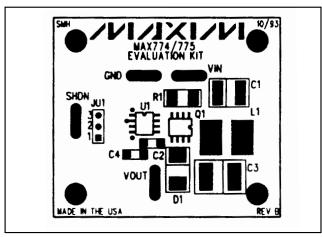



Figure 2. Component Placement Guide (Component Side)

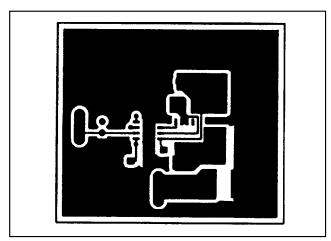



Figure 3. PC Layout (Component Side)

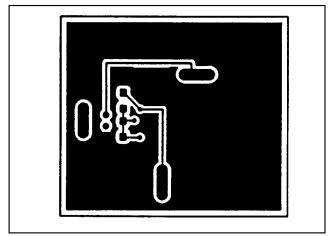



Figure 4. PC Layout (Solder Side)

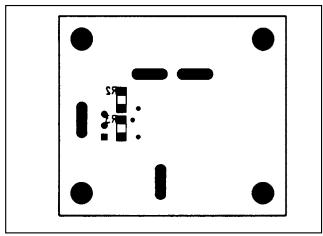



Figure 5. Component Placement Guide (Solder Side)

#### **Evaluating the MAX775 and MAX776**

The MAX775 can replace the MAX774 to generate a -12.0V output voltage with output currents up to 0.5A. The only other modification required is to use a low-ESR output capacitor with a voltage rating of 20V or higher.

The MAX776 can also replace the MAX774 to generate a -15.0V output voltage with output currents up to 0.4A. The only other modification required is to use a low-ESR output capacitor with a voltage rating of 25V or greater. Refer to the *Capacitors* section of the MAX774/MAX775/MAX776 data sheet for more capacitor selection information.

#### **Other Output Voltages**

The MAX774/MAX775/MAX776 are preset for -5V, -12V, and -15V output voltages, respectively. However, they may be adjusted to other values through an external voltage divider formed by R2 and R3 (located on the board's solder side). For input or output voltages greater than 10V, capacitors C1 and C3 must be replaced by capacitors with a higher working voltage. The only other modification required is to cut the trace across R3. The *Output Voltage Selection* section of the MAX774/MAX775/MAX776 data sheet gives instructions for calculating R2 and R3 values.

## MAX774 Evaluation Kit

# 1994 EVALUATION KIT DATA BOOK FAXBACK OFFER



Accelerate your time to market with Maxim's evaluation kits (EV kits) that simplify design-in and prototyping. For your convenience, the *1994 Evaluation Kit Data Book* includes EV kit manuals and corresponding data sheets covering 95 products in one easy-to-use book. To receive your free data book, simply FAX this response card to your nearest Maxim office, or call toll-free 1-800-998-8800 (in the US only) for prompt fulfillment. We look forward to serving you.

#### **FAX NUMBERS:** US (408) 737-7194 Italy **Germany (GmbH)** (089) 8544239 (02) 99041981 UK (0734) 84 38 63 **France** (1) 30 64 73 48 Germany (Spezial) (0130)6614**Japan** (03) 3232-6149 **Taiwan** (35) 777659 \_\_\_\_\_Title \_\_\_\_\_ Name \_\_ City \_\_\_\_\_ State \_\_\_\_ Zip Phone#

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

4 \_\_\_\_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

MAX774 EV DS REV 0