General Description

The MAX6314 low-power CMOS microprocessor (μ P) supervisory circuit is designed to monitor power supplies in μ P and digital systems. The MAX6314's RESET output is bidirectional, allowing it to be directly connected to μ Ps with bidirectional reset inputs, such as the 68HC11. It provides excellent circuit reliability and low cost by eliminating external components and adjustments. The MAX6314 also provides a debounced manual reset input.

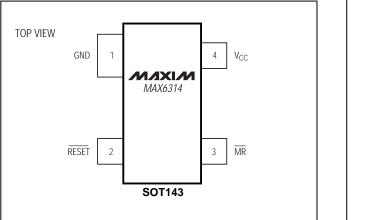
This device performs a single function: it asserts a reset signal whenever the V_{CC} supply voltage falls below a preset threshold or whenever manual reset is asserted. Reset remains asserted for an internally programmed interval (reset timeout period) after V_{CC} has risen above the reset threshold or manual reset is deasserted.

The MAX6314 comes with factory-trimmed reset threshold voltages in 100mV increments from 2.5V to 5V. Preset timeout periods of 1ms, 20ms, 140ms, and 1120ms (minimum) are also available. The device comes in a SOT143 package.

For a μP supervisor with an open-drain reset pin, see the MAX6315 data sheet.

Applications

Pin Configuration

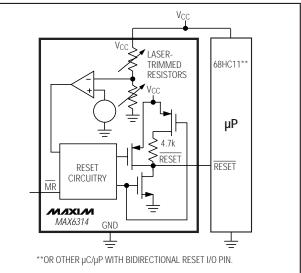

Computers

Controllers

Intelligent Instruments

Critical µP and µC Power Monitoring

Portable/Battery-Powered Equipment


* Patents Pending

_Features

- Small SOT143 Package
- RESET Output Simplifies Interface to Bidirectional Reset I/Os
- Precision Factory-Set V_{CC} Reset Thresholds: 100mV Increments from 2.5V to 5V
- ±1.8% Reset Threshold Accuracy at T_A = +25°C
- ♦ ±2.5% Reset Threshold Accuracy Over Temp.
- Four Reset Timeout Periods Available: 1ms, 20ms, 140ms, or 1120ms (minimum)
- Immune to Short VCC Transients
- ♦ 5µA Supply Current
- Pin-Compatible with MAX811

Ordering and Marking Information appears at end of data sheet.

Typical Operating Circuit

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

V _{CC}	-0.3V to +6.0V
All Other Pins	
Input Current (V _{CC})	
Output Current (RESET)	20mA
Rate of Rise (V _{CC})	100V/µs

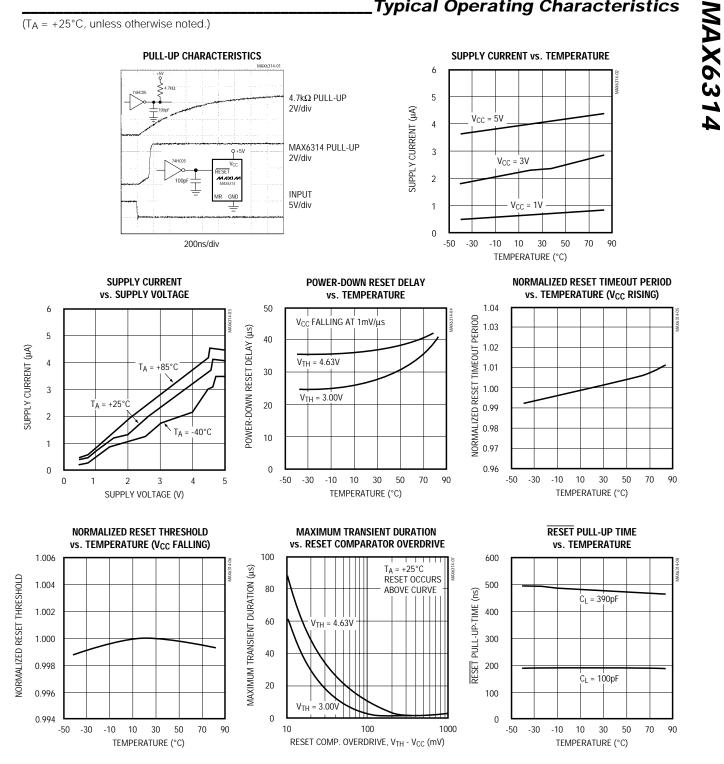
Continuous Power Dissipation (T_A = +70°C) SOT143 (derate 4mW/°C above +70°C)......320mW Operating Temperature Range-40°C to +85°C Storage Temperature Range-65°C to +160°C Lead Temperature (soldering, 10sec).....+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.5V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at T_A = +25^{\circ}\text{C}.)$

SYMBOL	CC	ONDITIONS	MIN	TYP	MAX		
Vcc	$T_A = 0^\circ C to$	o +70°C	1.0		5.5	V	
1	$V_{CC} = 5.5V$, no load			5	12	μΑ	
ICC	V _{CC} = 3.6V, no load			4	10		
V _{TH}	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		V _{TH} - 1.8%	VTH	V _{TH} + 1.8%		
			V _{TH} - 2.5%		V _{TH} + 2.5%	V	
ΔV _{TH} /°C				60		ppm/°C	
				35		μs	
	MAX6314U	JSD1-T	1	1.4	2	+ .	
	MAX6314US_D2-T		20	28	40	- ms	
IRP	MAX6314USD3-T		140	200	280		
	MAX6314L	JSD4-T	1120	1570	2240	1	
VIL			0.8				
VIH	VIH > 4.0V				2.4	V	
	- V _{TH} < 4.0V		0.3 x V _{CC}				
VIH					0.7 x V _{CC}		
			1			μs	
				100		ns	
				500		ns	
			32	63	100	kΩ	
V _{OL}	V _{CC} > 4.25V, I _{SINK} = 3.2mA				0.4	- V	
	V _{CC} > 2.5V, I _{SINK} = 1.2mA				0.3		
	$V_{CC} > 1.2V, I_{SINK} = 0.5mA$				0.3		
	V _{CC} > 1.0V, I _{SINK} = 80µA				0.3		
		-				1	
) t _S				400		ns	
-	$V_{CC} = 5V$		0.4		0.9	V	
	$V_{\rm CC} = 5V$			20		mA	
			4.2	4.7	5.2	kΩ	
		CLOAD = 120pF			333	-	
	$V_{CC} = 3V$						
t _R						ns	
	$V_{CC} = 5V$	$C_{LOAD} = 200 pF$			333		
	V _{CC} I _{CC} V _{TH} ΔV _{TH} /°C t _{RP} V _{IL} V _{IH} V _{IL} V _{IH} V _{IL}	$\begin{array}{c c c c c c c c } V_{CC} & T_A = 0^{\circ}C \ tc \\ \hline & V_{CC} = 5.5 \ V_{CC} = 3.6 \ V_{CC} = 3.6 \ V_{CC} = 3.6 \ T_A = +25^{\circ}C \\ \hline & T_A = +25^{\circ}C \\ \hline & T_A = -40^{\circ}C \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cc} V_{CC} & T_{A} = 0^{\circ}C \ to +70^{\circ}C & 1.0 \\ \hline I_{CC} & V_{CC} = 5.5V, \ no \ load & 5 \\ \hline V_{CC} = 3.6V, \ no \ load & 4 \\ \hline V_{CC} = 3.6V, \ no \ load & 4 \\ \hline V_{CC} = 3.6V, \ no \ load & 4 \\ \hline V_{CC} = 3.6V, \ no \ load & 4 \\ \hline V_{CC} = 3.6V, \ no \ load & 4 \\ \hline V_{CC} = 3V & V_{CC} = 5.5V, \ no \ load & 4 \\ \hline V_{TH} = \frac{T_{A} = +25^{\circ}C}{T_{A} = +25^{\circ}C} & V_{TH} - 1.8\% & V_{TH} \\ \hline T_{A} = -40^{\circ}C \ to +85^{\circ}C & V_{TH} - 2.5\% & 0 \\ \hline \Delta V_{TH} - 2.5\% & 0.0 \\ \hline \Delta V_{CC} = falling \ at \ 1mV/\mu s & 35 \\ \hline MAX6314US_D1-T & 1 & 1.4 \\ \hline MAX6314US_D2-T & 20 & 28 \\ \hline MAX6314US_D2-T & 20 & 28 \\ \hline MAX6314US_D2-T & 140 & 200 \\ \hline MAX6314US_D2-T & 140 & 200 \\ \hline MAX6314US_D3-T & 200 \\ \hline MAX6314US_D3-T$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	


Note 1: The MAX6314 monitors V_{CC} through an internal, factory-trimmed voltage divider that programs the nominal reset threshold. Factory-trimmed reset thresholds are available in 100mV increments from 2.5V to 5V (see *Ordering and Marking Information*).

Note 2: This is the minimum time RESET must be held low by an external pull-down source to set the active pull-up flip-flop.

Note 3: Measured from RESET V_{OL} to (0.8 x V_{CC}), $R_{LOAD} = \infty$.

2

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

///XI//

Pin Description

PIN	NAME	FUNCTION
1	GND	Ground
2	RESET	Active-Low Complementary Output. In addition to the normal N-channel pull-down, $\overline{\text{RESET}}$ has a P-channel pull-up transistor in parallel with a 4.7k Ω resistor to facilitate connection to μ Ps with bidirectional resets. See the <i>Reset Output</i> section.
3	MR	Manual Reset Input. A logic low on $\overline{\text{MR}}$ asserts reset. Reset remains asserted as long as $\overline{\text{MR}}$ is low, and for the reset timeout period (t _{RP}) after the reset conditions are terminated. Connect to V _{CC} if not used.
4	V _{CC}	Supply Voltage and Reset Threshold Monitor Input

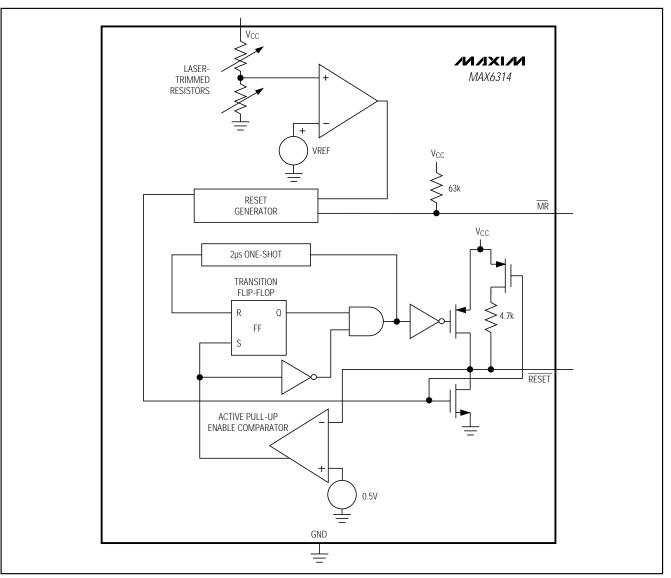


Figure 1. Functional Diagram

4

M/X/W

MAX6314

Detailed Description

The MAX6314 has a reset output consisting of a 4.7k Ω pull-up resistor in parallel with a P-channel transistor and an N-channel pull down (Figure 1), allowing this IC to directly interface with microprocessors (µPs) that have bidirectional reset pins (see the *Reset Output* section).

Reset Output

A μ P's reset input starts the μ P in a known state. The MAX6314 asserts reset to prevent code-execution errors during power-up, power-down, or brownout conditions. RESET is guaranteed to be a logic low for V_{CC} > 1V (see the *Electrical Characteristics*). Once V_{CC} exceeds the reset threshold, the internal timer keeps reset asserted for the reset timeout period (t_{RP}); after this interval RESET goes high. If a brownout condition occurs (monitored voltage dips below its programmed reset threshold), RESET goes low. Any time V_{CC} dips below the reset threshold, the internal timer resets to zero and RESET goes low. The internal timer starts when V_{CC} returns above the reset threshold, and RESET remains low for the reset timeout period.

The MAX6314's RESET output is designed to interface with μ Ps that have bidirectional reset pins, such as the Motorola 68HC11. Like an open-drain output, the MAX6314 allows the μ P or other devices to pull RESET low and assert a reset condition. However, unlike a standard open-drain output, it includes the commonly specified 4.7k Ω pull-up resistor with a P-channel active pull-up in parallel.

This configuration allows the MAX6314 to solve a problem associated with μ Ps that have bidirectional reset pins in systems where several devices connect to RESET. These μ Ps can often determine if a reset was asserted by an external device (i.e., the supervisor IC) or by the μ P itself (due to a watchdog fault, clock error, or other source), and then jump to a vector appropriate for the source of the reset. However, if the μ P does assert reset, it does not retain the information, but must determine the cause after the reset has occurred.

The following procedure describes how this is done with the Motorola 68HC11. In all cases of reset, the μ P pulls RESET low for about four E-clock cycles. It then releases RESET, waits for two E-clock cycles, then checks RESET's state. If RESET is still low, the μ P concludes that the source of the reset was external and, when RESET eventually reaches the high state, jumps to the normal reset vector. In this case, stored state information is erased and processing begins from scratch. If, on the other hand, **RESET** is high after the two E-clock cycle delay, the processor knows that it caused the reset itself and can jump to a different vector and use stored state information to determine what caused the reset.

The problem occurs with faster μ Ps; two E-clock cycles is only 500ns at 4MHz. When there are several devices on the reset line, the input capacitance and stray capacitance can prevent RESET from reaching the logic-high state (0.8 x V_{CC}) in the allowed time if only a passive pull-up resistor is used. In this case, all resets will be interpreted as external. The μ P is guaranteed to sink only 1.6mA, so the rise time cannot be much reduced by decreasing the recommended 4.7k Ω pull-up resistance.

The MAX6314 solves this problem by including a pullup transistor in parallel with the recommended $4.7 \text{k}\Omega$ resistor (Figure 1). The pull-up resistor holds the output high until RESET is forced low by the µP reset I/O, or by the MAX6314 itself. Once RESET goes below 0.5V, a comparator sets the transition edge flip-flop, indicating that the next transition for RESET will be low to high. As soon as RESET is released, the 4.7k Ω resistor pulls RESET up toward V_{CC}. When RESET rises above 0.5V, the active P-channel pull-up turns on for the 2µs duration of the one-shot. The parallel combination of the 4.7k Ω pull-up and the P-channel transistor onresistance quickly charges stray capacitance on the reset line, allowing RESET to transition low to high within the required two E-clock period, even with several devices on the reset line (Figure 2). Once the one-shot times out, the P-channel transistor turns off. This process occurs regardless of whether the reset was caused by V_{CC} dipping below the reset threshold, MR being asserted, or the μP or other device asserting RESET. Because the MAX6314 includes the standard 4.7k Ω pull-up resistor, no external pull-up resistor is required. To minimize current consumption, the internal pull-up resistor is disconnected whenever the MAX6314 asserts RESET.

Manual Reset Input

Many μ P-based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on \overline{MR} asserts reset. Reset remains asserted while \overline{MR} is low, and for the reset active timeout period after \overline{MR} returns high. To minimize current consumption, the internal 4.7k Ω pull-up resistor on RESET is disconnected whenever RESET is asserted.

MAX6314

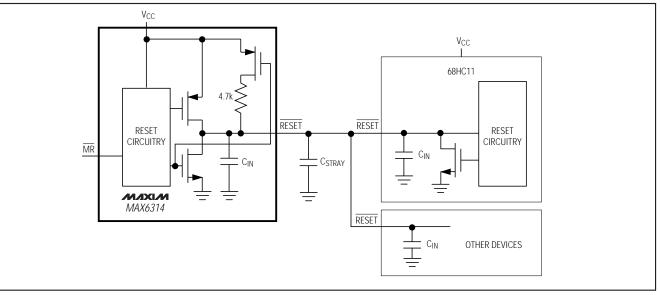


Figure 2. MAX6314 Supports Additional Devices on the Reset Bus

 $\overline{\text{MR}}$ has an internal 63k Ω pull-up resistor, so it can be left open if not used. Connect a normally open momentary switch from $\overline{\text{MR}}$ to GND to create a manual reset function; external debounce circuitry is not required. If $\overline{\text{MR}}$ is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from $\overline{\text{MR}}$ to ground provides additional noise immunity.

Applications Information

Negative-Going VCC Transients

In addition to issuing a reset to the µP during power-up, power-down, and brownout conditions, these devices are relatively immune to short-duration negative-going transients (glitches). The Typical Operating Characteristics show the Maximum Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negativegoing pulses, starting at VRST max and ending below the programmed reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going V_{CC} transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. A 0.1µF bypass capacitor mounted close to V_{CC} provides additional transient immunity.

Ensuring a Valid **RESET** Output Down to V_{CC} = 0V

When V_{CC} falls below 1V, RESET no longer sinks current—it becomes an open circuit. Therefore, highimpedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applications, since most μ P and other circuitry is inoperative with V_{CC} below 1V. However, in applications where RESET must be valid down to V_{CC} = 0V, adding a pull-down resistor to RESET will cause any stray leakage currents to flow to ground, holding RESET low (Figure 3). R1's value is not critical; 100k Ω is large enough not to load RESET and small enough to pull RESET to ground.

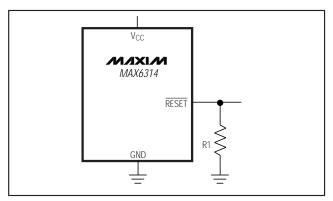


Figure 3. \overrightarrow{RESET} Valid to V_{CC} = Ground Circuit

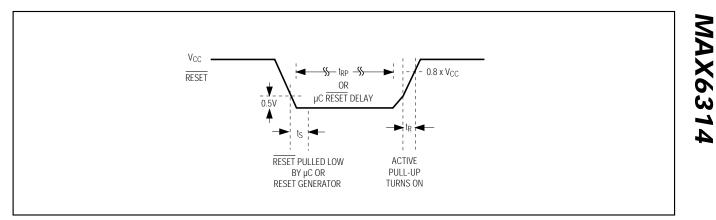


Figure 4. RESET Timing Diagram

PART [†]	NOMINAL V _{TH} (V)	MIN t _{RP} (ms)	PKG. TOP MARK ^{††}	PART [†]	NOMINAL V _{TH} (V)	MIN t _{RP} (ms)	PKG. TOP MARK ^{††}
MAX6314US50D1-T	5.00	1	AA	MAX6314US28D1-T	2.80	1	CK
MAX6314US49D1-T	4.90	1	AB	MAX6314US27D1-T	2.70	1	CL
MAX6314US48D1-T	4.80	1	AC	MAX6314US26D1-T ^{†††}	2.63	1	CM
MAX6314US47D1-T	4.70	1	AD	MAX6314US25D1-T	2.50	1	CN
MAX6314US46D1-T	4.63	1	AE	MAX6314US50D2-T	5.00	20	CO
MAX6314US45D1-T	4.50	1	AF	MAX6314US49D2-T	4.90	20	CP
MAX6314US44D1-T ^{†††}	4.39	1	AG	MAX6314US48D2-T	4.80	20	CQ
MAX6314US43D1-T	4.30	1	AH	MAX6314US47D2-T	4.70	20	CR
MAX6314US42D1-T	4.20	1	AI	MAX6314US46D2-T	4.63	20	CS
MAX6314US41D1-T	4.10	1	AJ	MAX6314US45D2-T	4.50	20	CT
MAX6314US40D1-T	4.00	1	AK	MAX6314US44D2-T ^{†††}	4.39	20	CU
MAX6314US39D1-T	3.90	1	AL	MAX6314US43D2-T	4.30	20	CV
MAX6314US38D1-T	3.80	1	CA	MAX6314US42D2-T	4.20	20	CW
MAX6314US37D1-T	3.70	1	CB	MAX6314US41D2-T	4.10	20	CX
MAX6314US36D1-T	3.60	1	CC	MAX6314US40D2-T	4.00	20	CY
MAX6314US35D1-T	3.50	1	CD	MAX6314US39D2-T	3.90	20	CZ
MAX6314US34D1-T	3.40	1	CE	MAX6314US38D2-T	3.80	20	DA
MAX6314US33D1-T	3.30	1	CF	MAX6314US37D2-T	3.70	20	DB
MAX6314US32D1-T	3.20	1	CG	MAX6314US36D2-T	3.60	20	DC
MAX6314US31D1-T	3.08	1	CH	MAX6314US35D2-T	3.50	20	DD
MAX6314US30D1-T	3.00	1	CI	MAX6314US34D2-T	3.40	20	DE
MAX6314US29D1-T	2.93	1	CJ	MAX6314US33D2-T	3.30	20	DJ

Ordering and Marking Information

[†]The MAX6314 is available in a SOT143 package, -40°C to +85°C temperature range.

††The first two letters in the package top mark identify the part, while the remaining two letters are the lot tracking code.

†††Sample stocks generally held on the bolded products; also, the bolded products have 2,500 piece minimum-order quantities. Non-bolded products have 10,000 piece minimum-order quantities. Contact factory for details.

Note: All devices available in tape-and-reel only. Contact factory for availability.

MIN tRP PKG. TOP NOMINAL MIN t_{RP} PKG. TOP NOMINAL PART PART MARK VTH (V) (ms) MARK VTH (V) (ms) 2.80 MAX6314US32D2-T 3.20 MAX6314US28D3-T 140 EΤ 20 DK EU__ MAX6314US31D2-T 3.08 20 MAX6314US27D3-T 2.70 140 DL MAX6314US30D2-T 3.00 20 MAX6314US26D3-T*** 2.63 140 ΕV DM_ MAX6314US29D2-T 2.93 20 DN_ MAX6314US25D3-T 2.50 140 EW_ MAX6314US50D4-T 1120 EX__ MAX6314US28D2-T 2.80 20 DO 5.00 EY__ DP MAX6314US49D4-T 4.90 1120 MAX6314US27D2-T 2.70 20 MAX6314US26D2-T††† 20 MAX6314US48D4-T 4.80 1120 EZ__ 2.63 DQ_ MAX6314US25D2-T 2.50 20 DR MAX6314US47D4-T 4.70 1120 FA FB__ MAX6314US50D3-T 5.00 140 DS MAX6314US46D4-T 4.63 1120 MAX6314US49D3-T 4.50 140 DT_ MAX6314US45D4-T 1120 FC__ 4.90 FD__ MAX6314US44D4-T††† MAX6314US48D3-T 4.80 140 DU 4.39 1120 FE___ MAX6314US47D3-T 4.70 140 DV__ MAX6314US43D4-T 4.30 1120 FF__ MAX6314US42D4-T 4.20 1120 MAX6314US46D3-T††† 140 DW_ 4.63 MAX6314US45D3-T 140 MAX6314US41D4-T 4.10 1120 FG_{-} 4.50 DX FH__ MAX6314US44D3-T††† 4.39 140 DY MAX6314US40D4-T 4.00 1120 ____ DZ_ _ FI_ _ MAX6314US43D3-T 4.30 140 MAX6314US39D4-T 3.90 1120 EA__ MAX6314US38D4-T 3.80 1120 FJ__ MAX6314US42D3-T 4.20 140 FK___ EB__ MAX6314US37D4-T 3.70 1120 MAX6314US41D3-T 140 4.10 FL__ EC__ MAX6314US36D4-T 3.60 1120 MAX6314US40D3-T 4.00 140 FM__ MAX6314US39D3-T 3.90 140 EG__ MAX6314US35D4-T 3.50 1120 MAX6314US38D3-T 140 EH__ MAX6314US34D4-T 3.40 1120 FN 3.80 MAX6314US37D3-T 3.70 140 MAX6314US33D4-T 3.30 1120 FO_ FL _____ FP_ _ MAX6314US32D4-T 3.20 1120 MAX6314US36D3-T 3.60 140 EJ_ EK__ FQ__ MAX6314US35D3-T 3.50 140 MAX6314US31D4-T 3.08 1120 FR_ _ MAX6314US34D3-T 3.40 140 MAX6314US30D4-T 3.00 1120 EL_ _ FS__ EM__ MAX6314US29D4-T 2.93 1120 MAX6314US33D3-T 3.30 140 MAX6314US32D3-T MAX6314US28D4-T 2.80 1120 FT_ 3.20 140 EN. FU_ MAX6314US31D3-T††† 3.08 140 EO_ MAX6314US27D4-T 2.70 1120 MAX6314US26D4-T††† FV_ MAX6314US30D3-T 3.00 140 EΡ 2.63 1120 MAX6314US29D3-T††† 2.93 140 ES_ MAX6314US25D4-T 2.50 1120 FW_

Ordering and Marking Information (continued)

[†]The MAX6314 is available in a SOT143 package, -40°C to +85°C temperature range.

tt The first two letters in the package top mark identify the part, while the remaining two letters are the lot tracking code.

***Sample stocks generally held on the bolded products; also, the bolded products have 2,500 piece minimum-order quantities. Non-bolded products have 10,000 piece minimum-order quantities. Contact factory for details.

Note: All devices available in tape-and-reel only. Contact factory for availability.

Chip Information

Printed USA

TRANSISTOR COUNT: 519

8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.