

1µA SOT23 Precision Shunt Voltage Reference

General Description

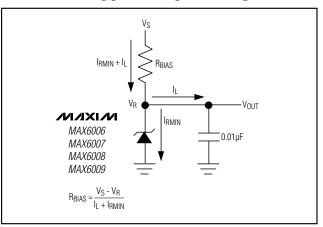
The MAX6006-MAX6009 ultra-low-power shunt references are ideal for space-critical and low-power applications. They are offered in 3-pin SOT23 packages, and the minimum operating current is guaranteed to be <1µA. The devices feature low temperature coefficients of <30ppm/°C and initial accuracy of better than 0.2%.

Available in +1.25V, +2.048V, +2.5V, and 3V output voltages, the MAX6006-MAX6009 have references of +1.25V, +2.048V, +2.5V, and +3.0V, respectively. The devices can be used as lower-power, higher-precision upgrades to the ICL8069, LM385, LT1004, and LM4040 references. The MAX6006-MAX6009 are available in two grades: A and B. The A grade features a temperature coefficient of 30ppm/°C over the extended temperature range of -40°C to +85°C, with an initial accuracy of 0.2%. Grade B features a temperature coefficient of 75ppm/°C with an initial accuracy of 0.5%. MAX6006 in+1.25V and MAX6008 in +2.5V are offered in 8-pin SOIC packages, as plug in upgrades for LT1004 and LM285.

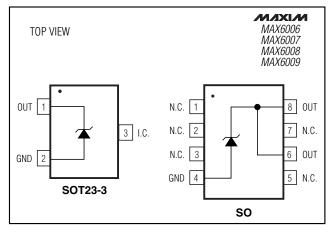
Applications

Battery-Powered Equipment Portable Meters Precision Regulators A/D and D/A Converters

Features


- ♦ Ultra-Low Operating Current: Guaranteed <1µA
- ♦ Small 3-Pin SOT23 Package
- ♦ Initial Voltage Accuracy: 0.2%
- **♦** Temperature Coefficient: 30ppm/°C max
- ♦ Temperature Range: -40°C to +85°C
- ♦ Factory-Trimmed Output Voltages: +1.25V, +2.048V, +2.5V, +3.0V
- ♦ Wide Operating Range: 1µA to 2mA

Selector Guide


PART	OUTPUT VOLTAGE (V)	INITIAL ACCURACY (%)	TEMPERATURE COEFFICIENT (ppm/°C)
MAX6006A	1.25	0.2	30
MAX6006B	1.25	0.5	75
MAX6007A	2.048	0.2	30
MAX6007B	2.048	0.5	75
MAX6008A	2.5	0.2	30
MAX6008B	2.5	0.5	75
MAX6009A	3.0	0.2	30
MAX6009B	3.0	0.5	75

Ordering Information appears at end of data sheet

Typical Operating Circuit

Pin Configuration

MIXIM

Maxim Integrated Products 1

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

1µA SOT23 Precision Shunt Voltage Reference

ABSOLUTE MAXIMUM RATINGS

Operating Current (OUT to GND)	20mA
Forward Current (GND to OUT)	20mA
Continuous Power Dissipation $(T_A = +70^{\circ}C)$	
3-Pin SOT23 (derate 4mW/°C above +70°C)	320mW
8-Pin SO (derate 5.48mW/°C above +70°C)	

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6006

 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Davida a Dua aliala wa Walta sa	V _R	T _A = +25°C,	MAX6006A (0.2%)	1.2475	1.2500	1.2525	- V I
Reverse Breakdown Voltage	VR	$I_R = 1.2 \mu A$	MAX6006B (0.5%)	1.2438	1.2500	1.2563	
Minimum Operating Current	I _{RMIN}	V _R change <0.2% from	m V_R at $I_R = 1.2 \mu A$		0.5	1.0	μΑ
Reverse Breakdown Change		$I_R = 1.2 \mu A \text{ to } 200 \mu A$				1.0	mV
with Current		$I_R = 200\mu A$ to 2mA			2.0]	
Reverse Dynamic Impedance		$I_R = 1.2\mu A$ to 2mA (Note 2)				1.5	Ω
Low-Frequency Noise		$I_R = 1.2\mu A$, $f = 0.1Hz$ to 10Hz			30		μV _{p-p}
Temperature Coefficient	TC	I= 1 0.1A	MAX6006A			30	22m/0C
(Note 3)	10	$I_{R} = 1.2 \mu A$	MAX6006B			75	ppm/°C
Long-Term Drift		1000h at T _A = +25°C			150		ppm
Thermal Hysteresis (Note 4)					200		ppm

1μA SOT23 Precision Shunt Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6007

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Dougras Prockdown Voltage	\/-	$T_A = +25^{\circ}C$	MAX6007A (0.2%)	2.0439	2.048	2.0521	\/
Reverse Breakdown Voltage	VR	$I_R = 1.2 \mu A$	MAX6007B (0.5%)	2.0378	2.048	2.0582	- V
Minimum Operating Current	I _{RMIN}	V _R change <0.2% fr	om V _R at I _R = 1.2μA		0.5	1.0	μΑ
Reverse Breakdown Change		$I_R = 1.2 \mu A$ to 200 μA				1.3	mV
with Current		$I_R = 200\mu A$ to 2mA				2.3	IIIV
Reverse Dynamic Impedance		$I_R = 1.2 \mu A \text{ to 2mA (1)}$	I _R = 1.2μA to 2mA (Note 2)			1.8	Ω
Low-Frequency Noise		$I_R = 1.2\mu A, f = 0.1Hz$	z to 10Hz		50		μV_{p-p}
Temperature Coefficient	TC	In 1 Out	MAX6007A			30	nnm/0C
(Note 3)	10	I _R = 1.2μΑ	MAX6007B			75	ppm/°C
Long-Term Drift		1000h at $T_A = +25^{\circ}C$			150	•	ppm
Thermal Hysteresis (Note 4)					200	•	ppm

ELECTRICAL CHARACTERISTICS—MAX6008

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	V	$T_A = +25 \circ C,$	MAX6008A (0.2%)	2.4950	2.5000	2.5050	V
Theverse breakdown voltage	V _R	$I_{R}^{\Lambda} = 1.2 \mu A$	MAX6008B (0.5%)	2.4875	2.5000	2.5125	·
Minimum Operating Current	I _{RMIN}	V _R change <0.2% from	om V_R at $I_R = 1.2 \mu A$		0.5	1.0	μA
Reverse Breakdown Change with		I _R = 1.2μA to 200μA				1.5	mV
Current		$I_{R} = 200\mu A$ to 2mA				2.5	
Reverse Dynamic Impedance		$I_R = 1.2\mu A$ to 2mA (N	I _R = 1.2μA to 2mA (Note 2)			2	Ω
Low-Frequency Noise		$I_{R} = 1.2\mu A$, $f = 0.1Hz$ to 10Hz			60		$\mu^{V_{p-p}}$
Temperature Coefficient	TC	I _R = 1.2μΑ	MAX6008A			30	ppm/ _° C
(Note 3)	10	R - 1.2p, (MAX6008B			75	ррило
Long-Term Drift		1000h at $T_A = +25^{\circ}C$			150		ppm
Thermal Hysteresis (Note 4)					200	•	ppm

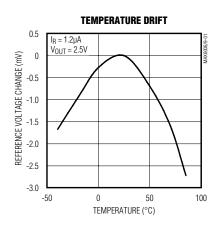
1µA SOT23 Precision Shunt Voltage Reference

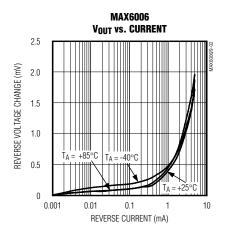
ELECTRICAL CHARACTERISTICS—MAX6009

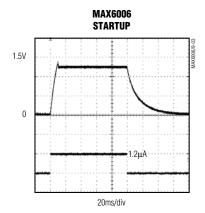
 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Doverse President Veltage	\/-	$T_A = +25^{\circ}C$,	MAX6009A (0.2%)	2.9940	3.000	3.0060	V
Reverse Breakdown Voltage	VR	$I_R = 1.2 \mu A$	MAX6009B (0.5%)	2.9850	3.000	3.0150	- V
Minimum Operating Current	I _{RMIN}	V _R change <0.2% f	rom V _R at I _R = 1.2µA		0.5	1.0	μΑ
Reverse Breakdown Change		$I_R = 1.2 \mu A \text{ to } 200 \mu A$	_i = 1.2μA to 200μA			1.7	mV
with Current		$I_R = 200\mu A$ to 2mA				2.7	1111
Reverse Dynamic Impedance		$I_R = 1.2 \mu A \text{ to } 2 \text{mA} \text{ (}$	I _R = 1.2μA to 2mA (Note 2)			2.2	Ω
Low-Frequency Noise		$I_R = 1.2\mu A$, $f = 0.1Hz$ to $10Hz$			75		μV _{p-p}
Temperature Coefficient	TC	$I_{R} = 1.2 \mu A$ MAX6009A MAX6009B				30	ppm/°C
(Note 3)	10					75	ррпіл
Long-Term Drift		1000h at $T_A = +25^{\circ}C$			150		ppm
Thermal Hysteresis (Note 4)					200	·	ppm

Note 1: All devices are 100% production tested at TA = +25°C and are guaranteed by design for TA = TMIN to TMAX, as specified.

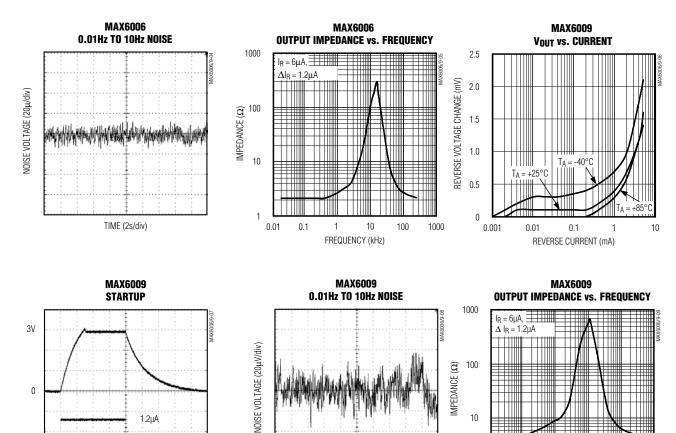

Note 2: This parameter is guaranteed by the "reverse breakdown change with current" test.


Note 3: TC is measured by the "box" method; i.e., $(V_{MAX} - V_{MIN}) / (T_{MAX} - T_{MIN})$.


Note 4: Thermal hysteresis is defined as the change in the +25°C output voltage after cycling the device from T_{MIN} to T_{MAX}.

Typical Operating Characteristics

 $(C_L = 0.01 \mu F, T_A = +25 ^{\circ}C, \text{ unless otherwise noted.})$


1μA SOT23 Precision Shunt **Voltage Reference**

Typical Operating Characteristics (continued)

 $(C_L = 0.01 \mu F, T_A = +25 ^{\circ}C, \text{ unless otherwise noted.})$

1.2µA

20ms/div

TIME (2s/div)

1000

FREQUENCY (kHz)

1µA SOT23 Precision Shunt Voltage Reference

Pin Description

Р	PIN NAME		FUNCTION
SOT23	so		Output Voltage. Bias OUT with a pullup resistor to a potential greater than OUT. Bypass OUT
1	6, 8	OUT	to GND with a 0.01μF or larger capacitor.
2	4	GND	Ground
3	_	IC	Internally connected test point. Leave this pin unconnected, or connect to GND.
_	1, 2, 3, 5, 7	N.C.	No connection. Not internally connected.

Detailed Description

The MAX6006–MAX6009 are precision, two-terminal, series bandgap voltage references. On-chip thin-film resistors are laser trimmed to provide 0.2% output voltage accuracies. Voltages of +1.25V, +2.048V,+2.5V, and +3.0V are available in the space-saving SOT23 package (2.1mm × 2.7mm).

Applications Information

Output/Load Capacitance

For devices in this family, OUT needs to be bypassed to GND with a 0.01µF or larger capacitor. In applications where the load or the supply can experience step changes, additional capacitance will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}\text{C}$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The temperature hysteresis value is typically less than 200ppm.

Turn-On Time

The output capacitance and bias current of the MAX6006–MAX6009 greatly affects turn-on settling time. In the *Typical Operating Characteristics*, turn-on time is shown with a 10nF output capacitor and a 1.2µA bias current. Under these conditions, the MAX6006–MAX6009 settle in 40ms. Settling time will linearly decrease in proportion to the circuit's bias current.

Typical Applications

In the typical shunt regulator application shown in Figure 1, R_{BIAS} is used to set the current through the load (I_L) and the current through the shunt regulator (I_{RMIN}). There are two worst-case situations that R_{BIAS} needs to be sized for:

- RBIAS must be small enough that when Vs (supply voltage) is at its minimum and I_L is at its maximum, IRMIN is equal to at least the minimum operating current of the shunt regulator.
- R_{BIAS} must be large enough that when V_S is at its maximum and I_L is at its minimum, I_{RMIN} is <2mA.

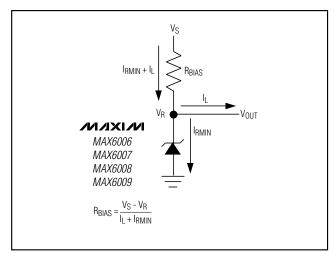


Figure 1. Typical Application Circuit

1μA SOT23 Precision Shunt Voltage Reference

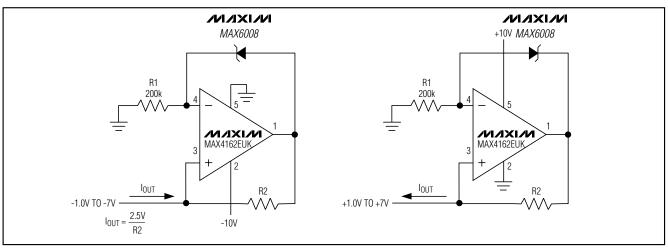
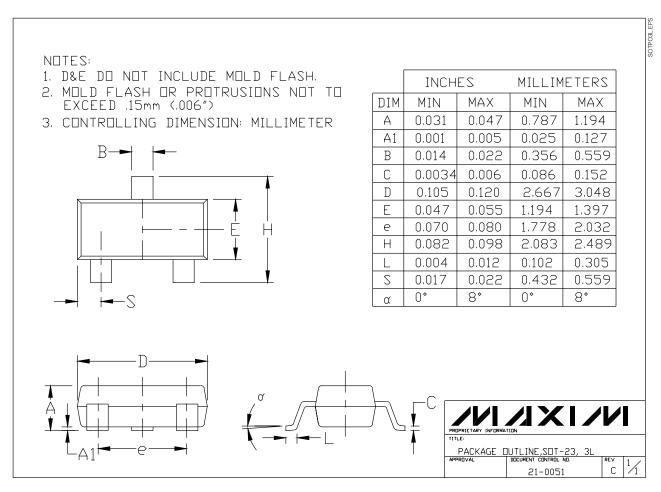


Figure 2. Precision 1µA to 1mA Current Sources

Ordering Information


TEMP. PIN-TOP **PART RANGE PACKAGE MARK** MAX6006AEUR-T -40°C to +85°C 3 SOT23 **FZGH** MAX6006AESA -40°C to +85°C 8 SO MAX6006BEUR-T -40°C to +85°C 3 SOT23 **FZGI** MAX6006BESA -40°C to +85°C 8 SO MAX6007AEUR-T -40°C to +85°C 3 SOT23 **FZGK** MAX6007BEUR-T -40°C to +85°C 3 SOT23 **FZGL** MAX6008AEUR-T -40°C to +85°C 3 SOT23 **FZGN** MAX6008AESA -40°C to +85°C 8 SO MAX6008BEUR-T -40°C to +85°C 3 SOT23 **FZGO** MAX6008BESA -40°C to +85°C 8 SO MAX6009AEUR-T -40°C to +85°C 3 SOT23 **FZGQ** MAX6009BEUR-T -40°C to +85°C 3 SOT23 **FZGR**

Chip Information

TRANSISTOR COUNT: 60 PROCESS: BICMOS

1μA SOT23 Precision Shunt Voltage Reference

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.