General Description The MAX3981 quad equalizer provides compensation for transmission medium losses for four "lanes" of digital NRZ data at a data rate of 3.125Gbps in one package. It is tailor-made for 10Gigabit Ethernet applications that require attenuation of noise and jitter that occur in communicating with chassis-to-chassis interconnect. In support of IEEE-802.3ae for the XAUI interface, the MAX3981 adaptively allows XAUI lanes to reach 10m (33ft) with inexpensive twin-axial cable for extended backplane applications. The equalizer has 100Ω differential CML data inputs and outputs. The MAX3981 is available in a 44-pin exposed-pad QFN package. The MAX3981 consumes only 700mW at 3.3V or 175mW per channel. ### **Applications** IEEE-802.3ae XAUI Interface (3.125Gbps) InfiniBand (2.5Gbps) #### Features - ♦ Four Differential Digital Data "Lanes" at 3.125Gbps - ♦ Span 10m (33ft) of Twin-Axial Cable - **♦** Receiver Equalization Reduces Intersymbol Interference (ISI) - **♦ Low Power, 175mW per Channel** - ♦ Standby Mode—Power-Down State - ♦ Single 3.3V Supply - ♦ Signal Detect ### **Ordering Information** | PART | TEMP. RANGE | PIN-PACKAGE | |------------|--------------|-------------| | MAX3981UGH | 0°C to +85°C | 44 QFN-EP* | ^{*}Exposed pad Pin Configuration appears at end of data sheet. ### Typical Operating Circuit MIXIM Maxim Integrated Products 1 #### **ABSOLUTE MAXIMUM RATINGS** | Supply Voltage, VCC | | Continuous Power Dissipation (T _A = +85°C) | |----------------------|-----------------------------------|---| | Voltage at SDE1 | +0.5V to (V _{CC} + 0.5V) | 44-Pin QFN-EP (derate 26.3mW/°C above +85°C)2105mW | | Voltage at IN_± | +0.5V to (V _{CC} + 0.5V) | Operating Ambient Temperature Range0°C to +85°C | | Current Out of OUT_± | 25mA to +25mA | Storage Temperature Range55°C to +150°C | | | | Lead Temperature (soldering, 10s)+300°C | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, \text{ input data rate} = 3.125 \text{Gbps}, T_A = 0^{\circ}\text{C to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3 \text{V and } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ | PARAMETER SY | | CONDITIONS | MIN | TYP | MAX | UNITS | | |------------------------|---------------------------------|--|-----|-----------------------|------|---------|--| | Curanha Davier | | EN = TTL low | | | 0.25 | W | | | Supply Power | | EN = TTL high | | 0.7 | 0.9 |] vv | | | | | 10Hz < f < 100Hz | | 100 | | | | | Supply Noise Tolerance | | 100Hz < f < 1MHz | | 40 | | mVp-p | | | | | 1MHz < f < 2.5GHz | | 10 | | | | | Signal Detect Assert | | Input signal level to assert SDET (Note 1) | 100 | | | mVp-p | | | Signal Detect Deassert | | Input signal level to deassert SDET (Note 1) | | | 30 | mVp-p | | | Signal Detect Delay | | Delay time in detecting a change in presence of a signal (Note 4) | | | 10 | μs | | | Latency | | From input to output | | 0.32 | | ns | | | CML RECEIVER INPUT | | | | | | | | | Input Voltage Swing | | XAUI transmitter output measured
differentially at point A, Figure 1, using
K28.5 pattern (Note 4) | 200 | | 800 | mVp-p | | | Return Loss | | 100MHz to 2.5GHz | | 12 | | dB | | | Input Resistance | | Differential | 80 | 100 | 120 | Ω | | | EQUALIZATION | | | | | | | | | Residual Jitter | | Total jitter (Notes 2, 4) | | | 0.3 | - Ulp-p | | | nesiduai Jillei | | Deterministic jitter (Note 4) | | | 0.2 | Oip-p | | | Random Jitter | | (Note 2) | | 1.5 | | psrms | | | CML TRANSMITTER OUTPUT | (into $100\Omega \pm 10$ | 2) | | | | | | | Output Voltage Swing | | Differential swing | 550 | | 850 | mVp-p | | | Common-Mode Voltage | | | | V _{CC} - 0.3 | | V | | | Transition Time | t _f , t _r | 20% to 80% (Notes 3, 4) | | 60 | 130 | ps | | | Differential Skew | | Difference in 50% crossing between OUT_+ and OUT (Note 4) | | | 12 | ps | | | Output Resistance | | Single ended | 40 | 50 | 60 | Ω | | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, \text{ input data rate} = 3.125 \text{Gbps}, T_A = 0^{\circ}\text{C to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3 \text{V and } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---------------------|--------|----------------------|-----|-----|-----|-------| | TTL CONTROL PINS | | | | | | | | Input High Voltage | | | 2.0 | | | V | | Input Low Voltage | | | | | 0.8 | V | | Input High Current | | | | | 250 | μΑ | | Input Low Current | | | | | 500 | μΑ | | Output High Voltage | | Internal 10kΩ pullup | 2.4 | | | V | | Output Low Voltage | | Internal 10kΩ pullup | | • | 0.4 | V | - Note 1: K28.7 pattern is applied differentially at point A as shown in Figure 1. - Note 2: Total jitter does not include the signal source jitter. Total jitter (TJ) = (14.1 x RJ + DJ) where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5± pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for the random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss and not from clock source modulation. Jitter is measured at 0V at point C of Figure 1. - **Note 3:** Using K28.7 (0011111000) pattern. - Note 4: AC specifications are guaranteed by design and characterization. Figure 1. Test Conditions Referenced in the Electrical Characteristics Table ### Typical Operating Characteristics $(V_{CC} = +3.3V, 3.125Gbps, 500mVp-p cable input with 2^7 - 1 PRBS, T_A = +25°C, unless otherwise noted.$ Note: Twin-axial cable used was Tensolite, Z-Skew, 100Ω, 28AWG. Shielded twisted pair used was Madison 100Ω, 30AWG, spec #14887.) # EQUALIZER INPUT EYE DIAGRAM AFTER 10m (33ft) OF TWIN-AXIAL CABLE # EQUALIZER OUTPUT EYE DIAGRAM AFTER 10m (33ft) OF TWIN-AXIAL CABLE EQUALIZER OPERATING CURRENT vs. TEMPERATURE EQUALIZER INPUT EYE DIAGRAM AFTER 5m (16ft) OF SHIELDED TWISTED PAIR EQUALIZER OUTPUT EYE DIAGRAM AFTER 5m (16ft) OF SHIELDED TWISTED PAIR INPUT RETURN GAIN (S11, DIFFERENTIAL, INPUT SIGNAL = -60dBm, DEVICE POWERED OFF) EQUALIZER DETERMINISTIC JITTER vs. CABLE LENGTH (K28.5 PATTERN, 3.125Gbps) EQUALIZER DETERMINISTIC JITTER vs. CABLE LENGTH (K28.5 PATTERN, 2.5Gbps) EQUALIZER LATENCY vs. TEMPERATURE # Pin Description | PIN | NAME | FUNCTION | |---------------------------------|------------------|---| | 1, 5, 9, 13, | | | | 23, 27, 31, 35 | V _C C | +3.3V Supply Voltage | | 4, 8, 12, 16,
26, 30, 34, 38 | GND | Supply Ground | | 2 | IN1+ | Positive Equalizer Input Channel 1, CML | | 3 | IN1- | Negative Equalizer Input Channel 1, CML | | 6 | IN2+ | Positive Equalizer Input Channel 2, CML | | 7 | IN2- | Negative Equalizer Input Channel 2, CML | | 10 | IN3+ | Positive Equalizer Input Channel 3, CML | | 11 | IN3- | Negative Equalizer Input Channel 3, CML | | 14 | IN4+ | Positive Equalizer Input Channel 4, CML | | 15 | IN4- | Negative Equalizer Input Channel 4, CML | | 17–22, 39–42 | N.C. | No Connection. Leave unconnected. | | 24 | OUT4- | Negative Equalizer Output Channel 4, CML | | 25 | OUT4+ | Positive Equalizer Output Channel 4, CML | | 28 | OUT3- | Negative Equalizer Output Channel 3, CML | | 29 | OUT3+ | Positive Equalizer Output Channel 3, CML | | 32 | OUT2- | Negative Equalizer Output Channel 2, CML | | 33 | OUT2+ | Positive Equalizer Output Channel 2, CML | | 36 | OUT1- | Negative Equalizer Output Channel 1, CML | | 37 | OUT1+ | Positive Equalizer Output Channel 1, CML | | 43 | EN | Enable Equalizer Input. A TTL high selects normal operation. A TTL low selects low-power standby mode. | | 44 | SDET | Signal Detect Output for Channel 1. Produces a TTL high output when a signal is detected. | | EP | Exposed
Pad | Ground. The exposed pad must be soldered to the circuit board ground plane for proper thermal and electrical performance. | ### **Detailed Description** #### **Receiver and Transmitter** The adaptive equalizer accepts four lanes of 3.125Gbps CML digital data signals and compensates each received signal for dielectric and skin losses. A limiting amp shapes the output of the equalizer and the output driver transmits the regenerated XAUI lanes as CML signals. The source impedance and termination impedance are 100Ω differential. #### **General Theory of Operation** Internally, the MAX3981 is comprised of signal-detect circuitry, four matched equalizers, and one equalizer control loop. The four equalizers are made up of a master equalizer and three slave equalizers. The adaptive control is generated from only channel 1. It is assumed that all channels have the same characterization in frequency content, coding, and transmission length. The master equalizer consists of the following functions: signal detect, adaptive equalizer, equalizer control, limiting and output drivers. The signal detect indicates input signal power. When the input signal level is sufficiently high, the SDET output is asserted. This does not directly control the operation of the part. The equalizer core reduces intersymbol interference (ISI), compensating for frequency-dependent, media-induced loss. The equalization control detects the spectral contents of the input signal and provides a control voltage to the equalizer core, adapting it to dif- ferent media. The equalizer operation is optimized for short-run DC-balanced transmission codes such as 8b/10b codes. #### **CML Input and Output Buffers** The input and output buffers are implemented using current-mode logic (CML). Equivalent circuits are shown in Figures 2 and 3. For details on interfacing with CML, see Maxim application note HFAN-1.0, *Interfacing Between CML*, *PECL*, and *LVDS*. The common-mode voltages of the input and output are above 2.5V. ACcoupling capacitors are required when interfacing this part. Values of 0.10µF or greater are recommended. #### **Media Equalization** Equalization at the input port compensates for the high-frequency loss encountered with twin-axial cable or shielded twisted pair. This part is optimized for 10ft (3m) and 3.125Gbps; however, the part will reduce ISI for signals spanning longer distances and functions for data rates from 2Gbps to 4Gbps providing that short-length balanced codes, such as 8b/10b, are used. ### **Applications Information** #### Standby Mode The standby state allows reduced-power operation. The TTL input, EN, must be set to TTL high for normal operation. A TTL low at EN forces the equalizer into the standby state. The signal EN does not affect the opera- ### Functional Diagram Figure 2. CML Input Buffer tion of the signal detect (SDET) function. For constant operation, connect the EN signal directly to $V_{\rm CC}$. #### **Signal Detect with Standby Mode** Signal activity is detected on channel 1 only (IN1±). When the peak-to-peak differential voltage at IN1± is less than 30mVp-p, the TTL output SDET goes low. When the peak-to-peak differential voltage becomes greater than 100mVp-p, SDET is asserted high. SDET can be used to automatically force the equalizer into standby mode by connecting SDET directly to the EN input. When not used, SDET should not be connected. The signal-detect function continues to operate while the part is in standby mode. While connected to the EN pin, the signal detect can "wake up" the part and resume normal operation. #### **Layout Considerations** Circuit board layout and design can significantly affect the MAX3981 performance. Use good high-frequency design techniques, including minimizing ground inductances and vias and using controlled-impedance transmission lines for the high-frequency data signals. Signals should be routed differentially to reduce EMI susceptibility and crosstalk. Power-supply decoupling capacitors should be placed as close as possible to the VCC pins. Figure 3. CML Output Buffer ### Pin Configuration *Note: Exposed pad must be soldered to supply ground. ### **Package Information** ### Package Information (continued) #### **NOTES:** - 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM) - 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994. 3. N IS THE NUMBER OF TERMINALS. Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION & Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION. A.DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. THE PIN #1 IDENTIFIER MUST EXIST ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED. OF PACKAGE BODY. 6 EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL. - 7. ALL DIMENSIONS ARE IN MILLIMETERS. - 8. PACKAGE WARPAGE MAX 0.08mm. 9 APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING. - 10. MEETS JEDEC MO220. - 11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES. | S
Y | | \Box | | | |--------|------|-------------------|------|-----| | Paso- | DI | <u>MENSION</u> | | No_ | | _ ૧ | MIN. | NOM. | MAX. | Ϋ́E | | Α | 0.80 | 0.90 | 1.00 | | | A1 | 0.00 | 0.01 | 0.05 | | | A2 | 0.00 | 0.65
0.20 REF. | 1.00 | | | Α3 | | | | | | D | | | | | | D1 | | | | | | Ε | | 7.00 BSC | | | | E1 | | 6.75 BSC | | | | Θ | 0. | | 12° | | | Р | 0 | | 0.60 | | | D2 | 2.25 | - | 5.25 | | | E2 | 2.25 | _ | 5.25 | | | SAM O. | PITCH | VARIAT | TON C | No _{TE} | OWE 4 | PITCH | VARIAT | ION C | Ho _T | .osE< | PITCH | VARIAT | ION D | No _{TR} | |--------|----------|----------|-----------|------------------|-------|---------|----------|-----------|-----------------|-------|----------|----------|-----------|------------------| | e | IVIII V. | 0.65 BSC | 1417 171. | 一 | e | 141114. | 0.50 BSC | 1417 1733 | 一 | e | IVIII V. | 0.50 BSC | 1417 171. | П | | N | | 32 | | 3 | N | | 44 | | 3 | N | | 48 | | 3 | | Nd | | 8 | | 3 | Nd | | 11 | | 3 | Nd | | 12 | | 3 | | Ne | | 8 | | 3 | Ne | | 11 | | 3 | Ne | | 12 | | 3 | | П | 0.35 | 0.55 | 0.75 | | IΓ | 0.35 | 0.55 | 0.75 | | L | 0.30 | 0.40 | 0.50 | | | Ь | 0.23 | 0.28 | 0.35 | 4 | Ь | 0.18 | 0.23 | 0.30 | 4 | Ь | 0.18 | 0.23 | 0.30 | 4 | Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.