Triacs # **Silicon Bidirectional Thyristors** ... designed primarily for full-wave ac control applications, such as solid-state relays, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering. - Blocking Voltage to 800 Volts - All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability - Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability - Gate Triggering Guaranteed in Three Modes (MAC320FP Series) or Four Modes (MAC320AFP Series) # MAC320FP Series MAC320AFP Series ISOLATED TRIACS THYRISTORS 20 AMPERES RMS 200 thru 800 VOLTS #### **MAXIMUM RATINGS** (T_C = 25°C unless otherwise noted.) | Rating | Symbol | Value | Unit | | |--|----------------------|--------------------------|-------|--| | Peak Repetitive Off-State Voltage ⁽¹⁾ (T _J = -40 to +125°C, 1/2 Sine Wave 50 to 60 Hz, Gate Open) | VDRM | | Volts | | | MAC320-4FP, MAC320A4FP
MAC320-6FP, MAC320A6FP
MAC320-8FP, MAC320A8FP
MAC320-10FP, MAC320A10FP | | 200
400
600
800 | | | | Peak Gate Voltage | V _{GM} | 10 | Volts | | | On-State RMS Current (T _C = +75°C, Full Cycle Sine Wave 50 to 60 Hz) ⁽²⁾ | I _T (RMS) | 20 | Amps | | | Peak Nonrepetitive Surge Current (One Full Cycle, 60 Hz, T _C = +75°C, preceded and followed by rated current) | ITSM | 150 | Amps | | | Peak Gate Power (T _C = +75°C, Pulse Width = 2 μs) | P _{GM} | 20 | Watts | | | Average Gate Power (T _C = +75°C, t = 8.3 ms) | P _{G(AV)} | 0.5 | Watt | | | Peak Gate Current | I _{GM} | 2 | Amps | | | RMS Isolation Voltage (T _A = 25°C, Relative Humidity ≤ 20%) | V(ISO) | 1500 | Volts | | | Operating Junction Temperature | TJ | -40 to +125 | °C | | | Storage Temperature Range | T _{stg} | -40 to +150 | °C | | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|-----------|------| | Thermal Resistance, Junction to Case | $R_{ heta JC}$ | 1.8 | °C/W | | Thermal Resistance, Case to Sink | $R_{\theta CS}$ | 2.2 (typ) | °C/W | | Thermal Resistance, Junction to Ambient | $R_{ heta JA}$ | 60 | °C/W | - 1. V_{DRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. - 2. The case temperature reference point for all T_C measurements is a point on the center lead of the package as close as possible to the plastic body. **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------|--------------------|--------------------------|----------------------|----------| | Peak Blocking Current $(V_D = Rated V_{DRM}, Gate Open)$ $T_J = 25^{\circ}C$ $T_J = +125^{\circ}C$ | IDRM | _
_ | _
_ | 10
2 | μA
mA | | Peak On-State Voltage (Either Direction) (I _{TM} = 28 A Peak; Pulse Width = 1 to 2 ms, Duty Cycle ≤ 2%) | V _{TM} | | 1.4 | 1.7 | Volts | | Peak Gate Trigger Current (Main Terminal Voltage = 12 Vdc, R_L = 100 Ohms Minimum Gate Pulse Width = 2 μ s) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(-) | ^I GT |
 -
 -
 - | | 50
50
50
75 | mA | | Peak Gate Trigger Voltage (Main Terminal Voltage = 12 Vdc, R_L = 100 Ohms Minimum Gate Pulse Width = 2 μ s) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(-) MT2(-), G(+) "A" SUFFIX ONLY (Main Terminal Voltage = Rated V _{DRM} , R_L = 10 , T_J = +110°C) MT2(+), G(+); MT2(+), G(-) MT2(-), G(-); MT2(-), G(-); MT2(-), G(+) "A" SUFFIX ONLY | VGT | | 0.9
0.9
1.1
1.4 | 2
2
2
2.5 | Volts | | Holding Current (Either Direction) (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = 200 mA) | Ιн | _ | 6 | 40 | mA | | Turn-On Time (V_D = Rated V_{DRM} , I_{TM} = 28 A, I_{GT} = 120 mA, Rise Time = 0.1 μ s, Pulse Width = 2 μ s) | ^t gt | _ | 1.5 | 10 | μs | | Critical Rate of Rise of Commutation Voltage (V_D = Rated V_{DRM} , I_{TM} = 28 A, Commutating di/dt = 10 A/ms, Gate Unenergized, T_C = +75°C) | dv/dt(c) | _ | 5 | _ | V/µs | # **TYPICAL CHARACTERISTICS** Figure 1. RMS Current Derating Figure 2. On-State Power Dissipation Figure 3. Typical Gate Trigger Voltage Figure 4. Typical Gate Trigger Current Figure 5. Maximum On-State Characteristics **Figure 6. Typical Holding Current** Figure 7. Maximum Nonrepetitive Surge Current Figure 8. Thermal Response ## **PACKAGE DIMENSIONS** Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. #### **Literature Distribution Centers:** USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.