

SPEC No. | C C O 6 Z O O 9 B I S S U E: | Mar. 20 1995

T	0	;		

PRELIMINARY

SPECIFICATIONS

Product Type 1/3-type Color CCD Area Sensor with 410k Pixels for NTSC

LZ2353B

Mode1	

*This specifications contains 18 pages including the cover and appendix.

If you have any objections, please contact us before issuing purchasing order.

CUSTOMERS ACCEPTANCE

DATE:

BY:

PRESENTED

BY: L. Misawa

Dept. General Manager

REVIEWED BY:

PREPARED BY:

J. Makajima

Development Dept. 3
IC Development Center
Integrated Circuits Gro
SHARP CORPORATION

CONTENTS

1.	GENERAL DESCRIPTION	2
2.	ARRANGEMENT OF PIXELS AND COLOR FILTERS	3
3.	PIN IDENTIFICATION ·····	4
4.	ABSOLUTE MAXIMUM RATINGS	4
5.	RECOMMENDED OPERATING CONDITIONS	5
6.	CHARACTERISTICS ·····	6
7.	TIMING DIAGRAM EXAMPLE ·····	7
8.	STANDARD OPERATING CIRCUIT EXAMPLE	10
9.	SPECIFICATION FOR BLEMISH ·····	11
LO.	CAUTIONS FOR USE ·····	13
11	PACKAGE OUTLINE AND PACKING SPECIFICATION	15

[Note]

The contents of this specification may be changed due to an improvement in characteristics or any other reason. The circuit diagram and others included in this specification are intended for use to explain typical application examples. Therefore, we take no responsibility for any problem as may occur due to the use of the included circuit and for any problem with industrial proprietary rights or other rights. This doument contains confidential information such as copyright and know-how belonging to Sharp Corporation. The information herein shall therefore be used exclusively for the design of systems utilizing this product and may not be used for any other purpose.

This document shall not be reprinted or disclosed to any third party without the prior written consent of Sharp Corporation.

This product is designed to be used in electrical products such as office equipment, audio-visual equipment and other consumer products. You are requested to contact Sharp Corporation if you intend to use this product for specific applications such as automobiles, trains or aircraft which have critical control or safety requirements, antidisaster, anticrime systems or any other applications which require extremely high reliability. This product shall not be used in any medical equipment which affects human life.

1. GENERAL DESCRIPTION

LZ2353B is a 1/3-type(6mm) solid-state image sensor consists of PN phote-diodes and CCDs(charge-coupled devices). Having approximately 410,000 pixels(horizontal 811 x vertical 507), the sensor provides a high resolution stable color image.

Features

1) Number of image pixels : Horizontal 768 x vertical 494

Pixel pitch : Horizontal 6.4 μm × vertical 7.5 μm

Number of optical black pixels : Horizontal; front 3 and rear 40

Vertical : front 11 and rear 2

2) Complementary color filter composed of Mg, G, Cy, and Ye

3) Low fixed pattern noise and lag

4) No burn-in and no image distortion

5) Blooming suppression structure

6) Built-in output amplifier

7) 16-pin half-pitch DIP (Row space: 11.43 mm)

8) Variable electronic shutter(1/60 to 1/10000 s)

9) N-type silicon substrate, N-NOS process

10) Not designed or rated as radiation hardened

11) Compatible with NTSC standard

Applications

- 1) Cameras (Cam corders, industrial monitor cameras, etc.)
- 2) Pattern recognition

Others

Combined with the timing IC(LZ95D42/M or LZ95D43/M), SSG IC(LZ93N33 or LZ95D52), V driver IC(LR36683N), and sample/hold IC(IR3P66), this product operates under the performance satisfying these specifications.

2. ARRANGEMENT OF PIXELS AND COLOR FILTERS Optical black 1pin (2 pixels) $768(H) \times 494(V)$ Optical black Optical black (40 pixels) (3 pixels) Optical black (11 pixels) (768, 494) (1,494)Yе Су Су Ye Ye Су Yе Су Ye G Ng G Ng G G G Ng Ng Ye Yе Су Yе Су Yе Су Су Cv G Ng Ng G Ng G G G Mg Ng Yе Су Yе Су Ϋ́е Су Ye Су Ϋ́е Су G G Mg G Ng G Ng G Ng Mg Су Yе Yе Су Yе Су Ye Су Ye Су G G Ng G Ng G Ng G Ng Ng Ye Yе Су Yе Ye Су Су Yе Су G Ng G Ng Ng G G G Ng

ODD field

Yе Су Ye Сy EVEN field Ng G Ng G

Yе

G

(1, 1)

Су

Ng

Ye

G

Су

Ng

Су

Ng

G

(768, 1)

3. PIN IDENTIFICATION

φ H 2	φH1	φLH 1	φRS	PW	OFD	GND	O D
1 6	15	14	1 3	12	11	10	9
						1	
			1700	3 5 0 70			
	,		L Z 2 3	3 3 3 8			
						J	
∇							
1	2	3	4	5	6	7	8
φ V 4	φ V 3	φ V 2	φ V 1	GND	NC1	NC2	0 S
	(TOP VIEW)						

Symbol Symbol	Pin name
OD	Output transistor drain
O S	Video output
φRS	Reset transistor clock
φ V 1, φ V 2, φ V 3, φ V 4	Vertical shift register clock
φH1, φH2 Horizontal shift register clock	
φLH 1	Horizontal shift register final stage clock
OFD	Overflow drain
PW	P well
GND	Ground
NC1, NC2	Non connection

4. ABSOLUTE MAXIMUM RATINGS

(Ta = 25%)

		(1 a - 2 y	0)
Parameter	Symbol Symbol	Ratings	Unit
Output transistor drain voltage	VOD	0~+18	V
Reset gate clock voltage	V ø R S	-0.3~+18	V
Vertical shift register clock voltage	V \(\phi \) V.	VP₩ ~+18	V
Horizontal shift register clock voltage	V φ H	-0.3~+18	V
Horizontal shift register final stage clock voltage	V φ LH	$-0.3 \sim +18$	V
Overflow drain voltage	VOFD	0~+55	V
Voltage difference between Pwell and clock (* Note)	VP₩-V φ	-28~ 0	V
Storage temperature	Tstg	-20~+80	$^{\circ}$
Operating ambient temperature	Topr	$-20 \sim +70$	$^{\circ}$

* Note: The OFD clock ϕ_{OFD} is excluded.

5. RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol Symbol	Minimum	Typical	Maximum	Unit
Operating	ambient temperature	T opr		25. 0		$^{\circ}$ C
Output tr	ansistor drain voltage	VOD	14. 5	15. 0	16.0	V
0verflow	When DC is applied (note1)	VOFD	5. 0		19. 0	V
drain	When pulse is applied	V Ø ofd	21. 5			V
voltage	p-p level (note2)					
Ground		GND		0.0		V
P well vo	1 tage	VPW	-10.0		VøVL	V
Vertical	shift register clock	V φ V1L, V φ V3L				
	LOW level	V φ V2L, V φ V4L	-9. 5	-9. 0	-7.5	V
Vertical	shift register clock	V φ V1Ι, V φ V3Ι		• •		
	INTERMEDIATE level	V φ V2I, V φ V4I		0.0		V
Vertical	shift register clock	V φ V1H, V φ V3H				
	HIGH level		14. 5	15.0	17.0	V
Horizonta	l shift register clock	V φ H1L, V φ H2L				
	LOW level		-0. 05	. 0.0	0. 05	V
Horizonta	l shift register clock	V φ H1H, V φ H2H				
	HIGH level		4.7	5. 0	6.0	V
Horizonta	l shift register final	V φ LH1L				
stage clo			-0. 05	0.0	0. 05	V
Horizonta	l shift register final	V φ LH1H				
stage clo	ck HIGH level		4.7	5. 0	6. 0	V
Reset gate	e clock	V φ RSL				
	LOW level		0.0		VOD-14. 0	V
Reset gate	e clock	V φ RSH				
	HIGH level		VOD-9. 5		10.0	V
Vertical	shift register clock	f φ V1, f φ V2				
	frequency	f φ V3, f φ V4		15. 73		k Hz
Horizonta	l shift register clock	f φ H1, f φ H2				
	frequency	fφLH1		14. 32		МНz
Reset gate	e clock	f φ RS				
,	frequency			14. 32		MHz

^{*} Connect NC1 and NC2 to GND directly or through a capacitor lager than 0.047 µF.

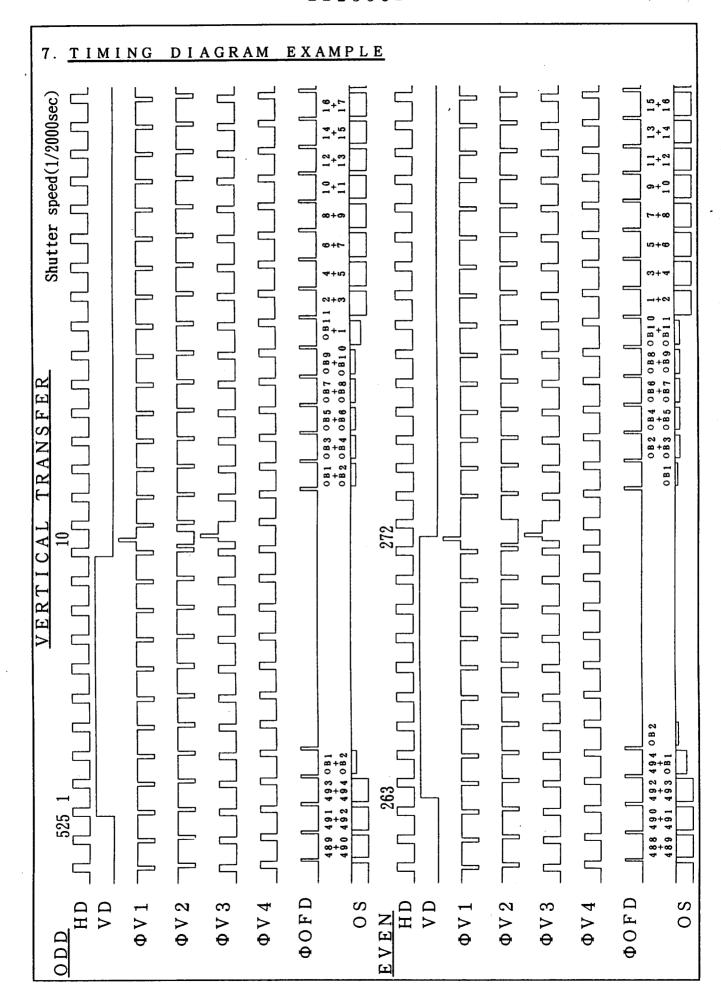
⁽note1) When DC voltage is applied, shutter speed is 1/60 second.

⁽note2) When pulse is applied, shutter speed is less than 1/60 second.

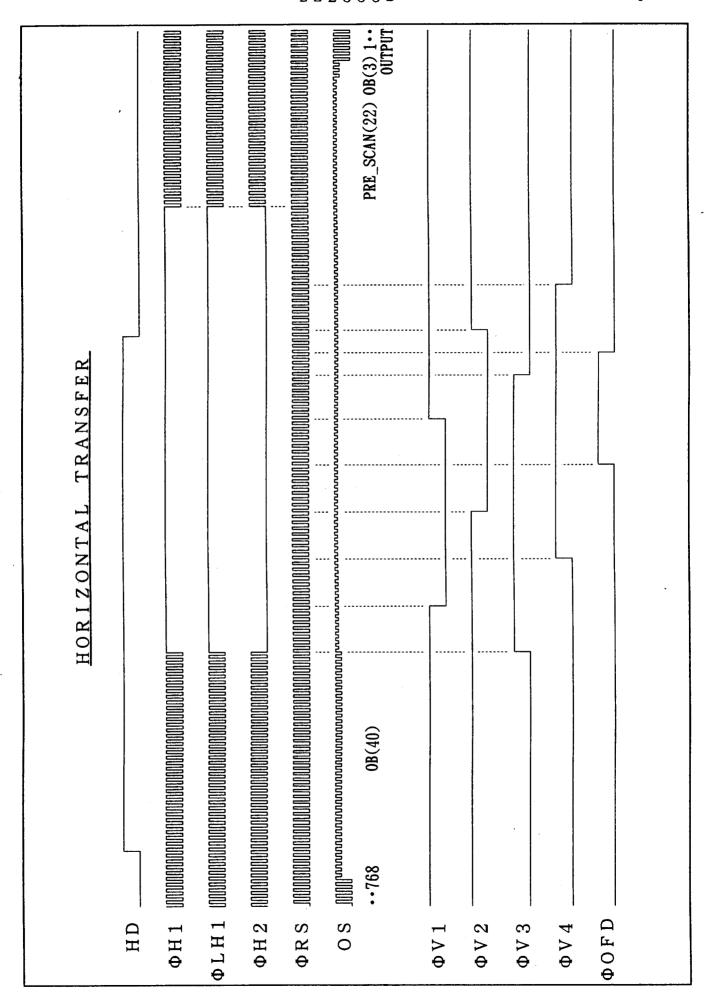
6. CHARACTERISTICS (Drive method: Field accumulation)

Ambient temperature: +25°C, but +60°C for parameter No. 4 and 5, 13.

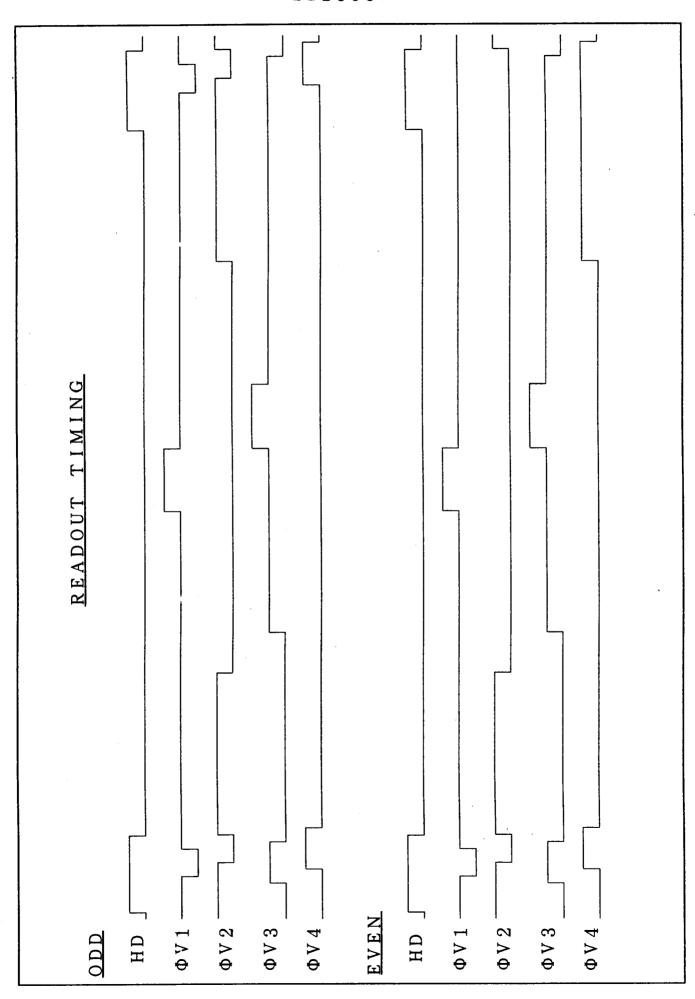
Operating conditions: the typical values specified in recommended conditions.

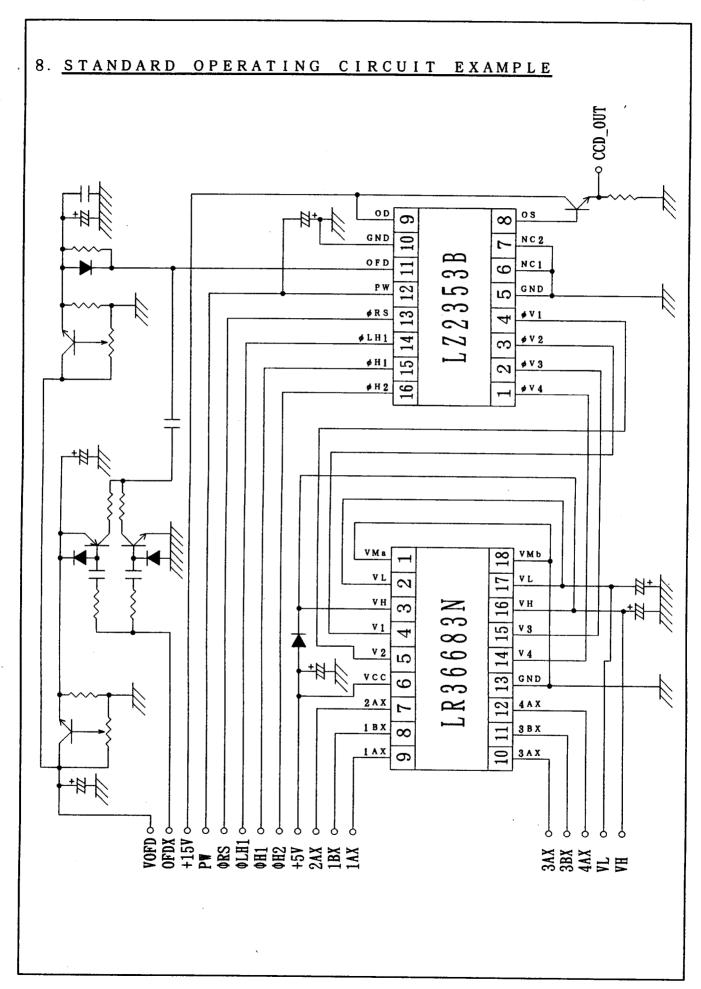

Color Temperature of light source: 3200K / IR cut-off filter(CM-500.1mmt) is used.

					U, IMMU/ I	
Parameter	Symbol	Note	Minimum	Typical	Maximum	Unit
Standard output voltage	Vo	(a)		150		mV_
Photo response non-uniformity	PRNU	(b)			10	%
Saturation output voltage	Vsat	(c)	700			mV
Dark output voltage	Vdark	(d)		0. 5		mV
Dark signal non-uniformity	DSNU	(e)		0. 5	2. 0	mV
Sensitivity	R	(f)	260	350		mV
Smear ratio	SMR	(g)		-84	-76	dB
Image lag	ΑI	(h)			1.0	*
Blooming suppression ratio	ABL	(i)	1000			
Current dissipation	IOD			4. 0	8. 0	mA
Output impedance	Ro			350		Ω
Dark noise	Vnoise	(j)		0. 2	0.3	mV
OB difference in level		(k)			1.0	mV
Vector breakup		(1)			5. 0	°, %
Line crawling		(m)			1.5	%
Lumminance flicker		(n)			2. 0	%
	Standard output voltage Photo response non-uniformity Saturation output voltage Dark output voltage Dark signal non-uniformity Sensitivity Smear ratio Image lag Blooming suppression ratio Current dissipation Output impedance Dark noise OB difference in level Vector breakup Line crawling	Standard output voltage Photo response non-uniformity Saturation output voltage Dark output voltage Vdark Dark signal non-uniformity Sensitivity R Smear ratio Image lag Blooming suppression ratio Current dissipation Output impedance Dark noise OB difference in level Vector breakup Line crawling	Standard output voltage Photo response non-uniformity PRNU (b) Saturation output voltage Vsat (c) Dark output voltage Vdark (d) Dark signal non-uniformity Sensitivity R (f) Smear ratio SMR (g) Image lag AI (h) Blooming suppression ratio Current dissipation Output impedance Dark noise OB difference in level Vector breakup Line crawling (m) Vsat (c) Vark (d) DSNU (e) SRN (g) AI (h) ABL (i) Current dissipation IOD Output impedance (k) Vnoise (j) OB difference in level (m)	Standard output voltage Photo response non-uniformity PRNU (b) Saturation output voltage Dark output voltage Vdark (d) Dark signal non-uniformity DSNU (e) Sensitivity R (f) 260 Smear ratio Smear ratio Image lag AI (h) Blooming suppression ratio Current dissipation Output impedance Dark noise Dark noise Vnoise (j) OB difference in level Vector breakup Line crawling Vsat (c) 700 Corvent (d) Vark (d) DSNU (e) SMR (g) Induction (g) Vark (i) 1000 Volume (i) 1000 Volume (k) Volume (ii) (k) Volume (iii) (m)	Standard output voltage Vo (a) 150 Photo response non-uniformity PRNU (b) Saturation output voltage Vsat (c) 700 Dark output voltage Vdark (d) 0.5 Dark signal non-uniformity DSNU (e) 0.5 Sensitivity R (f) 260 350 Smear ratio SMR (g) -84 Image lag AI (h) 0 Blooming suppression ratio ABL (i) 1000 Current dissipation IOD 4.0 Output impedance Ro 350 Dark noise Vnoise (j) 0.2 OB difference in level (k) Vector breakup (1) Line crawling	Standard output voltage Vo (a) 150 Photo response non-uniformity PRNU (b) 10 Saturation output voltage Vsat (c) 700 Dark output voltage Vdark (d) 0.5 3.0 Dark signal non-uniformity DSNU (e) 0.5 2.0 Sensitivity R (f) 260 350 Smear ratio SMR (g) -84 -76 Image lag AI (h) 1.0 Blooming suppression ratio ABL (i) 1000 Current dissipation IOD 4.0 8.0 Output impedance Ro 350 Dark noise Vnoise (j) 0.2 0.3 OB difference in level (k) 1.0 Vector breakup (1) 5.0 Line crawling (m) 1.5


[Note]

- (a) The average output voltage under the uniform illumination. The standard exposure condition is defined when Vo is $150\,\mathrm{mV}$.
- (b) The image area is divided into 10×10 segments under the standard exposure condition. The voltage of a segment is the average output voltage of all pixels within the segment. PRNU is defined by (Vmax Vmin) / Vo, where Vmax and Vmin are the maximum and minimum values of each segment's voltage respectively.
- (c) The image area is divided into 10×10 segments. The segment's voltage is the average output voltages of all pixels within the segment. Vsat is the minimum segment's voltage under 10 times exposure of the standard exposure condition.
- (d) The average output voltage under the non-exposure condition.
- (e) The image area is divided into 10 x 10 segments under the non-exposure condition. DSNU is defined by (Vdmax Vdmin), where Vdmax and Vdmin are the maximum and minimum values of each segment's voltage respectively.
- (f) The average output voltage when a 1000 lux light source with a 90% reflector is imaged by a lens of F4, f50 mm.
- (g) The sensor is exposed only in the central area of V/10 square with a lens at F4, where V is the vertical image size. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum of the output voltage in the V/10 square.
- (h) The sensor is exposed at the exposure level corresponding to the standard condition.


 AI is defined by the ratio between the output voltage measured at the 1st field during the non-exposure period and the standard output voltage.
- (i) The sensor is exposed only in the central area of V/10 square, where V is the vertical image size. ABL is the ratio between the exposure at the standard condition and the exposure at a point where a blooming is observed.
- (j) The RMS value of the dark noise (after CDS). (100k ~ 4.2MHz, SC Trap on.)
- (k) The difference of the average output voltage between the effective area and the OB area under the non-exposure condition.
- (1) Observe with a vector scope when the color bar chart is imaged under the standard exposure condition.
- (m) The difference of the average output voltage between the (Mg+Cy), (G+Ye) line and the (Mg+Cy), (G+Ye) line under the standard exposure condition.
- (n) The difference of the average output voltage between odd field and even field under the standard exposure condition.



9. SPECIFICATION FOR BLEMISH

1) Definition of blemish

	Leve1	Permitted number	
	of blemish (mV)	of blemish	Comment
	26 ≦ B	0	
White blemish	$18 \leq B < 26$	M	• See fig. 9-1(a), fig. 9-2.
(Exposed)	B < 18	no count	• Vout = Vstd
-	26 ≤ B	0	$ \cdot M + N = 10 $
Black blemish	$18 \leq B < 26$	N	Up to 4 blemishes are
(Exposed)	B < 18	no count	allowed in AREA I
		AREA I AREA II	
	12 < B	0 0	• See fig. 9-1(b), fig. 9-2.
White blemish	$9 < B \leq 12$	1 3	 Sum of the blemishes in
(Non_exposed)	$7 < B \leq 9$	2 4	AREA I and I are allowed
	$6 < B \leq 7$	4 5	up to 6.
	B ≤ 6	no count	
White blemish	5. 5 ≤ B	0	• See fig. 9-1(a), fig. 9-2.
(Shutter mode)	B < 5.5	no count	• Vout = Vstd∕10
Black blemish	$5.5 \leq B$	0	• The electronic shutter
(Shutter mode)	B < 5.5	no count	speed is set at 1/10000 s

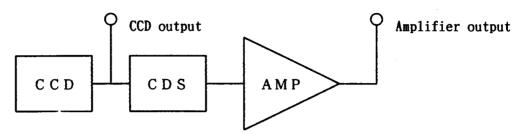
(note)

• B : Blemish level defined in fig. 9-1.

• Vout : Average output voltage

- $V\,std$: 150 mV. The standard output voltage defined in the specification of

the characteristics.


2) Definition of stain.

The measuring area is devided into segments which include 20×20 pixels, respectively. The difference between the average output voltage of neighboring segments is permitted below 1.5 mV, under the condition that the average output voltage of all imaging pixels is 75 mV (= Vstd/2).

[MEASURING CONDITION]

- · Ta:60 ℃
- · Measuring block diagram

The output voltage is measured at the CCD output. The gain of the amplifier is adjusted to the unity between the CCD output and the amplifier output.

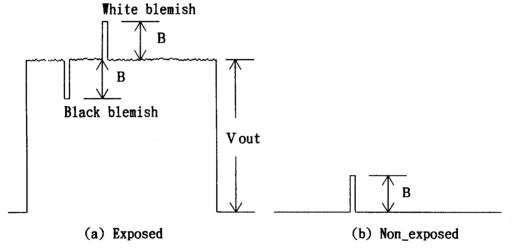


fig. 9-1 Definition of blemish level
(The wave form is the luminance signal measured at the Amplifier output.)

[MEASURING AREA]

Measuring area includes all pixels in the image and the optical black area excluding the outer 10 pixels of the left and right sides and the outer 9 lines of the upper and lower sides in the image area.

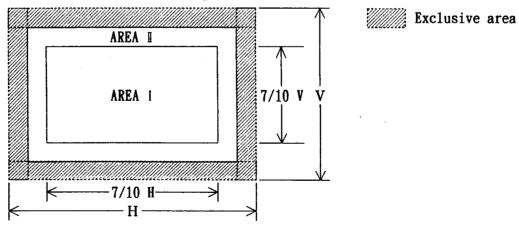
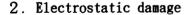


fig. 9-2 Definition of the measuring area

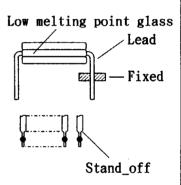
10. CAUTIONS FOR USE

1. Package Breakage


In order to prevent the package from being broken, observe the following instructions:

- 1) The CCD is a precise optical component and the package material is ceramic. Therefore.
 - Take care not to drop the device when mounting, handling, or transporting.
 - Avoid giving a shock to the package. Especially when leads are fixed to the socket and the circuit board, small shock could break the package more easily than when the package isn't fixed.
- 2) When applying force for mounting the device or any other purposes, fix the leads between a joint and a stand_off, so that no stress will be given to the jointed part of the lead. In addtion, when applying force, do it at a point below the stand_off part.
 - --- The leads of the package are fixed with low melting point glass, so stress added to a lead could cause a crack in the low melting point glass in the jointed part of that lead.
- 3) When mounting the package on the housing, be sure that the package is not bent.
 - --- If a bent package is forced into place between a hard plate or the like, the package may be broken.
- 4) If any damage or breakage occur on the surface of the glass cap, its characteristics could deteriorate.

 Therefore.


- Do not give a shock large enough to cause distortion.
- · Do not scrub or scratch the glass surface.
- --- Even a soft cloth or applicator, if dry, could cause dust to scratch the glass.

As compared with general NOS-LSI, CCD has lower ESD.

Therefore, please take the following anti-static measures when handling the CCD:

- 1) Always discharge static electricity by grounding the human body and the instrument to be used. To ground the human body, provide resistance of about 1 Meg ohm between the human body and the ground to be on the safe side.
- 2) When directly handling the device with fingers, hold the part without leads and do not touch any lead.
- 3) To avoid generating static electricity,
 - a. do not scrub the glass surface with cloth or plastic
 - b. do not attach any tape or labels
 - c. do not clean the glass surface with dust-cleaning tape
- 4) When storing or transporting the device, put it in a container of conductive material.

3. Dust and contamination

Dust or contamination on the glass surface could deteriorate the output characteristic or cause a scar. In order to minimize dust or contamination on the glass surface, take the following precautions:

- 1) Hanlde CCD in a clean environment such as a cleaned booth.

 (The cleanliness level should be, if possible, class 1000 at least.)
- 2) Do not touch the glass surface with fingers. If dust or contamination gets on the glass surface, the following cleaning method is recommended:
 - Dust from static electricity should be blown off with an ionized air blower. For anti-electrostatic measures, however, ground all the leads on the device before blowing off the dust.
 - The contamination on the glass surface should be wiped off with a clean applicator soaked in Isopropyl alcohol. Wipe slowly and gently in one direction only.
 - --- Frequently replace the applicator and do not use the same applicator to clean more than one device.
- Note: In most cases, dust and contamination are unavoidable, even before the device is first used. It is, therefore, recommended that the above procedures should be taken to wipe out dust and contamination before using the device.

4 Other

- 1) Soldering should be manually performed within 5 seconds at $350 \mbox{\em T}$ maximum at soldering iron.
- 2) Do not expose the device to strong light. For the color device, long exposure to strong light will fade the color of the color filters.
- 3) Avoid using or storing the CCD at high temperature or high humidity as it is a precise optical component. Do not give a mechanical shock to the CCD.
- 4) To apply power, first connect GND and then turn on OFD. After turning on OFD, Turn on PW first and then turn on other powers and pulses.
 Do not connect the device to or disconnect it from the plug socket while power is being applied.

LZ2353B

1 1 PACKAGE OUTLINE AND PACKING SPECIFICATION

1. Package Outline Specification

Refer to drawing No. GDG 0.1.6E-0.7E1.

(The seal resin stick out from the package shall be passed.)

2. Markings

Marking contents

(1) Product name : LZ2353B (2) Campany name : SHARP

(3) Country of origin: JAPAN

(4) Date code : $\underline{Y}\underline{Y}\underline{W}\underline{W}\underline{X}\underline{X}\underline{X}$

Denotes the production ref. cord. (1~2 figures)

Denotes the production day of the week.

1 2 3 4 5 6 7 SUN. MON. TUE. WED. THU. FRI. SAT.

Denotes the production week. (01, 02, 03,, 52, 53)

Denotes the production year.

(Lower two digits of the year.)

Positions of markings are shown in the package outline drawing(No.GDC016E-07E1). But, markings shown in that drawing are not provided any measurements of their characters and their positions.

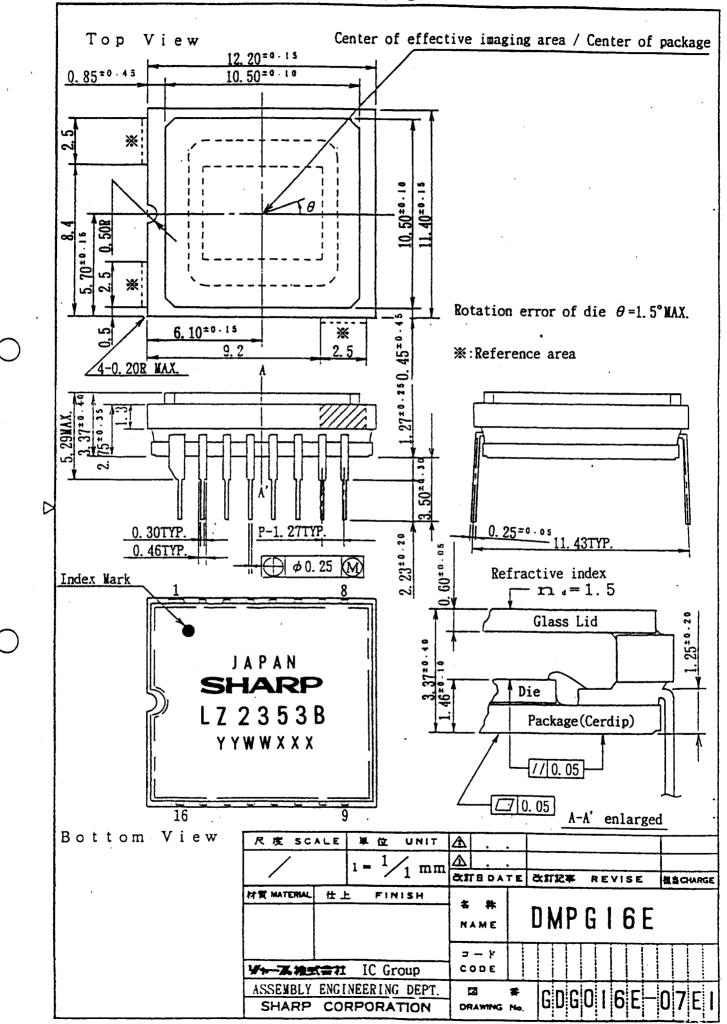
3. Packing Specification

3-1. Packing materiales

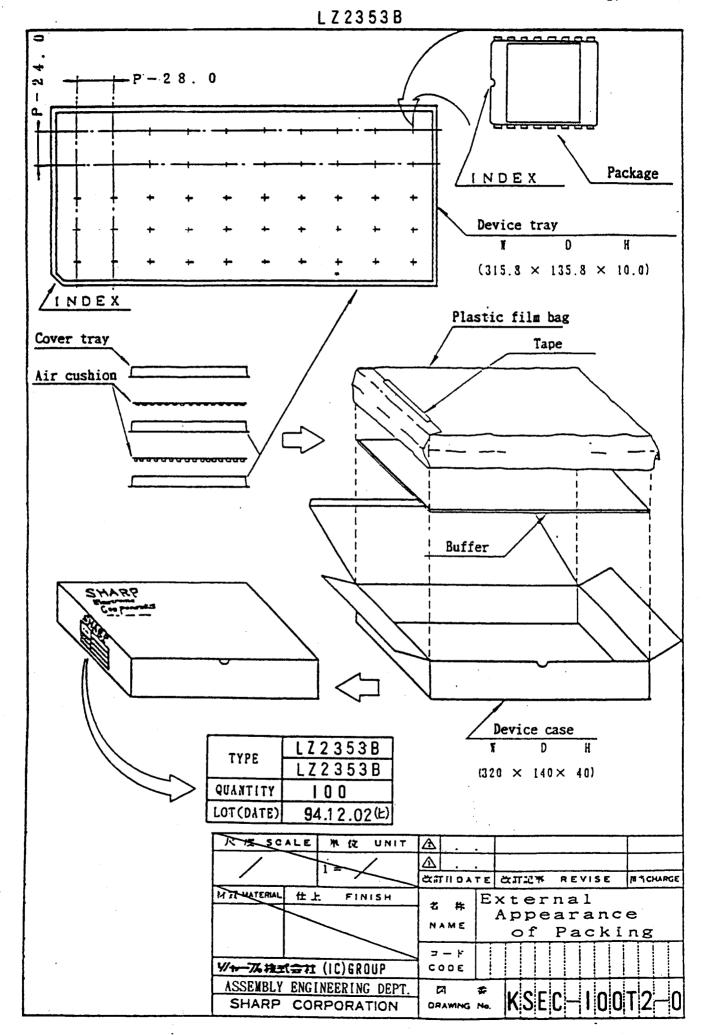
Material Name	Material Spec.	Purpose
Device case	Paper	Device packing
	(100devices/case)	(2trays/case)
Device tray	Conductive plastic	Device fixing
	(50devices/tray)	
Cover tray	Conductive plastic	Device covering
	(ltray/case)	
Buffer	Cardboard	Shock absorber
	(lsheet/case)	of device tray
Plastic film bag	Plastic film	Device tray fixing
Air cushion	Plastic film	Shock absorber
		of device case
Tape	Plastic film	Sealing Plastic film bag

3-2. External appearance of packing

Refer to drawing No. KSEC-100T2-0.


4. Precaution For Unpacking

- 1) Before unpacking, confirm the imports of the chapter "Handling Precaution" in this device specifications.
- 2) Unpacking should be done on the stand treated with anti-ESD. At that time, the same anti-ESD treatment should be done to operater's body, too.


ı	ISSUE DATE	94. 12. 02		(NO	re)
ı	ISSUE NUMBER	4C0215DC	A Guzula V. Taheda	t seko	
	S/C NUMBER	LZ2353B	M-302	1.,,	

A : 4.

SHARP

