

INITIAL RELEASE Final Electrical Specifications LT1886

Dual 700MHz, $A_V \ge 10$, 200mA Operational Amplifier

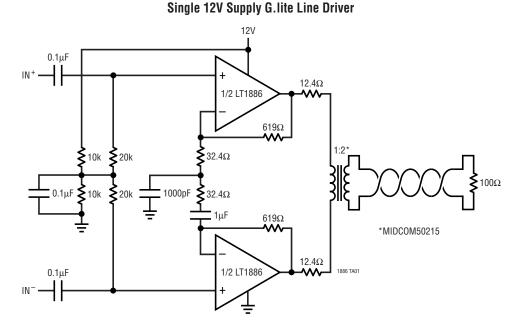
FEATURES

- 700MHz Gain Bandwidth, Gain-of-10 Stable
- ±200mA Minimum I_{OUT}
- Low Distortion: –72dBc at 200kHz
- ± 4.3 V Minimum Output Swing, V_S = ± 6 V, R_L = 25Ω
- 7mA Quiescent Supply Current per Amplifier
- 200V/µs Slew Rate
- 4nV/\u00fcHz Input Noise Voltage
- 0.7pA/√Hz Input Noise Current
- 4mV Maximum Input Offset Voltage
- 4µA Maximum Input Bias Current
- 400nA Maximum Input Offset Current
- $\pm 4.5V$ Minimum Input CMR, V_S = $\pm 6V$
- Specified at ±6V, ±2.5V

APPLICATIONS

- DSL Modems
- xDSL PCI Cards
- USB Modems
- Line Drivers
- Video Distribution

DESCRIPTION


September 1999

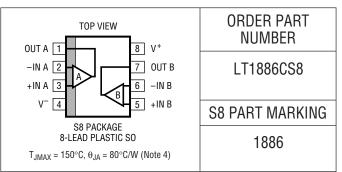
The LT[®]1886 is a gain-of-ten stable, 200mA minimum output current, dual op amp with outstanding distortion performance. The LT1886 features balanced, high impedance inputs with 4μ A maximum input bias current and 4mV maximum input offset voltage. Single supply applications are easy to implement, and the LT1886 has lower total noise than current feedback amplifier implementations.

The output drives a 25Ω load to $\pm 4.3V$ with $\pm 6V$ supplies. On $\pm 2.5V$ supplies the output swings $\pm 1.5V$ with a 100Ω load. The amplifier is stable with a 100pF capacitive load, making it useful in buffer and cable driver applications.

The LT1886 is manufactured on Linear Technology's advanced low voltage complementary bipolar process.

LT, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION



Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V ⁺ to V ⁻) 13.2V
Input Current (Note 2) ±10mA
Input Voltage (Note 2) $\pm V_S$
Maximum Continuous Output Current (Note 3)
DC ±100mA
AC ±300mA
Operating Temperature Range40°C to 85°C
Specified Temperature Range (Note 9)40°C to 85°C
Maximum Junction Temperature 150°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_S = ±6V, V_{CM} = 0V, pulse power tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 5)			1	4 5	mV mV
	Input Offset Voltage Drift	(Note 8)	•		3	17	μV/°C
I _{OS}	Input Offset Current		•		150	400 600	nA nA
Ι _Β	Input Bias Current		•		1.5	4 6	μΑ μΑ
e _n	Input Noise Voltage	f = 10kHz			4		nV/√Hz
i _n	Input Noise Current	f = 10kHz			0.7		pA/√Hz
R _{IN}	Input Resistance	V _{CM} = ±4.5V Differential		5	10 35		MΩ kΩ
CIN	Input Capacitance				2		pF
	Input Voltage Range (Positive) Input Voltage Range (Negative)		•	4.5	5 -5	-4.5	V V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 4.5 V$	•	77	98		dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 2V$ to $\pm 6.5V$	•	80 78	86		dB dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 4V, R_L = 100\Omega$	•	5.0 4.5	12		V/mV V/mV
		$V_{OUT} = \pm 4V, R_L = 25\Omega$	•	4.5 4.0	12		V/mV V/mV
V _{OUT}	Output Swing	$R_L = 100\Omega$, 10mV Overdrive	•	4.85 4.70	5		±V ±V
		$R_L = 25\Omega$, 10mV Overdrive	•	4.30 4.10	4.6		±V ±V
		I _{OUT} = 200mA, 10mV Overdrive	•	4.30 4.10	4.5		±V ±V

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. $V_S = \pm 6V$, $V_{CM} = 0V$, pulse power tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
I _{SC}	Short-Circuit Current (Note 3)				800		mA
SR	Slew Rate	A _V = -10 (Note 6)	•	133 110	200		V/µs V/µs
	Full Power Bandwidth	4V Peak (Note 7)			8		MHz
GBW	Gain Bandwidth	f = 1MHz			700		MHz
t _r , t _f	Rise Time, Fall Time	$A_V = 10, 10\%$ to 90%, 0.1V, $R_L = 100\Omega$			4		ns
	Overshoot	$A_V = 10, 0.1V, R_L = 100\Omega$			15		%
	Propagation Delay	50% V _{IN} to 50% V _{OUT} , 0.1V, R _L = 100 Ω			2.5		ns
R _{OUT}	Output Resistance	A _V = 10, f = 1MHz			0.033		Ω
	Channel Separation	$V_{OUT} = \pm 4V, R_L = 25\Omega$	•	82 80	92		dB dB
I _S	Supply Current	Per Amplifier	•		7	8.25 8.50	mA mA

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 2.5V$, $V_{CM} = 0V$, pulse power tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 5)			1.5	5 6	mV mV
	Input Offset Voltage Drift	(Note 8)	•		5	17	μV/°C
I _{OS}	Input Offset Current		•		100	350 550	nA nA
Ι _Β	Input Bias Current		•		1	3.5 5.5	μΑ μΑ
en	Input Noise Voltage	f = 10kHz			4		nV/√Hz
i _n	Input Noise Current	f = 10kHz			0.7		pA/√Hz
R _{IN}	Input Resistance	V _{CM} = ±1V Differential		10	20 50		MΩ kΩ
CIN	Input Capacitance				2		pF
	Input Voltage Range (Positive) Input Voltage Range (Negative)		•	1	1.5 -1.5	-1	V V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 1 V$	•	75	91		dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 1V, R_L = 100\Omega$	•	5.0 4.5	10		V/mV V/mV
		$V_{OUT} = \pm 1V, R_L = 25\Omega$	•	4.5 4.0	10		V/mV V/mV
V _{OUT}	Output Swing	$R_L = 100\Omega$, 10mV Overdrive	•	1.50 1.40	1.65		±V ±V
		$R_L = 25\Omega$, 10mV Overdrive	•	1.35 1.25	1.50		±V ±V
		I _{OUT} = 200mA, 10mV Overdrive	•	0.87 0.80	1		±V ±V

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 2.5V$, $V_{CM} = 0V$, pulse power tested unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
I _{SC}	Short-Circuit Current (Note 3)				600		mA
SR	Slew Rate	A _V = -10 (Note 6)	•	66 60	100		V/μs V/μs
	Full Power Bandwidth	1V Peak (Note 7)			16		MHz
GBW	Gain Bandwidth	f = 1MHz			500		MHz
t _r , t _f	Rise Time, Fall Time	$A_V = 10, 10\%$ to 90%, 0.1V, $R_L = 100\Omega$			7		ns
	Overshoot	$A_V = 10, 0.1V, R_L = 100\Omega$			5		%
	Propagation Delay	50% V _{IN} to 50% V _{OUT} , 0.1V, R _L = 100 Ω			5		ns
R _{OUT}	Output Resistance	A _V = 10, f = 1MHz			0.065		Ω
	Channel Separation	$V_{OUT} = \pm 1V, R_L = 25\Omega$	•	82 80	92		dB dB
I _S	Supply Current	Per Amplifier	•		5	5.75 6.25	mA mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7V, the input current should be limited to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below absolute maximum.

Note 4: Thermal resistance varies depending upon the amount of PC board metal attached to the device. θ_{JA} is specified for a 2500mm² test board covered with 2 oz copper on both sides.

Note 5: Input offset voltage is exclusive of warm-up drift.

Note 6: Slew rate is measured between $\pm 1.5V$ on a $\pm 4V$ output for $\pm 6V$ supplies, and between $\pm 1V$ on a $\pm 2V$ output for $\pm 2.5V$ supplies.

Note 7: Full power bandwidth is calculated from the slew rate: FPBW = $SR/2\pi V_P$.

Note 8: This parameter is not 100% tested.

Note 9: The LT1886C is guaranteed to meet specified performance from 0°C to 70°C and is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40°C and 85°C. Guaranteed I grade parts are available, consult factory.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1207	Dual 250mA, 60MHz Current Feedback Amplifier	Shutdown/Current Set Function
LT1361	Dual 50MHz, 800V/µs Op Amp	
LT1497	Dual 125mA, 50MHz Current Feedback Amplifier	900V/µs Slew Rate
LT1795	Dual 500mA, 50MHz Current Feedback Amplifier	Shutdown/Current Set Function
LT1813	Dual 100MHz, V _{FB} Op Amp	Low Power Differential Receiver