

HNOLOGY 1.1MHz, 0.4V/µs Over-The-Top Micropower, Rail-To-Rail Input and Output Op Amp

DESCRIPTION

July 1999

FEATURES

Operates with Inputs Above V+

■ Rail-to-Rail Input and Output

■ Micropower: 250µA Supply Current Max

■ Gain-Bandwidth Product: 1.1MHz

Slew Rate: 0.4V/μs

Low Input Offset Voltage: 350µV Max
 Single Supply Input Range: −0.4V to 44V

■ High Output Current: 25mA Min

■ Specified on 3V, 5V and ±15V Supplies

Output Shutdown

Output Drives 4700pF with Output Compensation

Reverse Battery Protection to 25V

High Voltage Gain: 800V/mV

High CMRR: 110dB

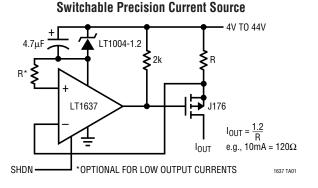
APPLICATIONS

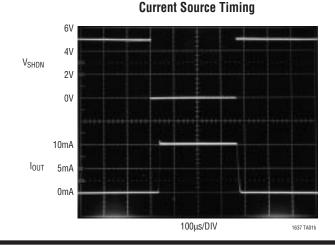
 Battery or Solar Powered Systems: Portable Instrumentation Sensor Conditioning

- Supply Current Sensing
- Battery Monitoring
- MUX Amplifiers
- 4mA to 25mA Transmitters

The LT®1637 is a rugged op amp that operates on all single and split supplies with a total voltage of 2.7V to 44V. The LT1637 has a gain-bandwidth product of 1.1MHz while drawing less than 250 μ A of quiescent current. The LT1637 can be shut down, making the output high impedance and reducing the quiescent current to only 3 μ A. The LT1637 is reverse supply protected: it draws no current for reverse supply up to 25V. The input range of the LT1637 includes both supplies and the output swings to both supplies. Unlike most micropower op amps, the LT1637 can drive heavy loads; its rail-to-rail output drives 25mA. The LT1637 is unity-gain stable into all capacitive loads up to 4700pF when optional 0.22μ F and 150Ω compensation is used.

The LT1637 has a unique input stage that operates and remains high impedance when above the positive supply. The inputs take 44V both differential and common mode, even when operating on a 3V supply. Built-in resistors protect the inputs for faults below the negative supply up to 22V. There is no phase reversal of the output for inputs 5V below V_{EE} or 44V above V_{EE} , independent of V_{CC} .

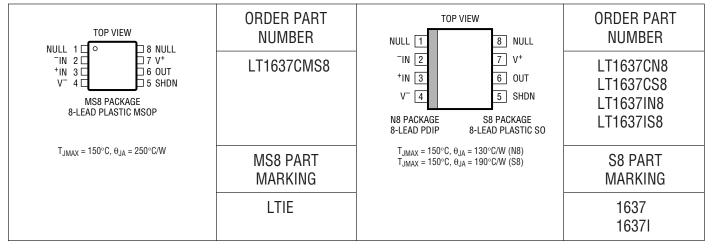

The LT1637 op amp is available in the 8-pin MSOP, PDIP and SO packages.


(T), LTC and LT are registered trademarks of Linear Technology Corporation.

Over-The-Top is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Over-The-Top™ Current Source with Shutdown


ABSOLUTE MAXIMUM RATINGS

(Note 1)

44V
44V
±25mA
32V
±10mA
. Continuous

Operating Temperature Range40°C to	o 85°C
Specified Temperature Range (Note 3)40°C to	o 85°C
Junction Temperature	150°C
Storage Temperature Range65°C to	150°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

3V AND 5V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, OV; $V_S = 5V$, OV; $V_{SHDN} = V^{-}$, $V_{CM} = V_{OUT} = Half Supply unless otherwise specified. (Note 3)$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	N8, S8 Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	350 550 700	μV μV μV
		MS8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	350 750 900	μV μV μV
	Input Offset Voltage Drift (Note 8)	N8, S8 Packages, $-40^{\circ}C \le T_A \le 85^{\circ}C$ MS8 Package, $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		1 2	3	μV/°C μV/°C
I _{OS}	Input Offset Current	V _{CM} = 44V (Note 4)	•		0.4	6.0 2.5	nA μA
I _B	Input Bias Current	V _{CM} = 44V (Note 4) V _S = 0V	•		20 30 0.1	50 60	nA μA nA
	Input Noise Voltage	0.1Hz to 10Hz			1		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			27		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.17		pA/√Hz

3V AND 5V ELECTRICAL CHARACTERISTICSThe ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, OV; $V_S = 5V$, OV; $V_{SHDN} = V^{-}$, $V_{CM} = V_{OUT} = Half$ Supply unless otherwise specified. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
R _{IN}	Input Resistance	Differential		1	2.6		MΩ
		Common Mode, V _{CM} = 0V to 44V		0.7	1.4		MΩ
C _{IN}	Input Capacitance				4		pF
	Input Voltage Range		•	0		44	V
CMRR	Common Mode Rejection Ratio (Note 4)	$V_{CM} = 0V \text{ to } (V_{CC} - 1V)$ $V_{CM} = 0V \text{ to } 44V \text{ (Note 7)}$	•	88 80	110 98		dB dB
A _{VOL}	Large-Signal Voltage Gain	$V_S = 3V$, $V_0 = 500$ mV to 2.5V, $R_L = 10$ k $V_S = 3V$, 0° C $\leq T_A \leq 70^{\circ}$ C $V_S = 3V$, -40° C $\leq T_A \leq 85^{\circ}$ C	•	150 100 75	400		V/mV V/mV V/mV
		$V_S = 5V$, $V_0 = 500mV$ to 4.5V, $R_L = 10k$ $V_S = 5V$, $0^{\circ}C \le T_A \le 70^{\circ}C$ $V_S = 5V$, $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	300 200 150	800		V/mV V/mV V/mV
V _{OL}	Output Voltage Swing LOW	No Load $I_{SINK} = 5mA$ $V_S = 5V$, $I_{SINK} = 10mA$	•		3 325 580	8 700 1300	mV mV mV
V _{OH}	Output Voltage Swing HIGH	$V_S = 3V$, No Load $V_S = 3V$, $I_{SOURCE} = 5mA$	•	2.94 2.25	2.975 2.67		V
		$V_S = 5V$, No Load $V_S = 5V$, $I_{SOURCE} = 10$ mA	•	4.94 3.80	4.975 4.45		V
I _{SC}	Short-Circuit Current (Note 2)	$V_S = 3V$, Short to Ground $V_S = 3V$, Short to V_{CC}		10 15	14 45		mA mA
		V_S = 5V, Short to Ground V_S = 5V, Short to V_{CC}		15 15	22 60		mA mA
PSRR	Power Supply Rejection Ratio	$V_S = 3V$ to 12.5V, $V_{CM} = V_0 = 1V$	•	90	98		dB
	Minimum Supply Voltage		•			2.7	V
	Reverse Supply Voltage	$I_S = -100\mu A$	•	25	40		V
I _S	Supply Current (Note 5)		•		190	250 295	μA μA
	Supply Current, SHDN	V _{PIN5} = 2V, No Load (Note 5)	•		3	12	μΑ
I _{SHDN}	Shutdown Pin Current	V _{PIN5} = 0.3V, No Load (Note 5) V _{PIN5} = 2V, No Load (Note 4)	•		0.2 1.0	15 5	nA μA
	Output Leakage Current	V _{PIN5} = 2V, No Load (Note 5)	•		0.02	1	μΑ
	Maximum Shutdown Pin Current	V _{PIN5} = 32V, No Load (Note 4)	•		20	150	μА
t _{ON}	Turn-On Time	V _{PIN5} = 5V to 0V, R _L = 10k			45		μS
t _{OFF}	Turn-Off Time	V _{PIN5} = 0V to 5V, R _L = 10k			3		μS
GBW	Gain-Bandwidth Product (Note 4)	$ f = 10kHz $ $0^{\circ}C \le T_{A} \le 70^{\circ}C $ $-40^{\circ}C \le T_{A} \le 85^{\circ}C $	•	650 550 500	1000		kHz kHz kHz
SR	Slew Rate (Note 6)	$A_V = -1$, $R_L = \infty$ $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	0.210 0.185 0.170	0.35		V/µs V/µs V/µs

$\pm 15V$ ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{SHDN} = V^-$ unless otherwise specified. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	N8, S8 Packages $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	450 650 800	μV μV μV
		MS8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	450 800 950	μV μV μV
	Input Offset Voltage Drift (Note 8)	N8, S8 Packages, $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$ MS8 Package, $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$	•		1 2	3	μV/°C μV/°C
I _{OS}	Input Offset Current		•		1	6	nA
I _B	Input Bias Current		•		17	50	nA
	Input Noise Voltage	0.1Hz to 10Hz			1		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			23		nV/√Hz
in	Input Noise Current Density	f = 1kHz			0.3		pA/√Hz
R _{IN}	Input Resistance	Differential Common Mode, $V_{CM} = -15V$ to 14V		1	3 2200		MΩ MΩ
C _{IN}	Input Capacitance				4		pF
	Input Voltage Range		•	-15		29	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = -15V \text{ to } 29V$	•	80	110		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 14V, R_L = 10k$ $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	100 75 50	400		V/mV V/mV V/mV
V _{OL}	Output Voltage Swing LOW	No Load I _{SINK} = 5mA I _{SINK} = 10mA	•		-14.997 -14.680 -14.420	-14.25	V V V
V _{OH}	Output Voltage Swing HIGH	No Load I _{SOURCE} = 5mA I _{SOURCE} = 10mA	•	14.9 14.2 13.7	14.967 14.667 14.440		V V V
I _{SC}	Short-Circuit Current (Note 2)	Short to GND $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	±25 ±20 ±15	±31.7		mA mA mA
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 22 V$	•	90	115		dB
	Minimum Supply Voltage		•			±1.35	V
Is	Supply Current		•		230	300 370	μA μA
	Positive Supply Current, SHDN	$V_{PIN5} = -20V$, $V_S = \pm 22V$, No Load	•		6	40	μΑ
I _{SHDN}	Shutdown Pin Current	$V_{PIN5} = -21.7V$, $V_{S} = \pm 22V$, No Load $V_{PIN5} = -20V$, $V_{S} = \pm 22V$, No Load	•		0.3 0.9	15 8	nA μA
	Maximum Shutdown Pin Current	$V_{PIN5} = 32V, V_{S} = \pm 22V$	•		20	150	μΑ
	Output Leakage Current	$V_{PIN5} = -20V$, $V_S = \pm 22V$, No Load	•		0.02	2	μА
V_L	Shutdown Pin Input Low Voltage	V _S = ±22V	•		-21.6	-21.7	V
V_{H}	Shutdown Pin Input High Voltage	V _S = ±22V	•	-20.0	-20.8		V
t _{ON}	Turn-On Time	$V_{PIN5} = -10V \text{ to } -15V, R_L = 10k$			35		μS
t _{OFF}	Turn-Off Time	$V_{PIN5} = -15V \text{ to } -10V, R_L = 10k$			3		μS

±15V ELECTRICAL CHARACTERISTICS

The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{SHDN} = V^-$ unless otherwise specified. (Note 3)

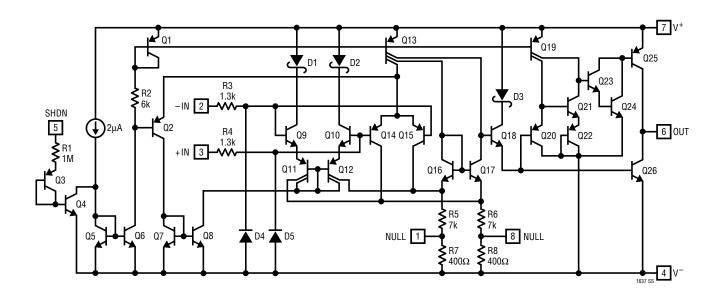
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
GBW	Gain-Bandwidth Product	f = 10kHz		750	1100		kHz
		$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$	•	650			kHz
		$-40^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$	•	600			kHz
SR	Slew Rate	$A_V = -1$, $R_L = \infty$, $V_0 = \pm 10V$, Measure at $V_0 = \pm 5V$		0.225	0.4		V/µs
		$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$	•	0.200			V/µs
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$	•	0.180			V/µs

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: A heat sink may be required to keep the junction temperature below absolute maximum.

Note 3: The LT1637C is guaranteed to meet specified performance from 0° C to 70° C and is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40° C and 85° C. The LT1637I is guaranteed to meet the extended temperature limits.

Note 4: $V_S = 5V$ limits are guaranteed by correlation to $V_S = 3V$ and $V_S = \pm 15V$ or $V_S = \pm 22V$ tests.

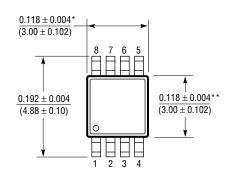

Note 5: $V_S = 3V$ limits are guaranteed by correlation to $V_S = 5V$ and $V_S = \pm 15V$ or $V_S = \pm 22V$ tests.

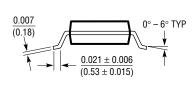
Note 6: Guaranteed by correlation to slew rate at $V_S = \pm 15V$ and GBW at $V_S = 3V$ and $V_S = \pm 15V$ tests.

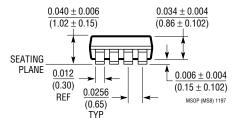
Note 7: This specification implies a typical input offset voltage of $600\mu V$ at $V_{CM}=44V$ and a maximum input offset voltage of 4.4mV at $V_{CM}=44V$.

Note 8: This parameter is not 100% tested.

SIMPLIFIED SCHEMATIC

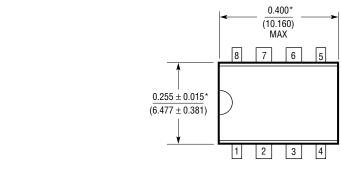


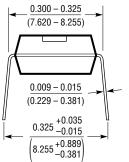

PACKAGE DESCRIPTION

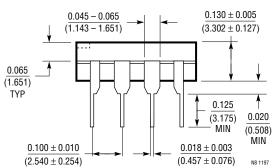

 $\label{lem:decomposition} \textbf{Dimensions in inches (millimeters) unless otherwise noted.}$

MS8 Package 8-Lead Plastic MSOP

(LTC DWG # 05-08-1660)

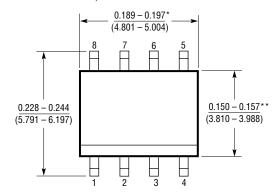

- * DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- ** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

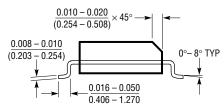

PACKAGE DESCRIPTION

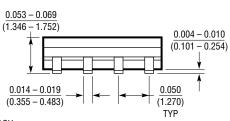

Dimensions in inches (millimeters) unless otherwise noted.

N8 Package 8-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)



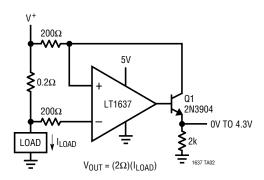


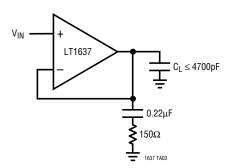

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)

(LTC DWG # 05-08-1610)

^{*}DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE


SO8 0996


^{**}DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATIONS

Positive Supply Rail Current Sense

Optional Output Compensation for Capacitive Loads Greater Than 200pF

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1078/LT1079 LT2078/LT2079	Dual/Quad 55μA Max, Single Supply, Precision Op Amps	Input/Output Common Mode Includes Ground, 70μV V _{OS(MAX)} and 2.5μV/°C Drift (Max), 200kHz GBW, 0.07V/μs Slew Rate
LT1178/LT1179 LT2178/LT2179	Dual/Quad 17μA Max, Single Supply, Precison Op Amps	Input/Output Common Mode Includes Ground, 70μV V _{OS(MAX)} and 4μV/°C Drift (Max), 85kHz GBW, 0.04V/μs Slew Rate
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	475μV V _{OS(MAX)} , 500V/mV A _{VOL(MIN)} , 400kHz GBW
LT1490/LT1491	Dual/Quad Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amps	Single Supply Input Range: -0.4V to 44V, Micropower 50µA per Amplifier, Rail-to-Rail Input and Output, 200kHz GBW
LT1636	Single Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp	55μA Supply Current, V _{CM} Extends 44V above V _{EE} , Independent of V _{CC} ; MSOP Package, Shutdown Function
LT1638/LT1639	Dual/Quad 1.2MHz Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amps	0.4V/μs Slew Rate, 230μA Supply Current per Amplifier