Gerstweg 2, 6534 AE Nijmegen, The Netherlands

Report nr.: RNR-T45-97-B-006Author: T.F. BussDate: Jan. 6 1997Department: P.G. Transistors & Diodes, Development

900MHz LOW NOISE AMPLIFIER WITH THE BFG403W

Abstract:

This application note contains an example of a Low Noise Amplifier with the new BFG403W Double Poly RF-transistor. The LNA is designed for a frequency f=900MHz, V_{SUP} ~1.5V, I_{SUP} ~1mA. *Measured* performance at f=900MHz: Noise Figure NF~1.8dB, gain S₂₁~16dB.

.

Appendix I: 900MHz LNA circuit

Appendix II: Printlayout and list of used components & materials

Appendix III: Measured Performance

Introduction:

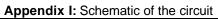
With the new Philips silicon bipolar double poly BFG400W series, it is possible to design low noise amplifiers for high frequency applications with a low current and a low supply voltage. These amplifiers are well suited for the new generation low voltage high frequency wireless applications. In this note an example of such an amplifier will be given. This amplifier is designed for a working frequency of 900MHz. Because this LNA has an extreme low power-consumption, it is well suited for **pager front-end applications**.

~

Designing the circuit:

The circuit is designed to show the following performance:

transistor: BFG403W


 V_{ce} ~0.9V, I_c ~1mA, V_{SUP} ~1.5V freq=900MHz Gain~16dB NF<=1.8dB VSWRi<1:3 VSWRo<1:2

Designing the layout:

A lay-out has been designed with HP-MDS. Appendix II contains the printlayout.

Measurements:

Measurements of the total circuit are done (Appendix III).

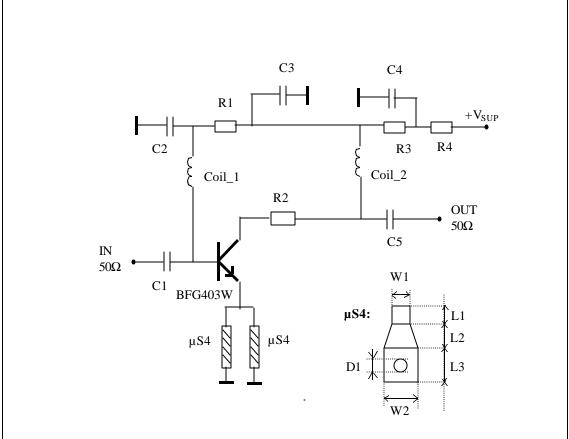
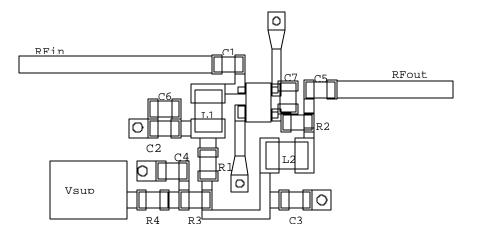


Figure 1: LNA circuit

Component	Value		Purpose, comment
R1	13 kΩ		Bias (collbase)
R2	150 Ω		in series with coll. for better S22, stability and reducing gain.
R3	22 Ω		RF blocking
R4	390 Ω		Bias, series with coll., cancelling hFE spread
C1	1.2 pF		Input match (input to base)
C2	27 pF		900 MHz short (L1 to ground)
C3	27 pF		900 MHz short (L2 to ground)
C4	100 nF		RF decoupling collector bias
C5	1.2 pF		Output match (collector to output)
Coil_1	15 nH		Input match (base-bias)
Coil_2	15 nH		Output match (collector-bias)
µs4	(see	next	µ-stripline Emitter-induction
	table)		


~

-	µS4 Em	itter inductanc	e of µ-stripline and via-hole (see on former page: Schematic of the circuit):
	Name Dimension		Description

.

Name	Dimension	Description	
L1	1.0mm	length μ -stripline; Z ₀ ~48 Ω (PCB: ϵ_r ~4.6,	
		H=0.5mm)	
L2	1.0mm	length interconnect stripline and via-hole area	
L3	1.0mm	length via-hole area	
W1	0.5mm	width µ-stripline	
W2	1.0mm	width via-hole area	
D1	0.4mm	diameter of via-hole	

Appendix II: Printlayout and list of used components & materials

900MHz LOW NOISE AMP.

Figure 2: Printlayout

Comment: C6 and C7 are not used in this LNA.

900MHz LNA Component list:

Component:	Value:	size:
PCB	FR4: ε _r ~4.6	H=0.5mm
R1	13 kΩ	0603 Philips
R2	150 Ω	0603 Philips
R3	22 Ω	0603 Philips
R4	390 Ω	0603 Philips
C1	1.2 pF	0603 Philips
C2	27 pF	0603 Philips
C3	27 pF	0603 Philips
C4	100 nF	0805 Philips
C5	1.2 pF	0603 Philips
L1	15 nH	0805CS Coilcraft
L2	15 nH	0805CS Coilcraft

_

Appendix III: Measured Performance

BFG403W; f=900MHz

V _{SUP} [V]	I _{SUP} [mA]	$ S_{21} ^2$ [dB]	S ₁₂ ² [dB]	VSWRi	VSWRo	Noise Figure [dB]
		Gain	Isolation			
1.1	0.5	13	-27	3.0	1.6	1.7
1.5	1.0	16	-30	2.7	1.5	1.8
1.7	1.5	17	-31	2.8	1.5	2.0

-