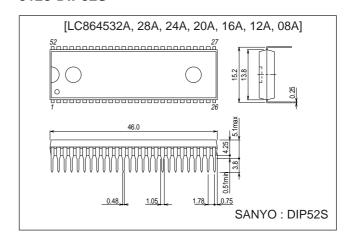


8-bit Single Chip Microcontroller

Overview

The LC864532A/28A/24A/20A/16A/12A/08A microcontrollers are 8-bit single chip microcontrollers for the TV controls with the following on-chip functional blocks:


- CPU : Operable at a minimum bus cycle time of 0.5 μs
- On-chip ROM maximum capacity: 32K bytes (LC864532A)
- On-chip RAM capacity: 256 bytes
 CRT display RAM: 160 × 9 bits
- On-Screen Display controller
 - Kanji (Chinese character) displaying available
- 16-bit timer/counter
- 16-bit timer/PWM
- 4-channel × 4-bit A/D Converter
- Two 6-bit D/A Converters
- · 8-bit synchronous serial-interface circuit

All of the functions above are fabricated on a single chip.

Package Dimensions

unit: mm

3128-DIP52S

Feature

LC864524A 24576 × 8 bits LC864508A 8192 × 8 bits

LC864520A 20480×8 bits

(2) Random Access Memory (RAM): 256×8 bits

 160×9 bits (for CRT display)

(3) Bus cycle time / Instruction-cycle time

The LC864532A/28A/24A/20A/16A/12A/08A microcontrollers are constructed to read the ROM twice within one instruction cycle. It has about 1.7 times performance capability within the same instruction-cycle compared to our 4-bit microcontrollers (LC66000 series).

The bus cycle time indicates the speed to read ROM.

Bus cycle time	Instruction cycle time	System clock oscillation	Oscillation frequency	Voltage
0.5 μs	1.0 μs	Ceramic (CF)	12 MHz	4.5 V to 5.5 V
7.5 µs	15.0 μs	Internal RC	800 kHz	4.5 V to 5.5 V

(4) OSD functions

• Screen for display : 34 columns × 16 rows (at standard character size)

• Display RAM : 160×9 bits (6 columns for control + 34 columns for display) \times 4 rows \times 9 bits

• 252 kinds of user specified characters

252 kinds 12×18 dots

· Various character attributes

Character colors : 8 colors
Character background colors : 8 colors
Fringe / shadow : 8 colors
Full screen colors : 8 colors

Fringe / shadow Rounding

- Adjacent character attribute data changing available
- Vertical display start line setting in row unit available (row overlapping available)
- · Horizontal display start position setting available
- · Eight kinds of character size

```
Horiz. × Vert. = (1 \times 1), (1 \times 2), (2 \times 2), (2 \times 4)
(1.5 \times 1), (1.5 \times 2), (3 \times 2), (3 \times 4)
```

- Shuttering and scrolling in row unit available
- Horizontal character pitch selectable: 9 to 16 dots
- Polarity of R, G, B, BL output programmable
- Polarity of HS, VS input programmable
- (5) Ports

Input/output ports
Input/output port programmable in nibble units
(when the N-ch open drain output is selected, the data in a bit can be inputted)
Input/output port programmable in bit units
I port (8 lines)
Input ports
2 ports (8 lines)

- (6) A/D converter
 - 4-channel × 4-bit A/D converter (converted with program)
- (7) D/A converters
 - Two 7-bit D/A converters
- (8) PWM outputs
 - Ten 7-bit PWMs
 - 10-channel × 7-bit PWM
- (9) Timer
 - Timer 0: 16-bit timer / counter

2-bit prescaler + 8-bit built-in programmable prescaler

Mode 0: Two 8-bit timers with a programmable prescaler

Mode 1: 8-bit timer with a programmable prescaler + 8-bit counter

Mode 2: 16-bit timer with a programmable prescaler

Mode 3: 16-bit counter

The resolution of Timer is 1 tCYC.

- Timer 1: 16-bit timer / PWM

Mode 0: Two 8-bit timers with a programmable prescaler

Mode 1: 8-bit timer with a programmable prescaler + 8-bit PWM

Mode 2: 16-bit timer with a programmable prescaler

Mode 3: Variable-bit PWM (9 to 16 bits)

In Mode 0 and Mode 1, the resolution of Timer and PWM is 1 tCYC.

In Mode 2 and Mode 3, the resolution of Timer and PWM selectable: 1 tCYC or 1/2 tCYC by program.

- (10) Remote control receiver circuit (shares with the P73/INT3/T0IN pin)
 - Noise rejection function
 - Polarity switching

(11) Watchdog timer

External RC circuit is required

Interrupt or system reset is selectable.

(12) Interrupts

- 12-source 9-vectored interrupts
- 1. External interrupt INT0
- 2. External interrupt INT1
- 3. External interrupt INT2, Timer/counter T0L (Lower 8 bits)
- 4. External interrupt INT3
- 5. Timer/counter T0H (Upper 8 bits)
- 6. Timer T1H, T1L
- 7. Serial interface 0 (SIO0)
- 8. Vertical synchronous signal interrupt (\overline{VS}) , End of display row
- Port (
- Interrupt priority control available

Three interrupt priorities are supported (low, high and the highest) and multilevel nesting is possible. Low or high priority can be assigned to the interrupts from 3 to 10 listed above. For the external interrupt INTO and INT1, high or the highest priority can be set.

(13) Sub-routine stack level

- A maximum of 128 levels (Sets the stack inside a RAM.)

(14) Multiplication/division instruction

- 16 bits × 8 bits (7 instruction cycle times)
- 16 bits / 8 bits (7 instruction cycle times)

(15) 3 oscillation circuits

- On-chip RC oscillation circuit for the system clock
- On-chip CF oscillation circuit for the system clock
- On-chip LC oscillation circuit for the CRT synchronization

(16) Standby function

- HALT mode function

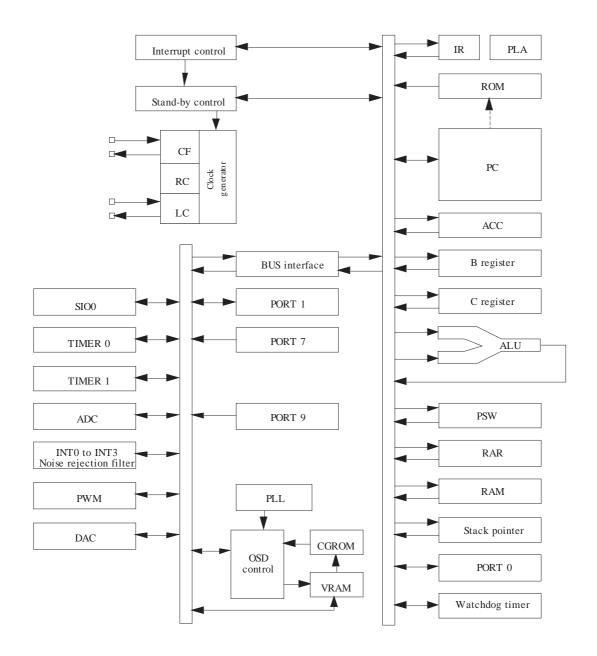
The HALT mode is used to reduce the power dissipation. In this operation mode, the program execution is stopped. This mode can be released by the interrupt request signals or the system reset.

- HOLD Mode

The HOLD mode is used to stop oscillations; the RC (internal) and the ceramic oscillations. This mode can be released by the following conditions.

- \bullet Pull the reset pin (\overline{RES}) to low level.
- Feed the selected level to either P70/INT0 or P71/INT1.
- Feed the Port0 interrupt condition.

(17) Factory shipments


DIP52S

(18) Development Tools

Evaluation (EVA) chip
EPROM with a window
LC86E4564
One time ROM version
LC86P4564

- Emulator : EVA86000 (Main) + ECB864500 (Evaluation board) + POD864500 (Pod)

System Block Diagram

Pin Assignment

710/700	Н			52	Н	D07
P10/S00	9	1		_		P07
P11/SI0/SB0	Ц	2		51	Ľ	P06
P12/SCK0	П	3		50	Ц	P05
P13	Д	4		49		P04
P14	Д	5		48		P03
P15	Ц	6		47	þ	P02
P16	Ц	7		46		P01
P17/PWM	Ц	8		45	þ	P00
DVSS	Ц	9		44		P73/INT3/T0IN
CF1	Ц	10		43		P72/INT2/T0IN
CF2	Ц	11		42		P71/INT1
DVDD	Д	12		41	þ	P70/INT0
P90/AN0	ф	13		40	þ	PWM9
P91/AN1	Д	14		39		PWM8
P92/AN2	Д	15		38		PWM7
P93/AN3	Ц	16		37	þ	PWM6
RES	Ц	17		36	þ	PWM5
LC1	Ц	18		35	þ	PWM4
LC2	Ц	19		34		PWM3
FILT	Ц	20		33		PWM2
AVDD	Д	21		32	Ь	PWM1
AVSS	Ц	22		31		PWM0
DA0	Ц	23		30	Ь	BL
DA1	П	24		29		В
VS		25		28		G
HS	1	26		27	þ	R

Top view

Pin Description

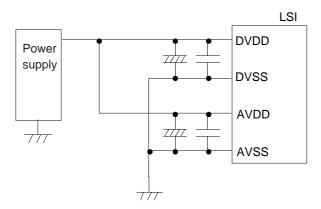
• Port option is able to be specified by a bit unit.

Pin Description Table

D:	D: N	1/0								
Pin name	Pin No.	I/O				on description			Ор	tion
DVSS	9	_	+	•		for digital circuit				
CF1	10	Input	 	ut terminal f						
CF2	11	Input				nic resonator				
DVDD	12	-		-	terminal fo	or digital circuit				
RES	17	Input		et terminal						
LC1	18	Input		oscillation o						
LC2	19	Output	LC	oscillation o	ircuit outp	ut terminal				
FILT	20	Output	Filte	er terminal f	or PLL					
AVDD	21	_	Pos	itive power	terminal fo	or analog circuit				
AVSS	22	_	Neg	ative powe	r terminal	for analog circuit				
DA0	23	Output	DAG	output / ge	eneral purp	pose I/O terminal				
DA1	24	Output	DA1	loutput/ge	eneral pur	pose I/O terminal				
VS	25	Input	Ver	tical synchr	onization s	signal input termin	al			
HS	26	Input	Hor	izontal synd	chronizatio	n signal input terr	ninal			
R	27	Output	Red	I (R) output	terminal o	of RGB image outp	out			
G	28	Output	Gre	en (G) outp	ut termina	l of RGB image o	utput			
В	29	Output	Blue	e (B) output	terminal o	of RGB image out	out			
BL	30	Output	1	t blanking o tch TV ima	_	nal and OSD image si	gnal			
PWM0 to PWM9	31 to 40	Output		M0 to 9 out / withstand	•	al				
Port 0 P00 to P07	45 to 52	I/O	Inpu HOI	t Input/outp ut/output ca LD release rrupt input	n be speci	ified in nibble units	5		Pull-up res provided/ r (in bit units Output forr CMOS/Nch (in bit units	ot provided) nat n-OD
Port 1 P10 to P17	1 to 8	I/O	Inpu Oth P	er functions 10 SIO0 11 SIO0	n be speci s data outpu	/ bus input / outpu	ıt		Output forr CMOS/Nch (in bit units	nat n-OD
Port 7			4-bi	t input port					Pull-up res	istor
P70	41	I/O	Oth	er functions					provided/ r	ot provided
P71 to P73	42 to 44	Input	b. b.	outpo 71 INT1 72 INT2 73 INT3 / time	ut for watc input / HC input / tim input (noi er 0 event	DLD release input hdog timer DLD release input ner 0 event input se rejection filter a input vector address			(in bit units)
				Rising	Falling	Rising / Falling	H level	L level	Vector	
			INT0	enable	enable	disable	enable	enable	03H	
			INT1	enable	enable	disable	enable	enable		
			INT2 INT3	enable enable	enable enable	enable enable	disable disable	disable disable	_	
Port 9 P90 to P93	13 to 16	Input	4-bi Oth	t input port er function converter i			สเจนมโช	disable	1011	l

• Any port option can be selected in bit units.

• Port 0 portion : Pull-up resistor is provided when CMOS output is selected.


The pull-up resister is not provided when N-ch Open Drain is selected.

• Port 1 option : Programmable pull-up resister is provided when any output form is selected.

· Port status during reset

Terminal	I/O	Pull-up resistor status at selecting pull-up option
Port 0	Input	Pull-up resistor OFF, ON after reset release
Port 1	Input	Programmable pull-up resistor OFF
Port 7	Input	Fixed pull-up resistor provided

* AVDD and AVSS are the power terminals for built-in analog circuit. DVDD and DVSS are the power terminals for built-in digital circuit. Connect them like the following figure to reduce the mutual noise influence.

Specifications

1. Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0~V$

Paran	neter	Symbol	Pins	Conditions			Rating	ıs	Unit
					V _{DD} [V]	min	typ	max	
Supply vo	oltage	V _{DD} max	DVDD, AVDD	DVDD = AVDD		-0.3		+7.0	V
Input volt	age	V _I (1)	• P71, 72, 73 • Port 9 • RES, HS, VS			-0.3		V _{DD} +0.3	
Output v	oltage	Vo(1)	R, G, B, BL, FILT			-0.3		V _{DD} +0.3	
		Vo(2)	PWM0 to PWM9			-0.3		+15	
Input/outp	put	V _{IO} (1)	Ports 0, 1, P70 DA0, 1			-0.3		V _{DD} +0.3	
High- level output	Peak output current	Іорн(1)	Ports 0, 1	Pull-up MOS transistor output At each pin		-2			mA
current		Іорн(2)	Ports 0, 1 DA0, 1	CMOS outputAt each pin		-4			
		Іорн(3)	R, G, B, BL	• CMOS output • At each pin		- 5			
	Total	∑l _{OAH} (1)	Port 1	The total of all pins		-10			
	output current	∑l _{OAH} (2)	Port 0	The total of all pins		-10			
	ourront	∑I _{OAH} (3)	R, G, B, BL	The total of all pins		-15			
Low-	Peak	I _{OPL} (1)	Ports 0, 1 DA0, 1	At each pin				20	
level output	output current	I _{OPL} (2)	P70	At each pin				30	
current		I _{OPL} (3)	• R, G, B, BL • PWM0 to PWM9	At each pin				5	
	Total	∑loal(1)	Port 0	The total of all pins				40	
	output current	Σ loal(2)	Port 1, P70	The total of all pins				40	
	Current	∑loal(3)	R, G, B, BL	The total of all pins				15	
		Σ loal(4)	PWM0 to PWM9	The total of all pins				30	
Maximum dissipatio		Pd max	DIP52S	Ta = $-30 \text{ to } +70^{\circ}\text{C}$				430	mW
Operatino temperati	g ure range	Topr				-30		+70	°C
Storage temperate	ure range	Tstg				- 55		+150	

^{*} DVSS and AVSS must be supplied the same voltage, Vss. DVDD and AVDD must be supplied the same voltage, V_{DD}.

$$\begin{split} V_{SS} &= DVSS = AVSS \\ V_{DD} &= DVDD = AVDD \end{split}$$

2. Recommended Operating Range at Ta = $-30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Ratin	gs	Unit
				V _{DD} [V]	min	typ	max	
Operating voltage range	V _{DD}	DVDD, AVDD	0.98 μs ≤ tCYC tCYC ≤ 1.02 μs		4.5		5.5	V
Hold voltage	V_{HD}	DVDD, AVDD	RAMs and the registers hold data at HOLD mode.		2.0		5.5	
Input high voltage	V _{IH} (1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	0.6V _{DD}		V _{DD}	
	V _{IH} (2)	• Port 1 (Schmitt) • P72, 73 • HS, VS	Output disable	4.5 to 5.5	0.75V _{DD}		V_{DD}	
	V _{IH} (3)	• P70 port input / interrupt • P71 • RES (Schmitt)	Output N-channel transistor OFF	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V _{IH} (4)	P70 Watchdog timer input	Output N-channel transistor OFF	4.5 to 5.5	V _{DD} -0.5		V _{DD}	
	V _{IH} (5)	Port 9 DA0, 1 port input		4.5 to 5.5	0.7V _{DD}		V _{DD}	
Input low voltage	V _{IL} (1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	Vss		0.2V _{DD}	
	V _{IL} (2)	• Port 1 (Schmitt) • P72, 73 • HS, VS • Port 9	Output disable	4.5 to 5.5	Vss		0.25V _{DD}	
	VIL(3)	• P70 port input / interrupt • P71 • RES (Schmitt)	N-channel transistor OFF	4.5 to 5.5	Vss		0.25V _{DD}	
	V _{IL} (4)	P70 Watchdog timer input	N-channel transistor OFF	4.5 to 5.5	Vss		0.6V _{DD}	
	V _{IL} (5)	Port 9 DA0, 1 port input		4.5 to 5.5	V _{SS}		0.3V _{DD}	
Operation	tCYC(1)		OSD function	4.5 to 5.5	0.98	1	1.02	μs
cycle time	tCYC(2)		Except OSD function	4.5 to 5.5	0.98		30	

Parameter	Symbol	Pins	Conditions			Unit		
				V _{DD} [V]	min	typ	max	
Oscillation frequency range (Note 1)	FmCF	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.76	12	12.24	MHz
	FmLC	LC1, LC2	14.11 MHz (LC oscillation) Refer to Figure 2.	4.5 to 5.5		14.11		
	FmRC		RC oscillation	4.5 to 5.5	0.4	0.8	2.0	
Oscillation stable time period (Note 2)	tmsCF	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 3.	4.5 to 5.5		0.02	0.2	ms

Note 1: Refer to Table 1 and Table 2 for the oscillation constant.

Note 2: The oscillation stable time is a period necessary for the oscillation to be stable after the power first applied, the HOLD mode released and the main-clock oscillation stop instruction released.

Refer to the Figure 3 for details.

3. Electrical Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $\,V_{SS} = \,0\,\,V$

Parameter	Symbol	Pins	Conditions			Ratings	6	Unit
				V _{DD} [V]	min	typ	max	
Input high-level current	Ін(1)	Port 1 DA0, 1 Port 0 without pull-up MOS transistor.	Output disable Pull-up MOS transistor OFF VIN = VDD (including the off-leak current of the output transistor)	4.5 to 5.5			1	μА
	I _{IH} (2)	Port 7 without pull-up MOS transistor. Port 9 RES HS, VS	$V_{IN} = V_{DD}$	4.5 to 5.5			1	
Input low-level current	Iı∟(1)	Port 1 DA0, 1 Port 0 without pull-up MOS transistor.	Output disable Pull-up MOS transistor OFF V _{IN} = V _{SS} (including the off-leak current of the output transistor)	4.5 to 5.5	-1			
	I _I ∟(2)	Port 7 without pull-up MOS transistor. Port 9	V _{IN} = V _{SS}	4.5 to 5.5	-1			
	I _{IL} (3)	• RES • HS, VS	VIN = VSS	4.5 to 5.5	-1			
Output high-level voltage	V _{OH} (1)	CMOS output of ports 0, 1 DA0, 1	I _{OH} = -1.0 mA	4.5 to 5.5	V _{DD} -1			V
	V _{OH} (2)	R, G, B, BL	Iон = -0.1 mA	4.5 to 5.5	V _{DD} -0.5			
Output low-level	Vol(1)	Ports 0,1	I _{OL} = 10 mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	Ports 0,1 DA0,1	• I _{OL} = 1.6 mA • The total current of the ports 0, 1 is 40 mA or less.	4.5 to 5.5			0.4	
	Vol(3)	• R, G, B, BL • PWM0 to PWM9	IoL = 3.0 mA The current of any unmeasured pin is 3 mA or less.	4.5 to 5.5			0.4	
	Vol(4)	P70	I _{OL} = 1 mA	4.5 to 5.5			0.4	
Pull-up MOS transistor resistance	Rpu	• Ports 0, 1 • Port 7	V _{OH} = 0.9V _{DD}	4.5 to 5.5	13	38	80	kΩ
Output off-leakage current	loff	PWM0 to PWM9	Vout = 13.5 V	4.5 to 5.5			5	μА
Hysteresis voltage	VHIS	• Ports 0, 1 • Port 7 • RES • HS, VS	Output disable	4.5 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	• f = 1 MHz • Unmeasured input pins are set to V _{SS} level. • Ta = 25°C	4.5 to 5.5		10		pF

4. Serial Input/Output Characteristics at $Ta=-30^{\circ}C$ to $+70^{\circ}C$, $~V_{SS}=0~V$

	Parame	ter	Symbol	Pins	Conditions			Rating	S	Unit
						V _{DD} [V]	min	typ	max	
		Cycle	tCKCY(1)	• SCK0	Refer to Figure 5.	4.5 to 5.5	2			tCYC
	Input clock	Low- level pulse width	tCKL(1)	• SCLK0		4.5 to 5.5	1			
Serial clock	dul	High- level pulse width	tCKH(1)			4.5 to 5.5	1			
eria		Cycle	tCKCY(2)	• SCK0	• Use a pull-up	4.5 to 5.5	2			
0)	Output clock	Low- level pulse width	tCKL(2)	• SCLK0	resistor (1 kΩ) during open drain output. • Refer to Figure 5.	4.5 to 5.5		1/2tCKCY		
	Out	High- level pulse width	tCKH(2)			4.5 to 5.5		1/2tCKCY		
nput	Data time	set-up	tICK	SIO	Data set-up to SCK0 rising	4.5 to 5.5	0.1			μs
Serial input	Data time	hold	tCKI		Data hold from SCK0 rising Refer to Figure 5.	4.5 to 5.5	0.1			
Serial output	time		tCKO(1)	SO0	 Use a pull-up resistor (1kΩ) during open drain output. Data set-up to 	4.5 to 5.5			7/12tCYC +0.2	μs
Serial	time		tCKO(2)		SCK0 falling • Data hold from SCK0 falling • Refer to Figure 5.	4.5 to 5.5			1/3tCYC +0.2	

5. Pulse Input Conditions at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Rating	gs	Unit
				V _{DD} [V]	min	typ	max	
High/low-level pulse width	tPIH(1) tPIL(1)	• INT0,INT1 • INT2/T0IN	Interrupt acceptable Timer0-countable	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock is set to 1/1)	Interrupt acceptable Timer0-countable	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock is set to 1/16)	Interrupt acceptable Timer0-countable	4.5 to 5.5	32			
	tPIL(4)	RES	Reset acceptable	4.5 to 5.5	200			μs
	tPIH(5) tPIL(5)	HS, VS	Display position controllable Each active edge of HS, VS must be more than 1tCYC. Refer to Figure 7.	4.5 to 5.5	10			tCYC
Rising/falling time	tTHL tTLH	HS	Refer to Figure 7.	4.5 to 5.5			500	ns
Horizontal pull-in range	FH	HS	The monitor point in Figure 10 is 1/2 V _{DD} .	4.5 to 5.5	15.23	15.73	16.23	kHz

6. A/D Converter Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Rating	js	Unit
				V _{DD} [V]	min	typ	max	
Resolution	N			4.5 to 5.5		4		bit
Absolute precision	ET		(Note 3)	4.5 to 5.5		±1/4	±1/2	LSB
Conversion time	tCAD	From Vref selection to when the result is produced	1 bit conversion time = 2tCYC	4.5 to 5.5			1.96	μs
Reference current	I _{REF}		(Regulate the ladder resistor)	4.5 to 5.5		1.0	2.0	mA
Analog input voltage range	V _{AIN}	AN0 to AN3		4.5 to 5.5	Vss		V _{DD}	V
Analog port input	I _{AINH}	1	$V_{AIN} = V_{DD}$	4.5 to 5.5			1	μА
current	I _{AINL}		V _{AIN} = V _{SS}	4.5 to 5.5	-1			

Note 3 : Absolute precision excepts quantizing error ($\pm 1/2$ LSB).

7. D/A Converter Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Rating	S	Unit
				V _{DD} [V]	min	typ	max	
Resolution	NDA			4.5 to 5.5		7		bit
Absolute precision	ETDA		7 bits mode (Note 4)	4.5 to 5.5		±1.5	±3	LSB
Settling time	tSDA		(Note 5)	4.5 to 5.5		1.0		μs
Analog input voltage range	VAOUT	DA0 to DA1		4.5 to 5.5	Vss		V _{DD}	V
Output register	RODA		(Note 6)	4.5 to 5.5	1.7	4	7	kΩ

Note 4: Absolute precision excepts quantizing error ($\pm 1/2$ LSB).

 $Note \ 5: \quad Settling \ time \ refers \ to \ the \ time \ from \ when \ the \ D/A \ conversion \ instruction \ is \ executed \ to \ when \ the \ analog \ voltage \ output$

corresponding to the digital on the specific port is generated. (No load)

Note 6: D/A data = 80H

8. Current Drain Characteristics at Ta = $-30^{\circ} C$ to $+70^{\circ} C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
Current drain during basic operation (Note 7)	I _{DDOP} (1)	DVDD, AVDD	FmCF = 12 MHz Ceramic resonator oscillation FmLC = 14.11 MHz LC oscillation System clock: CF oscillation Internal RC oscillation stops	4.5 to 5.5		16	28	mA
Current drain in HALT mode (Note 7)	I _{DDHALT} (1)	DVDD, AVDD	HALT mode FmCF = 12 MHz Ceramic resonator oscillation FmLC = 0 Hz (oscillation stops) System clock: CF oscillation Internal RC oscillation stops.	4.5 to 5.5		5	10	mA
	I _{DDHALT} (2)	DVDD, AVDD	HALT mode FmCF = 0 MHz (oscillation stops) FmLC = 0 Hz (oscillation stops) System clock: Internal RC	4.5 to 5.5		400	800	μА
Current drain in HOLD mode (Note 7)	I _{DDHOLD} (1)	DVDD, AVDD	HOLD mode All oscillation stops.	4.5 to 5.5		0.05	20	μА

Note 7 : The currents of the output transistors and the pull-up MOS transistors are ignored.

Oscillation type	Manufacturer	Oscillator	C1	C2
12 MHz ceramic	Murata	CSA12.0MTZ	33 pF	33 pF
resonator oscillation		CST12.0MTW	on chip	
	Kyocera	KBR-12.0M	22 pF	22 pF

^{*} Both C1 and C2 must use a K rank ($\pm 10\%$) and SL characteristics.

Table 1. Ceramic Resonator Oscillation Guaranteed Constant (main-clock)

Oscillation type	L	C3	C4	
14.11 MHz LC oscillation	4.7 μΗ	33 pF	45 pF (Trimmer)	
	4.7 μH±10% (Variable)	33 pF	33 pF	

^{*} See Figures 10 and 11 for the oscillation frequency.

Table 2. LC Oscillation Guaranteed Constant (OSD clock)

- (Notes) Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest pattern length.
 - If you use other oscillators herein, we provide no guarantee for the characteristics.
 - Adjust the voltage of monitor point in Figure 10 to $1/2V_{DD}\pm10\%$ by the LC oscillation constant 'L' or 'C' to lock the PLL circuit.

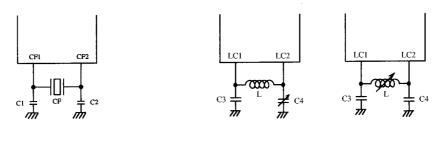


Figure 1 Ceramic Resonator Oscillation

main clock

Figure 2 LC Resonator Oscillation

OSD clock

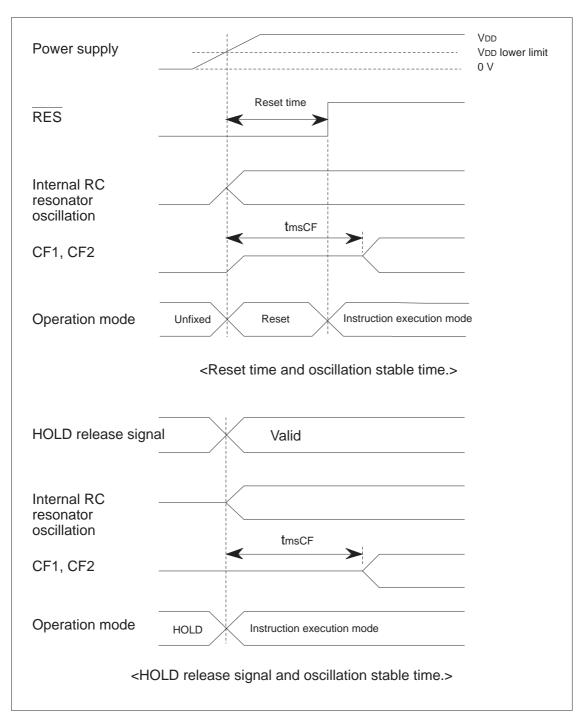
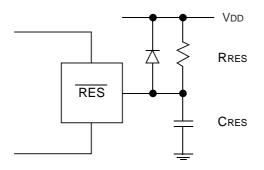
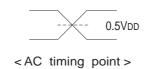




Figure 3 Oscillation Stable Time

(Note) Set the values of C_{RES} , R_{RES} so that the reset time is 200 μs or longer.

Figure 4 Reset Circuit

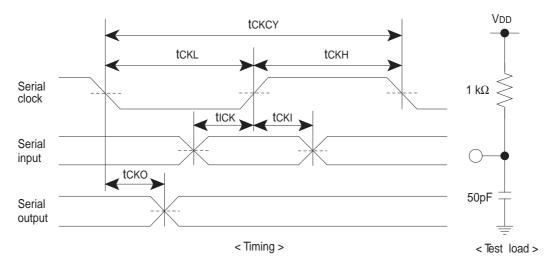


Figure 5 Serial Input/output Test Condition

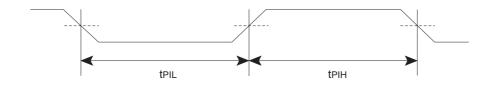


Figure 6 Pulse Input Timing Condition - 1

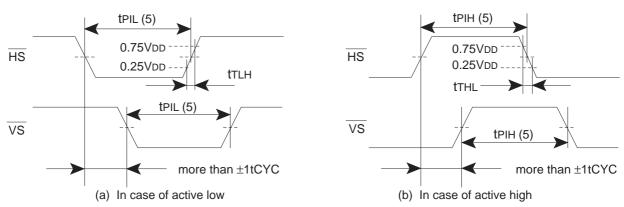
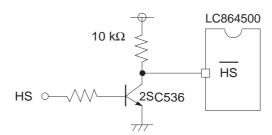



Figure 7 Pulse Input Timing Condition - 2

Figure 8 Recommended Interface Circuit

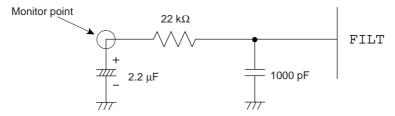
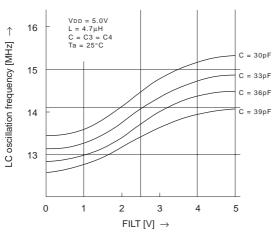



Figure 9 FILT Recommended Circuit

(Note) • Place the parts connected to the FILT terminal as close to the FILT as possible with the shortest pattern length on the board.

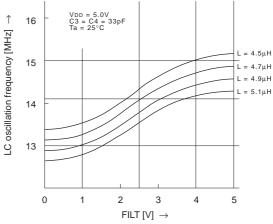


Figure 10 FILT-LC Oscillation Frequency (1)

Figure 11 FILT-LC Oscillation Frequency (2)

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.
- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.