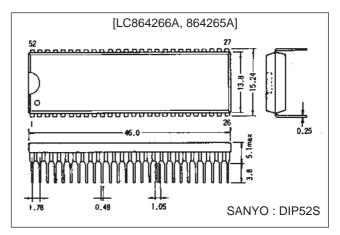
CMOS LSI

LC864266A, 864265A

8-bit Single Chip Microcontroller

Overview


The LC864266A/65A microcontrollers are 8-bit single chip microcontrollers with the following on-chip functional blocks:

- CPU : Operable at a minimum bus cycle time of 0.5 μs
- On-chip program ROM maximum capacity: 64 Kbytes
- On-chip look up table ROM maximum capacity : 64 Kbytes for LC864266A 32 Kbytes for LC864265A
- On-chip RAM capacity : 512 bytes
- CRT display RAM : 640×9 bits
- Closed-caption TV controller and the on-screen display controller
- 16-bit timer/counter
- 4-channel × 5-bit AD converter
- 8-bit synchronous serial-interface circuit
- Closed-caption data slicer
- 11-source 9-vectored interrupt system
- All of the above functions are fabricated on a single chip.

Package Dimensions

unit : mm

3128-DIP52S

Features

(1)	Read-only program memory (ROM) :	LC864266A LC864265A	65280 × 8 bits 65280 × 8 bits
(2)	Read-only look up table memory (ROM) :	LC864266A LC864265A	65536 × 8 bits 32768 × 8 bits
(3)	Random access memory (RAM) :	512×8 bits 640×9 bits (for CRT display	7)

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

(4) OSD functions

- Screen for display : 34 columns × 16 rows (standard character size)
- Display for RAM $: 640 \times 9$ bits (6 columns for control + 34 columns for display) \times 16 rows \times 9 bits
- 377 kinds of user specified characters
 - Caption/Text mode : $(9 \times 9 \text{ dots}) \times 125 \text{ kinds}$

OSD mode : $(12 \times 18 \text{ dots}) \times 127 \text{ characters} (127 \text{ characters can also be used in Caption/Text mode})$

• Various character attributes

Character colors	: 16 colors
Character background colors	: 16 colors
Fringe / shadow colors	: 16 colors
Full screen colors	: 16 colors
Fringe / shadow	
Rounding	
Underline	
Italic character (slanting)	

- Close-character attribute data changing available
- Vertical display start line setting in row units available (Row overlapping available)
- Horizontal display start position available
- Display mode specification by row (Display mode mixable)
- caption mode / text mode / OSD mode
- Eight kinds of character size

Horiz. × Vert. = (1×1) , (1×2) , (2×2) , (2×4) (1.5 × 1), (1.5 × 2), (3 × 2), (3 × 4)

- Shuttering and scrolling in row units available
- Horizontal character pitch selectable : 9 to 16 dots
- Polarity of <u>R</u>, <u>G</u>, <u>B</u>, I, BL output programmable
- Polarity of HS, VS input programmable

(5) Data slicer clock switching function

Clock source is selective from LC oscillation or ceramic resonator (or X'tal) oscillation.

(6) Bus cycle time / Instruction cycle time

The LC864132B/24B/20B/16B/12B microcontrollers are designed to read the ROM twice within one instruction cycle. It has about 1.7 times performance capability within the same instruction-cycle compared to our 4-bit microcontrollers (LC66000 series).

The bus cycle time indicates the speed to read ROM.

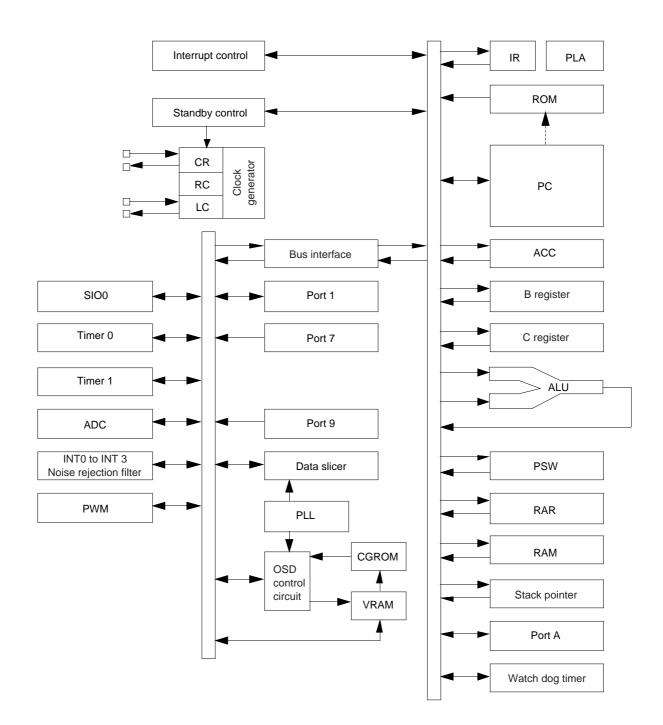
Bus cycle time Instruction cycle time		System clock oscillation	Oscillation frequency	Voltage	
0.49 μs 0.99 μs		Ceramic or Crystal	12.08 MHz	4.5 V to 5.5 V	
7.5 μs	15.0 μs	Internal RC	800k Hz	4.5 V to 5.5 V	

(7) Ports

Input/output port	: 2 ports (16 lines)
Input/output port programmable in nibble unit	: 1 port (8 lines)
(When the N-ch open drain output is selected, the	e data in a bit can be inputted)
Input/output port programmable in a bit	: 1 port (8 lines)
Input port	: 2 ports (8 lines)

- (8) A/D converter
 - 4-channel × 5-bit AD converter (converted with program)
- (9) PWM output
 - 10-channel × 7-bit PWM
- (10) Timer
 - Timer 0 : 16-bit timer / counter
 - 2-bit prescaler + 8-bit built-in programmable prescaler
 - Mode 0 : Two 8-bit timers with a programmable prescaler
 - Mode 1 : 8-bit timer with a programmable prescaler + 8-bit counter
 - Mode 2 : 16-bit timer with a programmable prescaler
 - Mode 3 : 16-bit counter
 - The resolution of timer is 1 tCYC.
 - Timer 1: 16-bit timer / PWM
 - Mode 0 : Two 8-bit timers
 - Mode 1 : 8-bit timer + 8-bit PWM
 - Mode 2 : 16-bit timer
 - Mode 3 : Variable-bit PWM (9 to 16 bits)
 - In Mode 0 and Mode 1, the resolution of Timer and PWM is tCYC.
 - In Mode 2 and Mode 3, the resolution of Timer and PWM selectable : tCYC or 1/2tCYC by program.
- (11) Remote control receiver circuit (shares with the P73/INT3/T0IN terminal)
 - Noise rejection function
 - Polarity switching
- (12) Watchdog timer

External RC circuit is required Interrupt or system reset is selectable


- (13) Interrupts
 - 11-source 9-vectored interrupts
 - 1. External Interrupt INT0
 - 2. External Interrupt INT1
 - 3. External Interrupt INT2, Timer/counter T0L (Lower 8 bits)
 - 4. External Interrupt INT3
 - 5. Timer/counter T0H (Upper 8 bits)
 - 6. Timer T1H, T1L
 - 7. Serial interface 0 (SIO0)
 - 8. Data slicer
 - 9. Vertical synchronous signal interrupt (VS)
 - Interrupt priority control available

Three interrupt priorities are supported (low, high and the highest) and multilevel nesting is possible. Low or high priority can be assigned to the interrupts from 3 to 10 listed above. For the external interrupt INTO and INT1, high or the highest priority can be set.

- (14) Sub-routine stack level
 - A maximum of 128 levels (Sets the stack inside a RAM.)

- (15) Multiplication/division instruction
 - 16 bits \times 8 bits (7 instruction cycle times)
 - 16 bits / 8 bits (7 instruction cycle times)
- (16) Three oscillation circuits
 - On-chip RC oscillation circuit for the system clock
 - On-chip ceramic resonator oscillation circuit for the system clock
 - On-chip LC oscillation circuit for the CRT synchronization
- (17) Standby function
 - HALT mode function
 - The HALT mode is used to reduce the power dissipation. In this operation mode, the program execution is stopped. This mode can be released by the interrupt request signals or the system reset.
 - HOLD mode
 - The HOLD mode is used to stop oscillations ; the RC (internal) and the ceramic oscillations.
 - This mode can be released by the following conditions.
 - Pull the reset terminal $(\overline{\text{RES}})$ to low level.
 - Feed the selected level to either P70/INT0 or P71/INT1.
- (18) Factory shipment
 - DIP52S
- (19) Development Tools
 - Evaluation (EVA) chip
- : LC866098
- EPROM attached a window
- Emulator
- : LC86E4266
 - : EVA86000 (Main) + ECB864200 (Evaluation board) + POD864100 (Pod)

System Block Diagram

Pin Assignment

P10/S00	1	52 🛛	PA7
P11/SI0/SB0	2	51 🛛	PA6
P12/SCK0	Δ 3	50 🛛	PA5
P13	4	49 🛛	PA4
P14	Δ 5	48 🛛	PA3
P15	6	47 🛛	PA2
P16	Γ 7	46 🛛	PA1
P17/PWM	4 8	45 🛛	PAO
DVSS	9	44 🛛	P73/INT3/T0IN
CF1	L 10	43 🗌	P72/INT2/T0IN
CF2	L 11	42 🛛	P71/INT1
DVDD	12	41 🛛	P70/INT0
P90/AN0	L 13	40 🛛	PWM9
P91/AN1	14	39 🛛	PWM8
P92/AN2	L 15	38 🛛	PWM7
P93/AN3	16	37 🛛	РШМб
RES	4 17	36 🛛	PWM5
LC1	L 18	35 🛛	PWM4
LC2	19	34 🛛	PWM3
FILT	L 20	33 🛛	PWM2
AVDD	4 21	32 🛛	PWM1
AVSS	22	31 🛛	PWM0
CVIN	23	30 🛛	BL
VS	24	29 🛛	В
HS	25	28 🛛	G
I	26	27 🛛	R
	L		

Top view

Pin Description

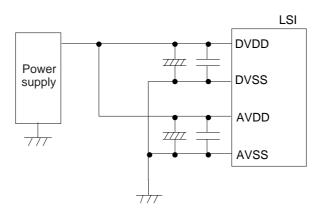
• Port option can be specified in bit units except the pull-up resistor selection of port 0.

Pin Description Table

Pin name	Pin No.	I/O	Function description	Option
DVSS	9	_	Negative power supply for digital circuit	
CF1	10	Input	Input terminal for ceramic resonator	
CF2	11	Output	Output terminal for ceramic resonator	
DVDD	12	_	Positive power supply for digital circuit	
RES	17	Input	Reset terminal	
LC1	18	Input	LC oscillation circuit input terminal	
LC2	19	Output	LC oscillation circuit output terminal	
FILT	20	Output	Filter terminal for PLL	
AVDD	21	_	Positive power supply for analog circuit	
AVSS	22	_	Negative power supply for analog circuit	
CVIN	23	Input	Video signal input terminal	
VS	24	Input	Vertical synchronization signal input terminal	
HS	25	Input	Horizontal synchronization signal input terminal	
I	26	Output	Image intensity output	
R	27	Output	Red (R) output terminal of RGB image output	
G	28	Output	Green (G) output terminal of RGB image output	
В	29	Output	Blue (B) output terminal of RGB image output	
BL	30	Ouptut	Fast blanking control signal Switch TV image signal and caption/OSD image signal	
PWM0 to PWM9	31 to 40	Output	PWM0 to 9 output terminal 15 V withstand	
Port 1 P10 to P17	1 to 8	I/O	8-bit Input/output port Input/output can be specified in bit units. Other function P10 SIO0 data output P11 SIO0 data input / bus input/output P12 SIO0 clock input/output P17 Timer 1 (PWM) output	Output Format CMOS/Nch-OD (in bit units)
Port 7 P70 P71 to P73	41 42 to 44	I/O Input	4-bit input port Other function P70 INT0 input/HOLD release input/ Nch-transistor output for watchdog timer P71 INT1 input/HOLD release input P72 INT2 input/timer 0 event input P73 INT3 input (noise rejection filter attached input/ timer 0 event input) Interrupt receiver formats / vector addresses	Pull-up resistor provided/ not provided (in bit units)
			Rising Falling Rising/falling H level L level	Vector
			INTO enable enable disable enable enable	03H
			INT1 enable enable disable enable enable	OBH
			INT2 enable enable enable disable disable	13H

Continued on next page.

LC864266A, 864265A


Continued from preceding page.

Pin name	Pin No.	I/O	Function Description	Option
Port9			4-bit input port	
P90 to P93	13 to 16	Input	Other functions AD converter input port (4 lines)	
Port A			8-bit Input/output port	
PA0 to PA7	45 to 52	I/O	Input/output can be specified in nibble units	

- Any port option can be selected in bit units.
- Port 0 portion : Pull-up resistor is provided when CMOS output is selected.
 - The pull-up resister is not provided when N-ch Open Drain is selected.
- Port 1 option : Programmable pull-up resister is provided when any output form is selected.
- Port status during reset

Terminal	I/O	Pull-up resistor status at selecting pull-up option
Port 1	Input	Programmable pull-up resistor OFF
Port 7	Input	Fixed pull-up resistor provided

• AVDD and AVSS are the power supply terminals for built-in analog circuit, while DVDD and DVSS are for built-in digital circuit. Connect them like the following figure to reduce the mutual noise-influence.

Specifications

1. Absolute Maximum Ratings at $\,Ta=25^\circ C,\,\,V_{SS}=0$ V

Parar	neter	Symbol	Pins	Conditions			Unit		
					Vdd [V]	Ratings min typ max			
Supply v	oltage	V _{DD} max	DVDD, AVDD	DVDD = AVDD		-0.3 7.0		V	
Input vol	tage	Vı(1)	• P71, 72, 73 • Port 9 • RES, HS, VS, CVIN			-0.3		V _{DD} +0.3	
Output v	voltage	Vo(1)	R, G, B, BL, I, FILT			-0.3		V _{DD} +0.3	
		Vo(2)	PWM0 to PWM9			-0.3		15	
Input/output voltage		Vio	Ports A, 1, P70			-0.3		V _{DD} +0.3	
High- level output	Peak output current	I _{ОРН} (1)	Ports A, 1	Pull-up MOS transistor outputAt each pin		-2			mA
current		І _{ОРН} (2)	Ports A, 1	CMOS outputAt each pin		-4			
		Іорн(3)	R, G, B, BL, I	CMOS outputAt each pin		-5			
	Total output current	∑l _{OAH} (1)	Port 1	The total of all pins		-10			
		∑l _{OAH} (2)	Port A	The total of all pins		-10			
		∑l _{OAH} (3)	R, G, B, BL, I	The total of all pins		-15			
Low-	Peak	I _{OPL} (1)	Ports A, 1	At each pin				20	
level output	output current	I _{OPL} (2)	P70	At each pin				30	
current	ourroint	I _{OPL} (3)	• R, G, B, BL, I • PWM0 to PWM9	At each pin				5	
	Total	$\Sigma I_{OAL}(1)$	Port A	The total of all pins				40	
	output current	$\Sigma I_{OAL}(2)$	Port 1, P70	The total of all pins				40	
	current	Σ Ioal(3)	R, G, B, BL, I	The total of all pins				15	
		Σ Ioal(4)	PWM0 to PWM9	The total of all pins				30	
Maximun dissipatio		Pd max	DIP52S	Ta = −30 to +70°C				430	mW
Operatin temperat	g ture range	Topr				-30		+70	°C
Storage temperat	ure range	Tstg				-55		+125	

* DVSS and AVSS must be supplied the same voltage, Vss.
 DVDD and AVDD must be supplied the same voltage, V_{DD}.

$$\label{eq:VSS} \begin{split} V_{SS} &= DVSS = AVSS \\ V_{DD} &= DVDD = AVDD \end{split}$$

2. Recommended Operating Range at $Ta=-30^{\circ}C$ to $+70^{\circ}C,~V_{SS}=0~V$

Parameter	Symbol	Pins	Conditions			Rating	6	Unit
				V _{DD} [V]	min	typ	max	
Operating supply voltage range	V _{DD}	DVDD, AVDD	0.98 μs ≤ tCYC tCYC ≤ 1.02 μs		4.5		5.5	V
Hold voltage	V _{HD}	DVDD, AVDD	RAMs and the registers hold data at HOLD mode.		2.0		5.5	
Input high	Vін(1)	Port A (Schmitt)	Output disable	4.5 to 5.5	0.6Vdd		Vdd	
voltage	V _{IH} (2)	• Port 1 (Schmitt) • <u>P72, 73</u> • HS,VS	Output disable	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	Vін(3)	• P70 port input / interrupt • <u>P71</u> • RES (Schmitt)	Output N-channel transistor OFF	4.5 to 5.5	0.75V _{DD}		Vdd	
-	ViH(4)	P70 Watchdog timer input	Output N-channel transistor OFF	4.5 to 5.5	V _{DD} -0.5		Vdd	
	V _{IH} (5)	Port 9 port input		4.5 to 5.5	$0.7V_{DD}$		V_{DD}	
Input low	VIL(1)	Port A (Schmitt)	Output disable	4.5 to 5.5	Vss		0.2Vdd	
voltage	VIL(2)	• Port 1 (Schmitt) • P72, 73 • HS,VS • Port 9	Output disable	4.5 to 5.5	Vss		0.25V _{DD}	
	VIL(3)	P70 port input / interrupt P71 RES (Schmitt)	N-channel transistor OFF	4.5 to 5.5	Vss		0.25Vdd	
	VIL(4)	P70 Watchdog timer input	N-channel transistor OFF	4.5 to 5.5	Vss		0.6Vdd	
	Vı∟(5)	Port 9 port input		4.5 to 5.5	Vss		0.3V _{DD}	
CVIN input amplitude	V _{CVIN}	CVIN		5.0	1Vp-p –3dB	1Vp-p	1∨p-p +3 dB	Vp-р
Operation	tCYC(1)		OSD function	4.5 to 5.5	0.97	1	1.02	μs
cycle time	tCYC(2)		Except OSD function	4.5 to 5.5	0.97		40	

* Vp-p : Peak-to-peak voltage

LC864266A, 864265A

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
Oscillation frequency range (Note 1)	FmCF (1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.76	12	12.24	MHz
	FmCF (2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 1.		11.84	12.08	12.32	
	FmLC	LC1, LC2	14.11 MHz (LC oscillation) Refer to Figure 2.	4.5 to 5.5		14.11		
	FmRC		RC oscillation	4.5 to 5.5	0.3	0.8	2.0	
Oscillation stable time period	tmsCF (1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 3.	4.5 to 5.5		0.02	0.2	ms
(Note 2)	tmsCF (2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 3.			0.02	0.2	

(Note 1) Refer to Table 1 and Table 2 for the oscillation constant.

(Note 2) The oscillation stable time is a period necessary for the oscillation to be stable after the power first applied, the HOLD mode released and the main-clock oscillation stop instruction released.

Refer to the Figure 3 for details.

3. Electrical Characteristics at $Ta=-30^{\circ}C$ to $+~70^{\circ}C$, $V_{SS}=~0~V$

Parameter	Symbol	Pins	Conditions	Conditions		Ratings		
				Vdd [V]	min	typ	max	
Input high-level current	lı⊣(1)	• Port 1 • Port A	 Output disable Pull-up MOS transistor OFF V_{IN} = V_{DD} (including the off-leak current of the output transistor) 	4.5 to 5.5			1	μΑ
	I _{IH} (2)	Port 7 without pull-up MOS transistor Port 9 RES HS,VS	V _{IN} = V _{DD}	4.5 to 5.5			1	
Input low-level current	lı∟(1)	• Port 1 • Port A	 Output disable Pull-up MOS transistor OFF V_{IN} = V_{SS} (including the off-leak current of the output transistor) 	4.5 to 5.5	-1			
	l⊫(2)	Port 7 without pull-up MOS transistor Port 9	V _{IN} = V _{SS}	4.5 to 5.5	-1			
	Iı∟(3)	• RES • HS,VS	VIN = VSS	4.5 to 5.5	-1			
Output high-level voltage	V _{OH} (1)	CMOS output of ports A, 1	I _{OH} = -1.0 mA	4.5 to 5.5	V _{DD} -1			V
	Vон(2)	R, G, B, BL, I	I _{OH} = -0.1 mA	4.5 to 5.5	V _{DD} -0.5			
Output low-level	Vol(1)	Ports A, 1	I _{OL} = 10 mA	4.5 to 5.5			1.5	
voltage	Vol(2)	Ports A, 1	 I_{OL} = 1.6 mA The total current of the ports A, 1 is not over 40 mA. 	4.5 to 5.5			0.4	
	Vol(3)	• R, G, B, BL, I • PWM0 to PWM9	 I_{OL} = 3.0 mA The current of any unmeasured pins is not over 3 mA. 	4.5 to 5.5			0.4	
-	Vol(4)	P70	I _{OL} = 1 mA	4.5 to 5.5			0.4	
Pull-up MOS transistor resistance	Rpu	Ports A, 1 Port 7	V _{OH} = 0.9V _{DD}	4.5 to 5.5	13	38	80	kΩ
Output off-leakage current	IOFF	PWM0 to PWM9	V _{OUT} = 13.5 V	4.5 to 5.5			5	μA
Hysteresis voltage	VHIS	• Ports A, 1 • Port 7 • <u>RES</u> • <u>HS</u> ,VS	Output disable	4.5 to 5.5		0.1Vdd		V

Parameter	Symbol	Pins	Conditions	Ratings		6	Unit	
				V _{DD} [V]	min	typ	max	
Input clamp voltage	Vclmp	CVIN		5.0	2.3	2.5	2.7	V
Pin capacitance	CP	All pins	 f = 1 MHz Unmeasured input pins are set to Vss level. Ta = 25°C 	4.5 to 5.5		10		pF

4. Serial Input/Output Characteristics at $Ta=-30^{\circ}C$ to $+70^{\circ}C$, $~V_{SS}=0~V$

P	aramet	er	Symbol	Pins	Conditions			Ratings	3	Unit
						V _{DD} [V]	min	typ	max	
	Cycle	Cycle	tCKCY(1)	• SCK0	Refer to Figure 5.	4.5 to 5.5	2			tCYC
	Input clock	Low- level pulse width	tCKL(1)	• SCLK0		4.5 to 5.5	1			
Serial clock	dul	High- level pulse width	tCKH(1)			4.5 to 5.5	1			
erial	l clock	Cycle	tCKCY(2)	• SCK0	Use an external	4.5 to 5.5	2			
N N		Low- level pulse width	tCKL(2)	- • SCLK0	 SCLK0 pull-up resistor (1 kΩ) during open drain output Refer to Figure 5. 	4.5 to 5.5		1/2tCKCY		
	Outp	High- level pulse width	tCKH(2)	-		4.5 to 5.5		1/2tCKCY		
nput	Data s time	set-up	tICK	• SI0	Data set-up to SCK0 rising	4.5 to 5.5	0.1			μs
Serial input	Data I time	nold	tCKI	_	 Data hold from SCK0 rising Refer to Figure 5. 	4.5 to 5.5	0.1			
output	time (Exter	it delay mal clock)	tCKO(1)	• SO0	 Use an external pull-up resistor (1 kΩ) during open drain output. 	4.5 to 5.5			7/12tCYC +0.2	μs
Serial output	time (Interr	nal clock)	tCKO(2)		 Data set-up to SCK0 falling Data hold from SCK0 falling Refer to Figure 5. 	4.5 to 5.5			1/3tCYC +0.2	

5. Pulse Input Conditions at Ta = -30° C to $+70^{\circ}$ C, V_{SS} = 0 V

Parameter	Symbol	Pins	Conditions			Rating	6	Unit
				V _{DD} [V]	min	typ	max	
High/low-level pulse width	tPIH(1) tPIL(1)	• INT0, INT1 • INT2/T0IN	 Interrupt acceptable Timer/counter 0 pulse countable 	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock is selected to 1/1)	 Interrupt acceptable Timer/counter 0 pulse countable 	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock is selected to 1/16)	 Interrupt acceptable Timer/counter 0 pulse countable 	4.5 to 5.5	32			
	tPIL(4)	RES	Reset acceptable	4.5 to 5.5	200			μs
	tPIH(5) tPIL(5)	HS, VS	Display position controllable Each active edge of HS, VS must be more than 1tCYC. Refer to Figure 7.	4.5 to 5.5	10			tCYC
Rising/falling time	tTHL tTLH	HS	Refer to Figure 7.	4.5 to 5.5			500	ns
Horizontal pull-in range	FH	HS	The monitor point in Figure 10 is $1/2 V_{DD}$.	4.5 to 5.5	15.23	15.73	16.23	kHz

6. A/D Converter Characteristics at Ta = -30° C to $+70^{\circ}$ C, V_{SS} = 0 V

Parameter	Symbol	Pins	Conditions	Conditions		Ratings		Unit
				V _{DD} [V]	min	typ	max	
Resolution	Ν			4.5 to 5.5		5		bit
Absolute precision	ET		(Note 3)	4.5 to 5.5		±1/4	±3/4	LSB
Conversion time	tCAD	From selecting Vref to resulting	1 bit conversion time = 2tCYC	4.5 to 5.5			1.96	μs
Reference current	I _{REF}		(Regulate the ladder resistor)	4.5 to 5.5		1.0	2.0	mA
Analog input voltage range	V _{AIN}	AN0 to AN3		4.5 to 5.5	V_{SS}		V_{DD}	V
Analog port input	Iainh	-	$V_{AIN} = V_{DD}$	4.5 to 5.5			1	μA
current	I _{AINL}		V _{AIN} = V _{SS}	4.5 to 5.5	-1			

(Note 3) Absolute precision excepts quantizing error ($\pm 1/2$ LSB).

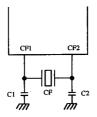
7. Current Drain Characteristics at $Ta=-30^{\circ}C$ to $+70^{\circ}C$, $\,V_{SS}=0$ V

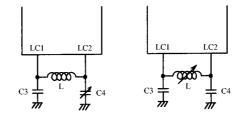
Parameter	Symbol	Pins	Conditions			Ratings	3	Unit
			V _{DD} [V]		min	typ	max	
Current drain during basic operation (Note 4)	Iddop(1)	DVDD, AVDD	 FmCF = 12 MHz Ceramic resonator oscillation FmLC = 14.11 MHz LC oscillation System clock : CF oscillation Internal RC oscillation stops 	4.5 to 5.5		21	32	mA
Current drain in HALT mode (Note 4)	Iddhalt(1)	DVDD, AVDD	 HALT mode FmCF = 12 MHz or 12.08 MHz Ceramic resonator oscillation FmLC = 0 Hz (oscillation stops) System clock : CF oscillation Internal RC oscillation stops. 	4.5 to 5.5		5	10	mA
	I _{DDHALT} (2)	DVDD, AVDD	 HALT mode FmCF = 0 MHz (oscillation stops) FmLC = 0 Hz (oscillation stops) System clock : Internal RC 	4.5 to 5.5		300	800	μA
Current drain in HOLD mode (Note 4)	IDDHOLD	DVDD, AVDD	HOLD mode All oscillation stops.	4.5 to 5.5		0.05	20	μΑ

(Note 4) The currents of the output transistors and the pull-up MOS transistors are ignored.

Oscillation type	Manufacturer	Oscillator	C1	C2
12 MHz ceramic resonator	Murata	CSA12.0MTZ	33 pF	33 pF
oscillation		CST12.0MTW	on o	chip
	Kyocera	KBR-12.0M	33 pF	33 pF
12.08 MHz ceramic	Murata	CSA 12.0MTZ021	33 pF	33 pF
resonator oscillation	Kyocera	KBR-12.08M	33 pF	33 pF

* Both C1 and C2 must use an K rank ($\pm 10\%$) and an SL characteristics.


Table 1. Ceramic Resonator Oscillation Guaranteed Constant (Main-clock)


Oscillation	L	C3	C4	
14.11 MHz LC oscillation	4.7 μΗ	33 pF	45 pF (Trimmer)	
	4.7 μH±10% (Variable)	33 pF	33 pF	

* See Figure 11, 12 for LC oscillation characteristics.

Table 2. LC Oscillation Guaranteed Constant (OSD clock)

- (Notes) Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest pattern length.
 - If you use other oscillators than those shown above, we provide no guarantee for the characteristics.
 - Adjust the voltage of monitor point in figure 10 to 1/2 $V_{DD}\pm10\%$ by the LC oscillation constant 'L' or 'C' to lock the PLL circuit.

Main clock
Figure 1 Ceramic Resonator Oscillation

OSD clock
Figure 2 LC Resonator Oscillation 1, 2

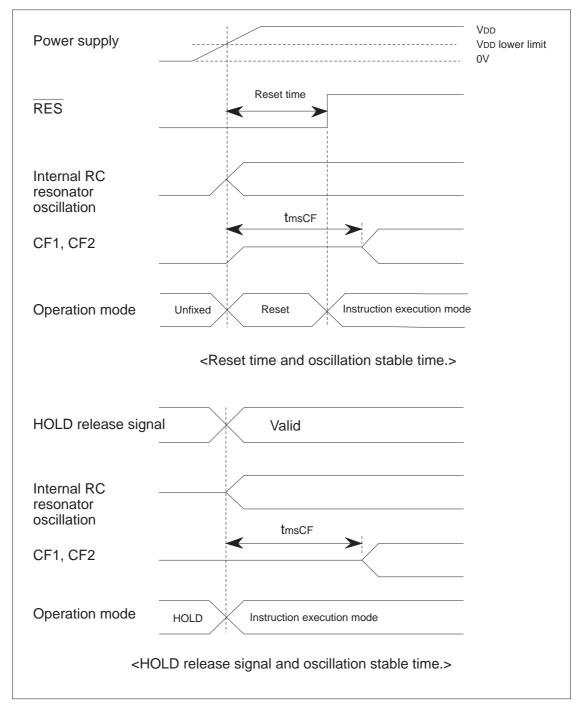


Figure 3 Oscillation Stable Time

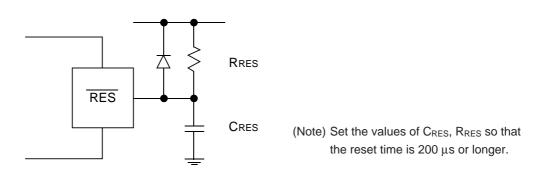


Figure 4 Reset Circuit

< AC timing point >



Figure 5 Serial Input/output Test Condition

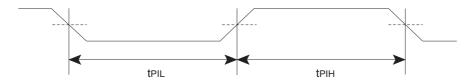


Figure 6 Pulse Input Timing Condition - 1

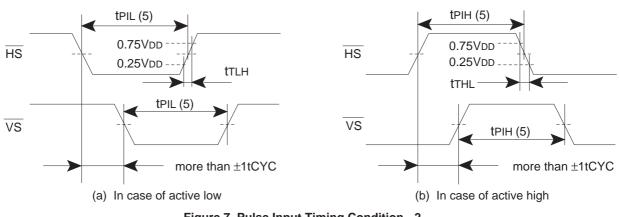


Figure 7 Pulse Input Timing Condition - 2

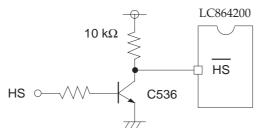


Figure 8 Recommended Interface Circuit

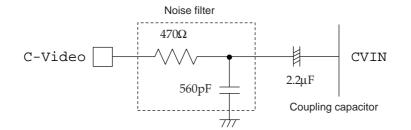


Figure 9 CVIN Recommended Circuit

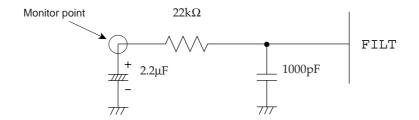


Figure 10 FILT Recommended Circuit

(Note) • Place the parts connected FILT terminal as close to the FILT as possible with the pattern length on the board.

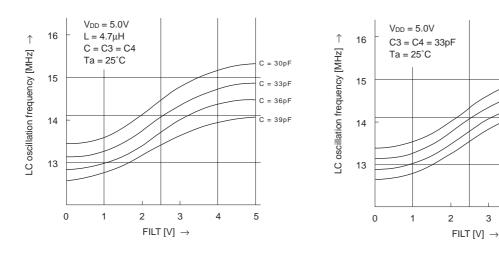


Figure 11 FILT-LC Oscillation Frequency (1)

3

4

L = 4.5µH

_ L = 4.7μH L = 4.9µH

 $L = 5.1 \mu H$

5

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.
- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.