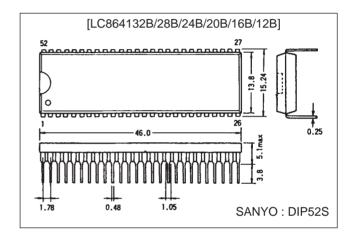


8-bit Single Chip Microcontroller

Overview

The LC864132B/28B/24B/20B/16B/12B microcontrollers are 8-bit single chip microcontrollers with the following on-chip functional blocks:


- CPU : Operable at a minimum bus cycle time of 0.5 μs
- On-chip ROM maximum capacity: 32K bytes
- On-chip RAM capacity: 384 bytes
- CRT display RAM: 640 × 9 bits
- Closed-caption TV controller and the on-screen display controller
- 16-bit timer/counter
- 4-channel × 4-bit A/D Converter
- 8-bit synchronous serial-interface circuit
- · Closed-caption data slicer
- 12-source 10-vectored interrupt system

All of the above functions are fabricated on a single chip.

Package Dimensions

unit: mm

3128-DIP52S

Features

(1)	Read-only memory (ROM):	LC864132B	32768×8 bits
		LC864128B	28672×8 bits
		LC864124B	24576×8 bits
		LC864120B	20480×8 bits
		LC864116B	16384×8 bits
		LC864112B	12288×8 bits

(2) Random access memory (RAM): 384 × 8 bits

640 × 9 bits (for CRT display)

(3) OSD functions

• Screen for display : 34 columns × 16 rows (at standard character size)

• Display for RAM : 640×9 bits (6 columns for control + 34 columns for display) \times 16 rows \times 9 bits

• 252 kinds of user specified characters

125 kinds 9×9 dots 127 kinds 12×18 dots Various character attributes

Character colors : 16 colors
Character background colors : 16 colors
Fringe / shadow colors : 16 colors
Full screen colors : 16 colors

Fringe / shadow Rounding Underline

Italic character (slanting)

- Close-character attribute data changing available
- Vertical display start line setting in row unit available (Row overlapping available)
- Horizontal display start position setting available
- Display mode specification by row (Display mode mixable)

caption mode / text mode / OSD mode

• Eight kinds of character size

Horiz. × Vert. =
$$(1 \times 1)$$
, (1×2) , (2×2) , (2×4)
 (1.5×1) , (1.5×2) , (3×2) , (3×4)

- Shuttering and scrolling in row unit available
- Horizontal character pitch selectable: 9 to 16 dots
- Polarity of R, G, B, I, BL output programmable
- Polarity of HS, VS input programmable

(4) Bus cycle time / instruction-cycle time

The LC864132B/24B/20B/16B/12B microcontrollers are designed to read the ROM twice within one instruction cycle. It has about 1.7 times performance capability within the same instruction-cycle compared to our 4-bit microcontrollers (LC66000 series).

The bus cycle time indicates the speed to read ROM.

Bus cycle time	Instruction cycle time	System clock oscillation	Oscillation frequency	Voltage
0.5 μs	1.0 μs	Ceramic (CR)	12 MHz	4.5 V to 5.5 V
7.5 µs	15.0 μs	Internal RC	800 kHz	4.5 V to 5.5 V

(5) Ports

Input/output port : 2 ports (16 lines)
 Input/output port programmable in nibble unit : 1 port (8 lines)
 (When the N-ch open drain output is selected, the data in a bit can be inputted.)
 Input/output port programmable in a bit : 1 port (8 lines)
 Input Port : 2 ports (8 lines)

(6) A/D converter

- 4 channel × 4-bit A/D converter (converted with program)

(7) PWM output

- 10-channel × 7-bit PWM

(8) Timer

- Timer 0: 16-bit timer / counter

2-bit prescaler + 8-bit built-in programmable prescaler

Mode 0: Two 8-bit timers with a programmable prescaler

Mode 1: 8-bit timer with a programmable prescaler + 8-bit counter

Mode 2: 16-bit timer with a programmable prescaler

Mode 3: 16-bit counter

The resolution of timer is 1 tCYC.

- Timer 1: 16-bit timer / PWM

Mode 0: Two 8-bit timers

Mode 1: 8-bit timer + 8-bit PWM

Mode 2: 16-bit timer

Mode 3: Variable-bit PWM (9 to 16 bits)

In Mode 0 and Mode 1, the resolution of Timer and PWM is tCYC.

In Mode 2 and Mode 3, the resolution of Timer and PWM selectable: tCYC or 1/2tCYC

by program.

- (9) Remote control receiver circuit (shares with the P73/INT3/T0IN terminal)
 - Noise rejection function
 - Polarity switching

(10) Watchdog timer

External RC circuit is required

Interrupt or system reset is selectable

(11) Interrupts

- 12-source 10-vectored interrupts
 - 1. External interrupt INT0
 - 2. External interrupt INT1
 - 3. External interrupt INT2, Timer/counter T0L (Lower 8 bits)
 - 4. External interrupt INT3
 - 5. Timer/counter T0H (Upper 8 bits)
 - 6. Timer T1H, T1L
 - 7. Serial interface 0 (SIO0)
 - 8. Data slicer
 - 9. Vertical synchronous signal interrupt (\overline{VS})

10. Port 0

- Interrupt priority control available

Three interrupt priorities are supported (low, high and the highest) and multilevel nesting is possible. Low or high priority can be assigned to the interrupts from 3 to 10 listed above. For the external interrupt INT0 and INT1, high or the highest priority can be set.

(12) Sub-routine stack level

- A maximum of 128 levels (Sets the stack inside a RAM.)

(13) Multiplication/division instruction

- 16 bits × 8 bits (7 instruction cycle times)
- 16 bits / 8 bits (7 instruction cycle times)

(14) 3 oscillation circuits

- On-chip RC oscillation circuit for the system clock
- On-chip CF oscillation circuit for the system clock
- On-chip LC oscillation circuit for the CRT synchronization

(15) Standby function

- HALT mode function

The HALT mode is used to reduce the power dissipation. In this operation mode, the program execution is stopped. This mode can be released by the interrupt request signals or the system reset.

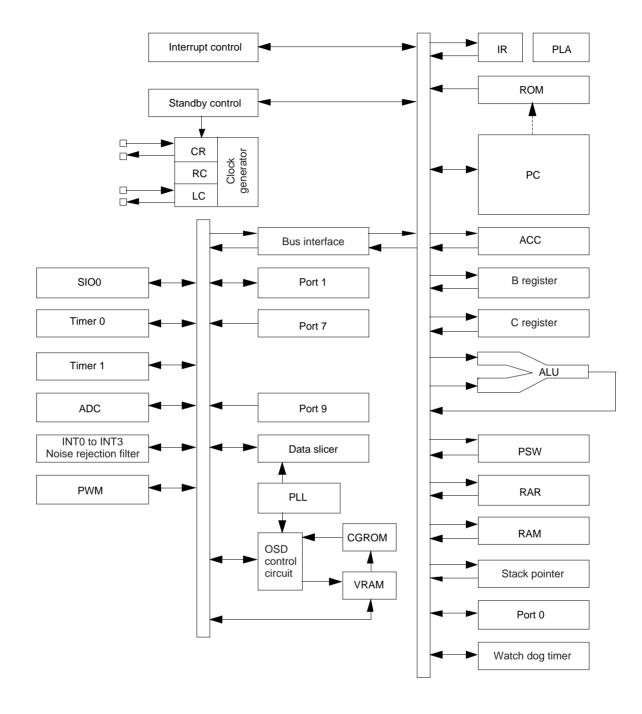
- HOLD mode

The HOLD mode is used to stop oscillations; the RC (internal) and the ceramic oscillations.

This mode can be released by the following conditions.

- Pull the reset terminal (\overline{RES}) to a low level.
- Feed the selected level to either P70/INT0 or P71/INT1.
- Feed the Port 0 interrupt condition.

(16) Factory shipment


DIP52S

(17) Development Tool

Evaluation chip : LC866098
 EPROM with a window : LC86E4164
 One time : LC86P4164

- Emulator : EVA86000 (Main) + ECB864100 (Evaluation board) + POD864100 (Pod)

System Block Diagram

Pin Assignment

P10/S00	Ц	1	52		P07
P11/SI0/SB0	Ц	2	51		P06
P12/SCK0	Д	3	50		P05
P13	Ц	4	49		P04
P14	Д	5	48	þ	P03
P15	Д	6	47		P02
P16	Ц	7	46		P01
P17/PWM	Д	8	45	þ	P00
DVSS	Д	9	44		P73/INT3/T0IN
CF1	Ц	10	43		P72/INT2/T0IN
CF2	Д	11	42	þ	P71/INT1
DVDD	Ц	12	41		P70/INT0
P90/AN0	Ц	13	40		PWM9
P91/AN1	Ц	14	39		PWM8
P92/AN2	Ц	15	38	þ	PWM7
P93/AN3	Ц	16	37		PWM6
RES	Ц	17	36		PWM5
LC1	Ц	18	35		PWM4
LC2	Ц	19	34		PWM3
FILT	Ц	20	33		PWM2
AVDD	Ц	21	32		PWM1
AVSS	Ц	22	31		PWM0
CVIN	Ц	23	30		BL
VS	d	24	29	þ	В
HS	Ц	25	28		G
I	Д	26	27	р	R
	L			1	

Top veiw

Pin Description

• Port option can be specified in bit units except the pull-up resistor selection of port 0.

Pin Description Table

Pin name	Pin No.	I/O	Function description Option
DVSS	9	_	Negative power supply for digital circuit
CF1	10	Input	Input terminal for ceramic resonator
CF2	11	Output	Output terminal for ceramic resonator
DVDD	12	_	Positive power supply for digital circuit
RES	17	Input	Reset terminal
LC1	18	Input	LC oscillation circuit input terminal
LC2	19	Output	LC oscillation circuit output terminal
FILT	20	Output	Filter terminal for PLL
AVDD	21	_	Positive power supply for analog circuit
AVSS	22	_	Negative power supply for analog circuit
CVIN	23	Input	Video signal input terminal
VS	24	Input	Vertical synchronization signal input terminal
HS	25	Input	Horizontal synchronization signal input terminal
I	26	Output	Image intensity output
R	27	Output	Red (R) output terminal of RGB image output
G	28	Output	Green (G) output terminal of RGB image output
В	29	Output	Blue (B) output terminal of RGB image output
BL	30	Ouptut	Fast blanking control signal Switch TV image signal and caption/OSD image signal
PWM0 to PWM9	31 to 40	Output	PWM0 to 9 output terminals 15 V withstand
Port 0 P00 to P07	45 to 52	I/O	8-bit Input/output ports Input/output can be specified in nibble unit HOLD release input Interrupt input Output Format CMOS/Nch-OD (in bit units)
Port 1 P10 to P17	1 to 8	I/O	8-bit Input/output ports Input/output can be specified in bit units Other functions P10 SIO0 data output P11 SIO0 data input/bus input/output P12 SIO0 clock input/output P17 Timer 1 (PWM) output
Port 7			4-bit input port Pull-up resistor
P70 P71 to P73	41 42 to 44	I/O Input	Other functions provided/ P70 INTO input/HOLD release input/ not provided
	12 00 17	pac	P70 Input/IOED release input Nch-transistor output for watchdog timer P71 INT1 input/HOLD release input P72 INT2 input/timer 0 event input P73 INT3 input (noise rejection filter attached input/ timer 0 event input) (in bit units)
			Interrupt receiver format vector address
			Rising Falling Rising/falling H level L level Vector
			INTO enable enable disable enable enable 03H
			INT1 enable enable disable enable enable 0BH
			INT2 enable enable enable disable disable 13H
			INT3 enable enable enable disable disable 1BH

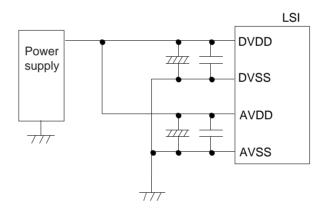
Continued on next page.

Continued from preceding page.

Pin name	Pin No.	I/O	Function Description	Option
Port 9 P90 to P93	13 to 16	Input	4-bit input port Other function AD converter input port (4 lines)	

• Any port option can be selected in bit units.

• Port 0 portion : Pull-up resistor is provided when CMOS output is selected.


The pull-up resister is not provided when N-ch Open Drain is selected.

• Port 1 option : Programmable pull-up resister is provided when any output form is selected.

· Port status in reset

Terminal	I/O	Pull-up resistor status at selecting pull-up option
Port 0	Input	Pull-up resistor OFF, ON after reset release
Port 1	Input	Programmable pull-up resistor OFF
Port 7	Input	Fixed pull-up resistor provided

• AVDD and AVSS are the power supply terminals for built-in analog circuit while DVDD and DVSS are the power supply terminals for built-in digital circuit. Connect them like the following figure to reduce the mutual noise-influence.

Specifications

1. Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter		Symbol	Pins	Conditions			Ratings	3	Unit
					V _{DD} [V]	min	typ	max	
Supply	voltage	V_{DD} max	DVDD, AVDD	DVDD = AVDD		-0.3		7.0	V
Input vo	ltage	V _I (1)	• P71,72,73 • Port 9 • RES,HS,VS,CVIN			-0.3		V _{DD} +0.3	
Output	voltage	Vo(1)	R, G, B, BL, I, FILT			-0.3		V _{DD} +0.3	
		Vo(2)	PWM0 to PWM9			-0.3		15	
Input/ou voltage	itput	VIO	Ports 0, 1, P70			-0.3		V _{DD} +0.3	
High- level output	Peak output current	І _{ОРН} (1)	Ports 0, 1	Pull-up MOS transistor output At each pin		-2			mA
current		Іорн(2)	Ports 0, 1	CMOS output At each pin		-4			
		I _{OPH} (3)	R, G, B, BL, I	CMOS output At each pins		- 5			
	Total	∑loah(1)	Port 1	The total of all pins		-10			
	output	∑loah(2)	Port 0	The total of all pins		-10			
	current	Σ loah(3)	R, G, B, BL, I	The total of all pins		-15			
Low-	Peak	I _{OPL} (1)	Ports 0,1	At each pin				20	
level output	output	I _{OPL} (2)	P70	At each pin				30	
current	odironi	I _{OPL} (3)	• R, G, B, BL, I • PWM0 to PWM9	At each pin				5	
	Total	Σ loal(1)	Port 0	The total of all pins				40	
	output current	Σ loal(2)	Port 1, P70	The total of all pins				40	
		$\sum I_{OAL}(3)$	R, G, B, BL, I	The total of all pins				15	
		Σ I _{OAL} (4)	PWM0 to PWM9	The total of all pins				30	
Maximu dissipati	m power ion	Pd max	DIP52S	Ta = $-30 \text{ to } +70^{\circ}\text{C}$				430	mW
Operatir tempera range	Ü	Topr				-30		+70	°C
Storage temperature range		Tstg				-55		+150	

^{*} DVSS and AVSS must be supplied the same voltage, V_{SS} . $V_{SS} = DVSS = AVSS$ DVDD and AVDD must be supplied the same voltage, V_{DD} . $V_{DD} = DVDD = AVDD$

2. Recommended Operating Range at Ta = $-30^{\circ} C$ to $+70^{\circ} C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Rating	IS	Unit
				V _{DD} [V]	min	typ	max	
Operating supply voltage range	V _{DD}	DVDD, AVDD	0.98 μs ≤ tCYC ≤ 1.02 μs		4.5		5.5	V
Hold voltage	V _{HD}	DVDD, AVDD	RAMs and the registers hold data at HOLD mode.		2.0		5.5	
Input high-level	V _{IH} (1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	0.6V _{DD}		V _{DD}	
voltage	V _{IH} (2)	• Port 1 (Schmitt) • P72, 73 • HS, VS	Output disable	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V _{IH} (3)	• P70 port input / interrupt • P71 • RES (Schmitt)	Output N-channel transistor OFF	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V _{IH} (4)	P70 Watchdog timer input	Output N-channel transistor OFF	4.5 to 5.5	V _{DD} -0.5		V _{DD}	
	V _{IH} (5)	Port 9 port input		4.5 to 5.5	0.7V _{DD}		V_{DD}	
Input low-level	V _{IL} (1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	Vss		0.2V _{DD}	
voltage	V _{IL} (2)	• Port 1 (Schmitt) • P72, 73 • HS, VS • Port 9	Output disable	4.5 to 5.5	Vss		0.25V _{DD}	
	V _{IL} (3)	• P70 port input / interrupt • P71 • RES (Schmitt)	N-channel transistor OFF	4.5 to 5.5	Vss		0.25V _{DD}	
	V _{IL} (4)	P70 Watchdog timer input	N-channel transistor OFF	4.5 to 5.5	Vss		0.6V _{DD}	
	V _{IL} (5)	Port 9 port input		4.5 to 5.5	V _{SS}		0.3V _{DD}	
CVIN input amplitude	Vcvin	CVIN		5.0	1Vp-p –3 dB	1Vp-p	1Vp-p +3 dB	Vp-p
Operation	tCYC(1)		OSD function	4.5 to 5.5	0.98	1	1.02	μs
cycle time	tCYC(2)		Except OSD function	4.5 to 5.5	0.98		30	

^{*} Vp-p: Peak-to-peak voltage

Parameter	Symbol Pins		Conditions			Unit		
				V _{DD} [V]	min	typ	max	
Oscillation frequency range (Note 1)	FmCF	CF1,CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.76	12	12.24	MHz
	FmLC	LC1,LC2	14.11 MHz (LC oscillation) Refer to Figure 2.	4.5 to 5.5		14.11		
	FmRC		RC oscillation	4.5 to 5.5	0.4	1.5	3.0	
Oscillation stable time period (Note 2)	tms CF	CF1,CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 3.	4.5 to 5.5		0.02	0.2	ms

- (Note 1) The oscillation constant is shown on Table 1 and Table 2.
- (Note 2) The oscillation stable time period is the time necessary for the oscillation to become stable after the following conditions.
 - 1. Supplying voltage.
 - 2. Release the HOLD mode.
 - 3. Release stopping the main-clock oscillation.

3. Electrical Characteristics at $Ta=-30^{\circ}\mathrm{C}\ to\ +70^{\circ}\mathrm{C}$, $\ V_{SS}=0\ V$

Parameter	Symbol	Pins	Conditions			Ratings		Unit
				V _{DD} [V]	min	typ	max	
Input high-level current	Ін(1)	Port 1 Port 0 without pull-up MOS transistor	Output disable Pull-up MOS transistor OFF V _{IN} = V _{DD} (including the off-leak current of the output transistor)	4.5 to 5.5			1	μА
	Ін(2)	Port 7 without pull-up MOS transistor Port 9 RES HS,VS	$V_{IN} = V_{DD}$	4.5 to 5.5			1	
Input low-level current	I _{IL} (1)	Port 1 Port 0 without pull-up MOS transistor	Output disable Pull-up MOS transistor OFF V _{IN} = V _{DD} (including the off-leak current of the output transistor)	4.5 to 5.5	-1			
	I _{IL} (2)	Port 7 without pull-up MOS transistor Port 9	V _{IN} = V _{SS}	4.5 to 5.5	-1			
	I _{IL} (3)	• <u>RES</u> • HS,VS	$V_{IN} = V_{SS}$	4.5 to 5.5	-1			
Output high-level voltage	V _{OH} (1)	CMOS output of ports 0,1	I _{OH} = -1.0 mA	4.5 to 5.5	V _{DD} –1			V
	Vон(2)	R, G, B, BL, I	$I_{OH} = -0.1 \text{ mA}$	4.5 to 5.5	V _{DD} -0.5			
Output low-level	Vol(1)	Ports 0,1	I _{OL} = 10 mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	Ports 0,1	I _{OL} = 1.6 mA The total current of the ports 0, 1 is not over 40 mA.	4.5 to 5.5			0.4	
	Vol(3)	• R, G, B, BL, I • PWM0 to PWM9	I _{OL} = 3.0 mA The current of any unmeasured pin is not over 3 mA.	4.5 to 5.5			0.4	
	Vol(4)	P70	I _{OL} = 1 mA	4.5 to 5.5			0.4	
Pull-up MOS transistor resistance	Rpu	• P 0,1 • P 7	V _{OH} = 0.9V _{DD}	4.5 to 5.5	13	38	80	kΩ
Output off-leakage current	l _{OFF}	PWM0 to PWM9	V _{OUT} = 13.5 V	4.5 to 5.5			5	μА
Hysteresis voltage	VHIS	• Ports 0, 1 • Port 7 • RES • HS,VS	Output disable	4.5 to 5.5		0.1V _{DD}		V

Continued to next page.

Continued from preceding page.

Parameter	Symbol	Pins	Conditions			Ratings		
				V _{DD} [V]	min	typ	max	
Input clamp voltage	VCLMP	CVIN		5.0	2.3	2.5	2.7	V
Pin capacitance	СР	All pins	 f = 1 MHz Unmeasured input pins are set to V_{SS} level. Ta = 25°C 	4.5 to 5.5		10		pF

4. Serial Input/Output Characteristics at Ta = -30° C to $+70^{\circ}$ C , $V_{SS} = 0$ V

	Para	ameter	Symbol	Pins	Conditions			Rating	s	Unit
						V _{DD} [V]	min	typ	max	
	×	Cycle	tCKCY(1)	• SCK0	Refer to Figure 5.	4.5 to 5.5	2			tCYC
	ut clock	Low level pulse width	tCKL(1)	• SCLK0		4.5 to 5.5	1			
Serial clock	Input	High level pulse width	tCKH(1)			4.5 to 5.5	1			
erial	상	Cycle	tCKCY(2)	• SCK0	Use a pull-up resistor	4.5 to 5.5	2			
Ň	ut clock	Low level pulse width	tCKL(2)	• SCLK0	drain output • Refer to Figure 5.	4.5 to 5.5		1/2tCKCY		
	Output	High level pulse width	tCKH(2)			4.5 to 5.5		1/2tCKCY		
Serial input	Dat time	a set-up e	tICK	• SI0	Data hold from SCK0 rising	4.5 to 5.5	0.1			μs
Serial	Dat time	a hold e	tCKI		Refer to Figure 5.	4.5 to 5.5	0.1			
Serial output	time (Ex	eput delay e ternal ial clock)	tCKO(1)	• SO0	 Use a pull-up resistor (1 kΩ) during open drain output. Data set-up to SCK0 falling 	4.5 to 5.5			7/12tCYC +0.2	μs
Serial	Output delay time (Internal serial clock)		tCKO(2)		Data hold from SCK0 falling Refer to Figure 5.	4.5 to 5.5			1/3tCYC +0.2	

5. Pulse Input Conditions at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
High/low level pulse width	tPIH(1) tPIL(1)	• INT0, INT1 • INT2/T0IN	Interrupt acceptable Timer0-countable	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock is selected to 1/1)	Interrupt acceptable Timer0-countable	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock is selected to 1/16)	Interrupt acceptable Timer0-countable	4.5 to 5.5	32			
	tPIL(4)	RES	Reset acceptable	4.5 to 5.5	200			μs
	tPIH(5) tPIL(5)	HS, VS	Display position controllable Each active edge of HS, VS must be more than 1tCYC. Refer to Figure 7.	4.5 to 5.5	10			tCYC
Rising/falling time	tTHL tTLH	HS	Refer to Figure 7.	4.5 to 5.5			500	ns
Horizontal pull-in range	FH	HS	The monitor point in figure 10 is 1/2 V _{DD} .	4.5 to 5.5	15.23	15.73	16.23	kHz

6. A/D converter Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
Resolution	N			4.5 to 5.5		4		bit
Absolute precision	ET		(Note 3)	4.5 to 5.5		±1/4	±1/2	LSB
Conversion time	tCAD	From selecting Vref to resulting	1 bit conversion time = 2tCYC	4.5 to 5.5			1.96	μs
Reference current	I _{REF}		(Regulate the ladder resistor)	4.5 to 5.5		1.0	2.0	mA
Analog input voltage range	V _{AIN}	AN0 to AN3		4.5 to 5.5	V _{SS}		V_{DD}	V
Analog port input	I _{AINH}		$V_{AIN} = V_{DD}$	4.5 to 5.5			1	μА
current	I _{AINL}		$V_{AIN} = V_{SS}$	4.5 to 5.5	-1			

(Note 3) Absolute precision excepts quantizing error ($\pm 1/2$ LSB).

7. Current Drain Characteristics at Ta = $-30^{\circ} C$ to $+70^{\circ} C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
Current drain during basic operation (Note 4)	IDDOP(1)	DVDD, AVDD	FmCF = 12 MHz Ceramic resonator oscillation FmLC = 14.11 MHz LC oscillation System clock: CF oscillation Internal RC oscillation stops	4.5 to 5.5		16	28	mA
Current drain in HALT mode (Note 4)	I _{DDHALT} (1)	DVDD, AVDD	HALT mode FmCF = 12 MHz Ceramic resonator oscillation FmLC = 0 Hz (oscillation stops System clock: CF oscillation Internal RC oscillation stops.	4.5 to 5.5		5	10	mA
	I _{DDHALT} (2)	DVDD, AVDD	HALT mode FmCF = 0 MHz (oscillation stops) FmLC = 0 Hz (oscillation stops) System clock: Internal RC	4.5 to 5.5		600	1200	μА
Current drain in HOLD mode (Note 4)	IDDHOLD	DVDD, AVDD	HOLD mode All oscillation stops.	4.5 to 5.5		0.05	20	μА

(Note 4) The currents of the output transistors and the pull-up MOS transistors are ignored.

Oscillation type	Manufacturer	Oscillator	C1	C2
12 MHz ceramic resonator	Murata	CSA12.0MTZ	33 pF	33 pF
oscillation		CST12.0MTW	on chip	
	Kyocera	KBR-12.0M	47 pF	47 pF

^{*} Both C1 and C2 must use an K rank (±10%) and an SL characteristics.

Table 1. Ceramic Resonator Oscillation Guaranteed Constant (main-clock)

Oscillation type	L	C3	C4	
14.11MHz LC oscillation	4.7 μH 33 pF		45 pF (Trimmer)	
	4.7 μH ±10% (Variable)	33 pF	33 pF	

^{*} See Figure 11, 12.

Table 2. LC Oscillation Guaranteed Constant (OSD clock)

(Notes)

- Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest pattern length.
- If you use other oscillators than those shown above, we provide no guarantee for the characteristics.
- Adjust the voltage of monitor point in figure 10 to $1/2~V_{DD}\pm10\%$ by the LC oscillation constant 'L' or 'C' to lock the PLL circuit.

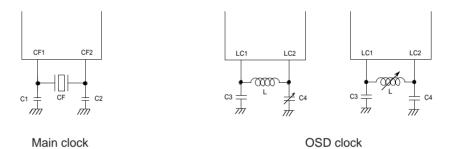


Figure 1 Ceramic Resonator Oscillation

Figure 2 LC Resonator Oscillation

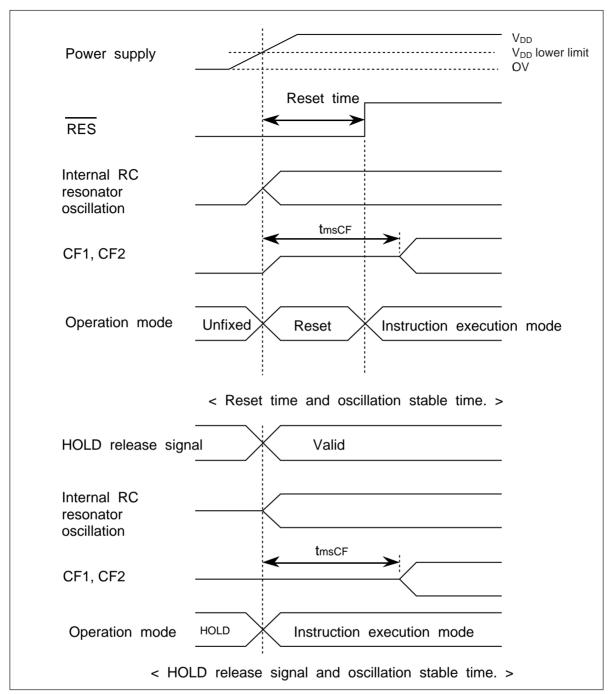


Figure 3 Oscillation Stable Time

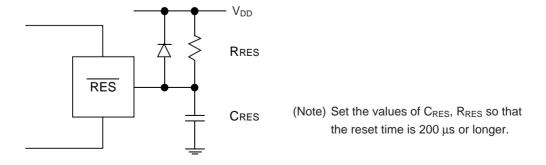


Figure 4 Reset Circuit

< AC timing point >

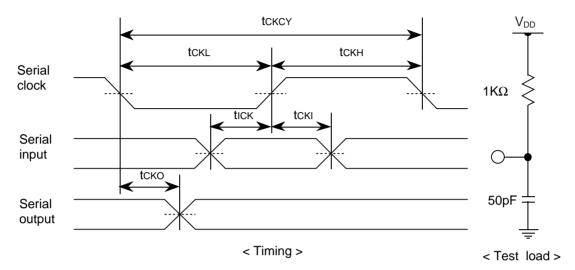


Figure 5 Serial Input/output Test Condition

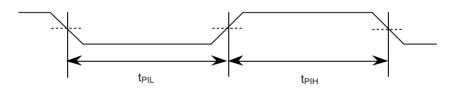


Figure 6 Pulse Input Timing Condition - 1

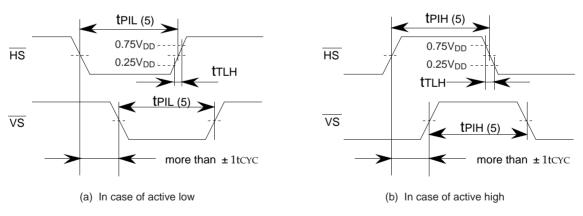
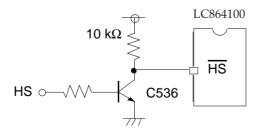



Figure 7 Pulse Input Timing Condition - 2

Figure 8 Recommended Interface Circuit

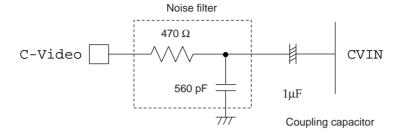


Figure 9 CVIN Recommended Circuit

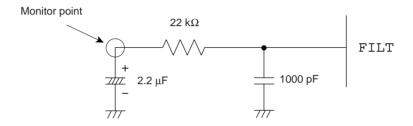


Figure 10 FILT Recommended Circuit

(Note) • Place the parts connected FILT terminal as close to the Filter as possible with the pattern length on the board.

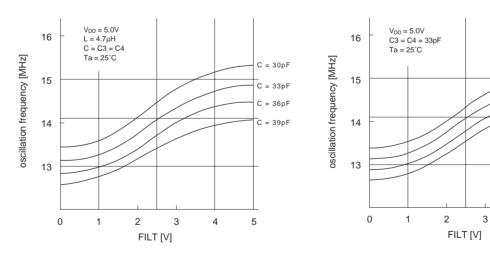


Figure 11 FILT-LC Oscillation Frequency (1)

Figure 12 FILT-LC Oscillation Frequency (2)

L = 4.7μH

L = 5.1uH

5

4

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1998. Specifications and information herein are subject to change without notice.