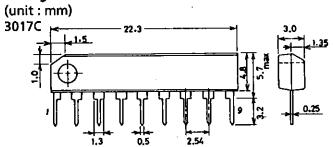


No.3353A

LA7956

# Video Switch for TV / VCR Use


#### **Features**

- $\cdot$  4 inputs, 1 output, 75  $\!\Omega$  termination, driver on-chip
- · 6dB amp on-chip
- · Excellent crosstalk characteristic
- · Wide band

| Maximum Ratings at Ta = 25%      | C                 |                                    |         |      | unit |      |
|----------------------------------|-------------------|------------------------------------|---------|------|------|------|
| Maximum Supply Voltage           |                   | V7 max                             |         | 14   | V    |      |
| Maximum Input Supply Voltage (1) |                   | nax, V6 max                        |         | 8    | V    |      |
|                                  |                   | nax, V9 max,                       |         | Ŭ    | •    |      |
| Maximum Input Supply Volta       |                   | nax, V3 max V <sub>CC</sub> =14V   |         | 14   | V    | •    |
| Maximum Output Current           |                   | ax                                 |         | 10   | mA   |      |
| Allowable Power Dissipation      |                   | ax Ta≤65°C                         | 540     |      | mW   |      |
| Operating Temperature            |                   | Topr                               |         | +65  | °C   |      |
| Storage Temperature              |                   | rstg -                             |         | 150  | °C   |      |
|                                  | J                 |                                    | 00 00 1 | 100  | Ŭ    |      |
| Operating Conditions at Ta = :   | 25°C              |                                    |         |      | unit |      |
| Operating Voltage Range          |                   | V <sub>CC</sub> op                 |         | 13.5 | V    |      |
| Recommended Supply Voltage       |                   | -                                  |         | 12   | v    |      |
| Omanati wali                     |                   |                                    |         |      |      |      |
| Operating Characteristics at     |                   | $_{\rm CC} = 12 \text{V}$          | min     | typ  | max  | unit |
| Quiescent Current                | I <sub>CC</sub>   |                                    | 15      | 21   | 30   | mA   |
| Input Bias Voltage               | V4, V6,           |                                    | 3.5     | 3.8  | 4.1  | V    |
| 0.1                              | V8, V9            |                                    |         |      |      |      |
| Output Bias Voltage              | V1                |                                    | 4.6     | 6.1  | 7.6  | V    |
|                                  | $\mathbf{v_{os}}$ | (Note 1)                           | -50     | 0    | +50  | mV   |
| Control Threshold Voltage        | V2H, V3H,         |                                    | 2.3     |      |      | v    |
|                                  | V2L, V3L          |                                    |         |      | 0.7  | V    |
|                                  | 12, 13            |                                    | -20     | -6   |      | μΑ   |
| Voltage Gain                     | GV                | $f = 1MHz, V_{IN} = 2Vpp (Note 1)$ | 5.6     | 6.1  | 6.4  | dΒ   |

Continued on next page.

# **Package Dimensions**

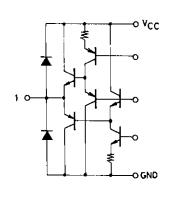


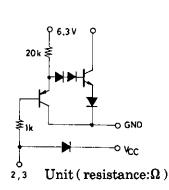
SANYO: SIP9

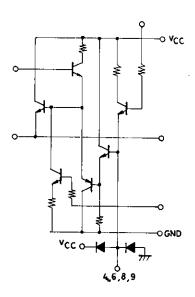
#### Continued from preceding page.

| , 0, 0                   |               |                                                                                                      |      |            |     | • .  |
|--------------------------|---------------|------------------------------------------------------------------------------------------------------|------|------------|-----|------|
|                          |               | •                                                                                                    | mın  | typ        | max | unit |
| Frequency Characteristic | GV-f          | $\begin{cases} 0dB & \text{at } f = 100kHz \text{ (Note 1)} \\ f = 10MHz, V_{IN} = 1Vpp \end{cases}$ | -3   | 0          |     | dB   |
| Output Dynamic Range     | $ m V_{DR}$   | $f = 15kHz, V_{IN} = 1.5p-p \text{ (Note 1)}$                                                        | 1.4  | 1.5        |     | Vpp  |
| Crosstalk (Note 2)       | $\mathbf{CT}$ | $V_{IN} = 1V_{p-p,f} = 3MHz$ (Note 1)                                                                | 50   | 58         |     | dB   |
|                          |               |                                                                                                      | (48) | (55)       |     |      |
| •                        |               | $V_{IN} = 1V_{p-p,f} = 5MHz$ (Note 1)                                                                | 45   | <b>5</b> 5 |     | dΒ   |
|                          |               |                                                                                                      | (45) | (52)       |     |      |

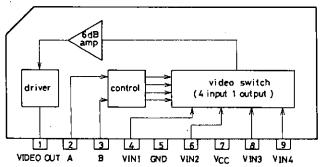
<sup>\*</sup> The current flowing into the IC is defined as positive and current from the IC is defined as negative.


#### Video Switch Truth Table

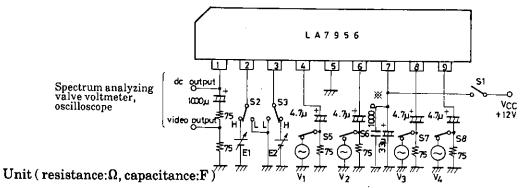

| S2<br>(Pin 2) | S3<br>(Pin 3) | V <sub>IN</sub> 1<br>(Pin 4) | V <sub>IN</sub> 2<br>(Pin 6) | V <sub>IN</sub> 3<br>(Pin 8) | V <sub>IN</sub> 4<br>(Pin 9) |
|---------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|
| H             | Н             | ON                           | OFF                          | OFF                          | OFF                          |
| L             | Н             | OFF                          | ON                           | OFF                          | OFF                          |
| H             | L             | OFF                          | OFF                          | ON                           | OFF                          |
| L             | L             | OFF                          | OFF                          | OFF                          | ON                           |


Note 1: Refer to this Truth Table and make measurements by switching S2, S3.

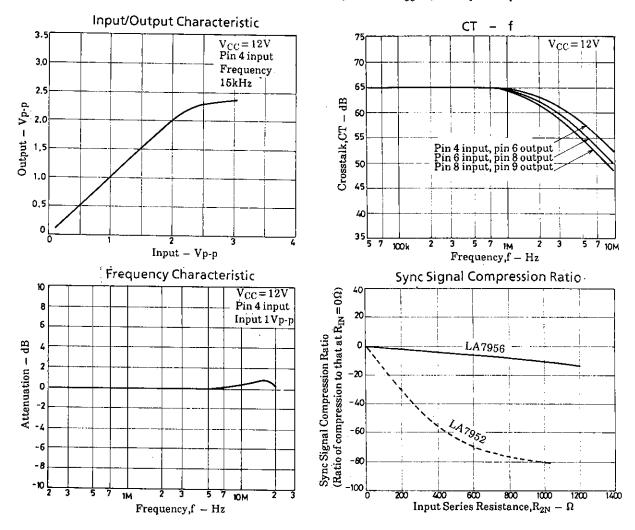
Note 2:( ): Crosstalk between pins 8 and 9


## Input/Output Equivalent Circuit









## **Equivalent Circuit Block Diagram**



#### **Test Circuit**



X: Connect the bypass capacitor for  $V_{CC}$  as close to pin 7 as possible.



#### Design Notes

An improvement in the DC clamp circuit has improved the sync signal compression attributable to the signal source impedance, but the response time of the DC clamp is made longer accordingly than that of the LA7952. Make adjustments by connecting a high resistance (several hundred  $k\Omega$ ) across input pin and GND (decreasing the resistance makes the sync signal compression larger).

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1996. Specifications and information herein are subject to change without notice.