DATA INTERFACE - OPERATING POWER SUPPLY VOLTAGE RANGE $4.8V \le V_S \le 36V$ (40V FOR TRANSIENTS) - REVERSE SUPPLY (BATTERY) PROTECTED DOWN TO $V_S \ge -24V$ - STANDBY MODE WITH VERY LOW CURRENT CONSUMPTION IS_{SB} \leq 1 μ A @ V_{CC} \leq 0.5V - MIN POSSIBLE BAUD RATE ACCORDING TO ISO9141 ≥ 130KBAUD - TTL COMPATIBLE TX INPUT - BIDIRECTIONAL K-I/O PIN WITH SUPPLY VOLTAGE DEPENDENT INPUT THRESHOLD - OVERTEMPERATURE SHUT DOWN FUNC-TION SELECTIVE TO K-I/O PIN - WIDE INPUT AND OUTPUT VOLTAGE RANGE -24V ≤ VK ≤ VS - KOUTPUT CURRENT LIMITATION, TYP IK = 60mA - DEFINED OFF OUTPUT STATUS IN UNDER-VOLTAGE CONDITION AND VS OR GND IN-TERRUPTION - CONTROLLED OUTPUT SLOPE FOR LOW EMI - HIGH INPUT IMPEDANCE FOR OPEN VS OR GND CONNECTION - DEFINED OUTPUT ON STATUS OF LO OR RX FOR OPEN LI OR K INPUTS - DEFINED K OUTPUT OFF FOR TX INPUT OPEN - INTEGRATED PULL UP RESISTORS FOR TX, RX AND LO - EMI ROBUSTNESS OPTIMIZED #### **DESCRIPTION** The L9613B is a monolithic integrated circuit containing medium speed data interface functions. #### **BLOCK DIAGRAM** November 1999 1/10 ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |-------------------------|--|--------------------------|------| | Vs | Supply Voltage ISO transient t ≤ 400ms | -24 to +36
-24 to +40 | V | | Vcc | Stabilized Voltage | -24V to 7 | V | | dV _S /dt | Supply Voltage Transient | -10 to +10 | V/μs | | $V_{LI,K}$ | Pin voltage | -24 to V _S | V | | V _{LO, RX, TX} | Pin voltage | -24 to V _{CC} | V | ^{*} max ESD voltages are +/-2KV with human body model C=100pF, R=1.5K Ω corresponds to maximum energy ## **PIN CONNECTION** ## **THERMAL DATA** | Symbol | Parameter | Min. | Тур. | Max. | Unit | |----------------------|---|------|------|------|------| | T _{JSDon} | Temperature shutdown switch-on-threshold | 160 | | 200 | ç | | T_{JSDoff} | Temperature shutdown switch-off-threshold | 150 | | | ç | | R _{th(j-a)} | Thermal steady state junction to ambient resistance | 130 | 155 | 180 | °C/W | #### **PIN FUNCTIONS** | N. | Name | Description | | | | | |----|------|---------------------------|--|--|--|--| | 1 | RX | Output for K as input | | | | | | 2 | LO | Output L comparator | | | | | | 3 | VCC | Stabilized voltage supply | | | | | | 4 | TX | Input for K as output | | | | | | 5 | GND | Common GND | | | | | | 6 | К | Bidirectional I/O | | | | | | 7 | VS | Supply voltage | | | | | | 8 | LI | Input L comparator | | | | | **ELECTRICAL CHARACTERISTICS** (The electrical characteristics are valid within the below defined Operating Conditions, unless otherwise specified). The function is guaranteed by design until T_{JSDon} temperature shutdown switch-on-threshold. Vs Supply voltage 4.8 V... 18 V Vcc Stabilized voltage 3 V... 7 V T_J Junction temperature -40 °C... 150°C | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |--|--------------------------------|--|-------------|--------|--------|--------| | Icc | Supply V _{CC} Current | $V_{CC} \le 5.5V$
VLI, VTX = 0V | | 1.4 | 2.5 | mA | | | | $ \begin{array}{l} VK \geq VK_{high} \\ VLI \geq VLI_{high} \\ VTX = V_{CC} \\ @ \ V_{CC} \leq 5.5V \end{array} $ | -5 | 40 | 150 | μА | | IS _{ON} | Supply VS Current | VLI, VTX = 0V | | 3.5 | 10 | mA | | | | $V_{CC} = 0.5V$ @ $V_S \le 12V$ 3) | | <1 | 50 | μΑ | | IS _{SB} | | V_{CC} = 0.5V, see fig. 5
@ $V_S \le 16V$ | | | 100 | μА | | VK _{low} | Input Voltage LOW State | RX output status LOW | -24 | | 0.40VS | V | | VK_{high} | Input Voltage HIGH State | RX output status HIGH | 0.60VS | | VS | V | | VK _{hys} | Input Threshold Hysteresis | $ \begin{array}{l} VK_{high} - VK_{low} \\ V_S \geq 8.0V \\ V_S \geq 6.0V \end{array} $ | 0.2
0.08 | 0.05VS | 1.0 | V
V | | IK _{OFF} | Input Current | $ \begin{array}{l} VTX \geq VTX_{high} \\ V_S, \ V_{CC} \geq 0V \ or \ V_S, \\ V_{CC} = open \ or \ GND = open \end{array} $ | -5 | 4 | 40 | μА | | RK _{ON} | Output ON Impedance | | | 10 | 30 | Ω | | IK _{SC} | Short Circuit Current | V _S ≥ 6.5V | 40 | 60 | 150 | mA | | VK _{sat} | Output Saturation Voltage | $R_{KO} = 1.5K\Omega$ | | | 1 | V | | VTX _{low} | Input Voltage
LOW State | | -24 | | 1 | V | | VTX _{high} | Input Voltage
HIGH State | | 3.5 | | VCC | V | | RRX _{ON}
RLO _{ON} | Output ON Impedance | $ \begin{array}{l} VK \leq VK_{low}; \ \ VLI \leq VLI_{low} \\ V_S \geq 6.5V; \ \ I_{RX,LO} \geq 1mA \end{array} $ | | 40 | 90 | Ω | | VRX _{sat}
VLO _{sat} | Saturation Output Voltage | No external load | | | 1 | V | | IRX _{SC}
ILO _{SC} | Output short circuit current | V _S ≥ 6.5V | 9 | 20 | 50 | mA | | RTX | Input pull up resistance | $\begin{aligned} &\text{Output status} = (\text{HIGH}) \\ &T_{\text{A}} \leq 85^{\circ}\text{C} \\ &-0.15\text{V} \leq \text{VLO} \leq \text{VCC} + 0.15\text{V} \\ &-0.15\text{V} \leq \text{VRX} \leq \text{VCC} + 0.15\text{V} \end{aligned}$ | 5 | 10 | 18 | kΩ | | RTX | Input pull up resistance | $-0.15V \le VTX \le VCC + 0.15V$ $T_{amb} \le 125^{\circ}C$ | 10 | 20 | 40 | kΩ | | VLI _{low} | Input voltage LOW state | LO output status LOW | -24 | | 0.40VS | V | | VLI _{high} | Input voltage HIGH state | LO output status HIGH | 0.60VS | | VS | V | | ILI | Input current | VS, VCC ≥ 0V or
VS, VCC = open or
GND = open | -5 | 4 | 40 | μΑ | Note 1) For external supplied output currents lower than this value a series protection diode can become active. See also Fig. 4 and 5. #### **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |---|----------------------------|--|------|------|------|------| | $C_{KI,LO,RX}$ | Internal output capacities | | | | 20 | pF | | f _{LI-LO}
f _{K-RX}
f _{TX-K} | Transmission frequency | $\begin{array}{l} 9V < V_S < 16V,\\ \text{(external loads)}\\ T_{min} \geq 20 \cdot R_{KO} \cdot C_K \cdot K_{line} \end{array}$ | 130 | | | kHz | | f _{LI-LO}
f _{K-RX}
f _{TX-K} | Rise Time | for the definition of tr, tf see FIG. 1, 2) | | 0.4 | 2 | μs | | | Fall Time | $9V < V_S < 16V$, (external loads) $T_{min} \ge 20 \cdot R_{KO} \cdot C_K - K_{line}$ | | 0.4 | 2 | μs | | toff,Li-LO
toff,K-RX
toff,TX-K | Switch OFF time | for the definition of tr, tf see FIG. 1 | | 1.3 | 3 | μs | | t _{ON,LI-LO}
t _{ON,K-RX}
t _{ON,TX-K} | Switch ON time | $9V < V_S < 16V$, (external loads)
Tmin $\geq 20 \cdot R_{KO} \cdot C_K \cdot K_{line}$ | | 1.3 | 3 | μs | | td _{SB ON} | Standby reaction time | VTX = 0V, IK ≥ 7mA
VLI = 0V, 9V < VS < 16V | | 10 | 20 | μs | | td _{SB OFF} | | see FIG. 2 | | 20 | 40 | μs | Note 2) Speed limitation related to external capacitance $C_{\text{ext}\,\text{RX, LO}}$ and internal impedance $C_{\text{LO, RX}}$, RLO, RRX for rise time. $t_r = R_{\text{LO, RX}} + C_{\text{ext}\,\text{RX, LO}} \cdot 1.38$. Note 3) In case of spikes on VCC ≥ 0.5V KOUT will be switched On for typical 10μs which represents the standby tdsB reaction time. #### **FUNCTIONAL DESCRIPTION** The L9613B is a monolithic bus driver designed to provide bidirectional serial communication in automotive applications. The device provides a bidirectional link, called K, to the V_{Bat} related diagnosis bus. It also includes a separate comparator L which is also able to be linked to the V_{Bat} bus. The input TX and output RX of K are related to VCC with her integrated pull up resistances. Also the L comparator output LO has a pull up resistance connected to VCC. All VBat bus defined inputs LI and K have supply voltage dependent thresholds together with sufficent hysteresis to suppress line spikes. These pins are protected against overvoltages, shorts to GND and VS and can also be driven beyond VS and GND. These features are also given for TX, RX and LI only taking into account the behaviour of the internal pull up resistances. The thermal shut down function switches OFF the K output if the chip temperature increases above the thermal shut down threshold. To reactivate K again the chip temperature must decrease below the K switch ON temp. To achieve no fault for VS undervoltage conditions the outputs will be switched OFF and stay at high impedance. The device is also protected against reverse battery condition. During lack of VS or GND all pins shows high impedance characteristic. To realize a lack of the VS related bus line LI and K the outputs LO and RX shows defined ON status. Supressing all 4 classes of "Schaffner" signals (Schaffner 1; 2; 3a,b; 4) all pins can be load with short energy pulses of max. ± 0.2 mJ. All these features together with a high possible baud rate >130Kbaud, controlled output slopes for low EMI, a wide power supply voltage range and a real standby function with zero power consumption ISsB typ $\leq 1\mu$ A during system depowering VCC ≤ 0.5 V make this device high efficient for automotive bus system. After wake up of the system from SB condition the first output signal will have an additional delay time $td_{typ} \le 5\mu s$. The typical output voltage behaviour for the K, LO, RX outputs as a function of the output current is shown in Fig.5. Fig.6 shows a waveform of the output signal when the low level changes from $R_{ON} \cdot I_{OUT}$ to $I_{OUT} \cdot 2 \cdot R_{ON} + U_{BE}$ state. This variation occurs due to too low output current or after a negative transient forced to the output or to the supply voltage line. V_{IN} Figure 1. Input to output timings and output pulse shape Figure 2. Standby reaction time. Figure 3. Output characteristics at K, LO, RX. Figure 4. Output signal shape related to output current. 4 Figure 5. Standby current consumption. Figure 6. Application Circuit. #### EMS Performance (ISO 9141 BUS system) Figure 7. Figure 8. #### **ESD** application hints To improve the ESD robustness of this device above specified $\pm 2 \text{KV/HBM}$ external blocking capacitors must be used. Nevertheless the max. energy which can be clamped by this device should not exceeds 0.2mJ for each pin. An equivalent input diagram for calculation can be seen in fig. 9. ESD duscharge model $$E_{ESD} = \frac{1}{2} C_{HBM} U_{ESD}^2 = 0.2 \text{mJ} + \frac{1}{2} C_{EXT} \cdot (45 \text{V})^2$$ Figure 9. | DIM. | | mm | | | inch | | |--------|-----------|------|-------|--------|-------|-------| | Dilvi. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | Α | | | 1.75 | | | 0.069 | | a1 | 0.1 | | 0.25 | 0.004 | | 0.010 | | a2 | | | 1.65 | | | 0.065 | | аЗ | 0.65 | | 0.85 | 0.026 | | 0.033 | | b | 0.35 | | 0.48 | 0.014 | | 0.019 | | b1 | 0.19 | | 0.25 | 0.007 | | 0.010 | | С | 0.25 | | 0.5 | 0.010 | | 0.020 | | c1 | | | 45° (| (typ.) | | | | D (1) | 4.8 | | 5.0 | 0.189 | | 0.197 | | Е | 5.8 | | 6.2 | 0.228 | | 0.244 | | е | | 1.27 | | | 0.050 | | | еЗ | | 3.81 | | | 0.150 | | | F (1) | 3.8 | | 4.0 | 0.15 | | 0.157 | | L | 0.4 | | 1.27 | 0.016 | | 0.050 | | М | | | 0.6 | | | 0.024 | | S | 8° (max.) | | | | | | # OUTLINE AND MECHANICAL DATA ⁽¹⁾ D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.