ADVANCE INFORMATION MULTIMEDIA VIDEO

MULTISTANDARD VIDEO DECODER/SCALER

The KS0127 converts analog NTSC, PAL or SECAM video in composite, S-video, or component format to digitized component video. Output data can be selected for CCIR 601 or square pixel sample rates in either YCbCr or RGB formats. The digital video can be scaled down in both the horizontal and vertical directions. The KS0127 also decodes Intercast, Teletext, Closed Caption, and SMPTE data with a built-in bit data slicer. Digitized CVBS data can be output directly during VBI for external processing.

FEATURES

- Accepts NTSC-M/N/4.43, PAL-M/N/B/G/H/I/D/K/L and SECAM formats with auto detection
- 6 analog inputs: 3 S-video, 6 composite, or 1 3-wire YCbCr component video
- 2-line luma and chroma comb filters including adaptive luma comb for NTSC
- Programmable luma bandwidth, contrast, brightness, and edge enhancement
- Programmable chroma bandwidth, hue, and saturation
- High quality horizontal and vertical down scaler
- Intercast, Teletext and Closed Caption decoding with built-in bit slicer
- Direct output of digitized CVBS during VBI for Intercast application
- Analog square pixel or CCIR 601 sample rates
- Output in 4:4:4, 4:2:2, or 4:1:1 YCbCr component, or 24-bit or 16-bit RGB formats with dithering
- YCbCr 4:2:2 output can be 8 or 16 bits wide with embedded timing reference code support for 8-bit mode
- Simultaneous scaled and non scaled digital output ports outputs for 8-bit mode.
- Direct access to scaler via bi-directional digital port.
- Programmable Gamma correction table
- Programmable timing signals
- Industry standard 2 wire serial interface

ORDERING INFORMATION

Device	Package	Temperature Range
KS0127	100 PQFP	0°~+70°C

APPLICATIONS

- Multimedia
- Digital Video
- Video Capture/Editing

RELATED PRODUCTS

- KS0119 NTSC VIDEO ENCODER
- KS0123 MULTISTANDARD VIDEO ENCODER
- KS0125 MULTISTANDARD VIDEO ENCODER
- KS0122 MULTISTANDARD VIDEO DECODER

BLOCK DIAGRAM

ADVANCE INFORMATION MULTIMEDIA VIDEO

PIN ASSIGNMENT - 100 PQFP

PIN DESCRIPTION

I

Pin Name	Pin #	Туре	Description				
INPUT							
AY0	84	I	1 of 6 analog CVBS or 1 of 3 S-video Y inputs.				
AY1	86	I	1 of 6 analog CVBS or 1 of 3 S-video Y inputs.				
AY2	88	I	1 of 6 analog CVBS input or 1 of 3 S-video Y inputs or Y input for 3 wire component input				
AC0	90	I	1 of 6 analog CVBS or 1 of 3 S-video C inputs.				
AC1	92	I	1 of 6 analog CVBS or 1 of 3 S-video C inputs or Cb input for 3 wire component input				
AC2	94	I	1 of 6 analog CVBS or 1 of 3 S-video C inputs or Cr input for 3 wire component input				
XTALI	8	I	Pin 1 for external crystal or TTL clock input.				
XTALO	7	0	Pin 2 for external crystal.				
RST	10	I	Chip reset. Active low signal.				

OUTPUT (All output pins can be selectively three-stated)

C0 - C7, Y0 - Y7	45-48,53-56,33- 39,44	0	Digital video outputs.			
EXV0 - EXV7	16,27,28,61-63, 68,71	I/O	Expanded digital video I/O port. Can be configured as an addition 8-bit output port (no scaling), or additional outputs of the main dig output stream for 24 bit output modes, or as a 8-bit input for direc digital access of the down scaler			
HS1	26	I/O	Programmable horizontal timing signal. One pulse every video line. When the EXV port is configured as an input, this pin can be programmed as an input.			
HS2	76	0	Programmable horizontal timing signal. One pulse every video line.			
VS	23	I/O	Programmable vertical timing signal. When the EXV port is configured as an input, this pin can be programmed as an input.			
HAV	25	0	Programmable horizontal active video flag.			
VAV(OENC0)	3	I/O	Programmable vertical active video flag. During reset, the pin is an input and the logic state of this pin is latched into the OENC [0] register bit. Use a 10 k Ω resistor for pull-up or pull-down.			
EHAV	5	0	Valid pixel data flag. Polarity is programmable. Active when output video data is valid.			

PIN DESCRIPTION (Continued)

Pin Name	Pin #	Туре	Description			
EVAV(OENC1)	4	I/O	Valid line flag. Polarity is programmable. Active when output video line is valid. During reset, the pin is an input and the logic state of this pin is latched into the OENC [1]register bit. Use a 10 k Ω resistor for pull-up or pull-down.			
ODD	22	0	Odd field flag. Polarity is programmable. Active for fields 1 and 3.			
PID	17	0	PAL ID flag. High for phase alternating line.			
OEN	15	I	Digital video data, timing and clock output 3-state control.			
СК	18	I/O	Pixel clock. In normal decoding mode, this is an output. When the EXV port is used as an input, this can be programmed as an input. pixel clock.			
CK2	21	0	Pixel output clock (rate is one half of CK) aligned to HAV signal.			
CCDAT	73	0	Sliced VBI data output. Data can be from Closed Caption, Teletext, Intercast, or SMPT type encoded data.			
CCEN	74	0	When high, this pin indicates that valid VBI data is being clocked out at the CCDAT pin or at the digital video output.			

MULTI-PURPOSE I/O PORTS AND TEST ENABLE

PORTA	58	I/O	Multi-purpose I/O port.
SCH(PORTB)	24	I/O	Multi-purpose I/O port.
TESTEN	57	I	When tied to VDD, the chip is put into the test mode. For normal use, this pin should be connected to VSS.

REFERENCE AND COMPENSATION

VRT	77	I/O	ADC VRT compensation (requires an external 0.1 μF capacitor connected to VSS).
VRB	78	I/O	ADC VRB compensation (requires an external 0.1 μF capacitor connected to VSS).
COMP2	97	I/O	Internal 1.3 V reference (requires an external 0.1 μF capacitor connected to VSS).
COMP1(VSS)	96	I/O	A connection to this pin is not required. Internally this pin is connected to VSS.

HOST INTERFACE

SCLK	75	I	Serial clock for I2C host interface.
SDAT	72	I/O	Serial data for I2C host interface.
AEX0 - AEX1	69 - 70	I	Device ID selection for for I2C host interface.

PIN DESCRIPTION (Continued)

Pin Name	Pin #	Туре	Description				
POWER AND G	ROUND						
VDD	20,59	+5V	Digital power supply for output buffers.				
VDD3	11,12,42,43,66, 67	+3.3V	3V Digital power supply for internal logic.				
VDDA	85,89,93,98	+5V	Analog power supply for ADC, AGC and reference circuits.				
VDDA1	9	+5V	Analog power supply for clock generation circuitry.				
VSS	6,13,14,19,40, 41,60,64,65,83, 87,91,95	GND	Common ground.				
NC							
NCP	1,2,29-32,49-52, 79-82,99,100	-	These pins are directly connected to the die substrate. If electrical connect is desired (not required) only connection to VSS is allowed.				

ADVANCE INFORMATION MULTIMEDIA VIDEO

KS0127 Data Sheet

PIN CROSS REFERENCE: NUMERICAL ORDER BY PIN NUMBER

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
1	NCP	26	HS1	51	NCP	76	HS2
2	NCP	27	EXV1	52	NCP	77	VRT
3	VAV(OENC0)	28	EXV2	53	Y4	78	VRB
4	EVAV(OENC1)	29	NCP	54	Y5	79	NCP
5	EHAV	30	NCP	55	Y6	80	NCP
6	VSS	31	NCP	56	Y7	81	NCP
7	XTALO	32	NCP	57	TESTEN	82	NCP
8	XTALI	33	C0	58	PORTA	83	VSS
9	VDDA1	34	C1	59	VDD	84	AY0
10	RST	35	C2	60	VSS	85	VDDA
11	VDD3	36	C3	61	EXV3	86	AY1
12	VDD3	37	C4	62	EXV4	87	VSS
13	VSS	38	C5	63	EXV5	88	AY2
14	VSS	39	C6	64	VSS	89	VDDA
15	OEN	40	VSS	65	VSS	90	AC0
16	EXV0	41	VSS	66	VDD3	91	VSS
17	PID	42	VDD3	67	VDD3	92	AC1
18	СК	43	VDD3	68	EXV6	93	VDDA
19	VSS	44	C7	69	AEX0	94	AC2
20	VDD	45	Y0	70	AEX1	95	VSS
21	CK2	46	Y1	71	EXV7	96	COMP1(VSS)
22	ODD	47	Y2	72	SDAT	97	COMP2
23	VS	48	Y3	73	CCDAT	98	VDDA
24	SCH(PORTB)	49	NCP	74	CCEN	99	NCP
25	HAV	50	NCP	75	SCLK	100	NCP

1. FUNCTIONAL DESCRIPTION

1.1. VIDEO INPUT

The KS0127 supports complete video decoding of many analog video standards. In addition, the chip can support direct 8-bit YCbCr input for high quality video scaling and other processing.

1.1.1. Analog Video Input

Figure 1 shows the detailed block diagram of the analog front end. Up to six composite video sources, three S-video sources, one 3-wire YCbCr component video source, or any combination can be selected. The allowed inputs are selected using the **INSEL[3:0]** bits in the **CMDB** register. Table 1 lists all possible input selections. The front end has two paths each containing an analog gain control, a clamping control, and an 8-bit ADC. Composite video input uses only the luma path. S-video and analog component YCbCr inputs utilize both the luma and chroma paths. The ADC digital data is used to calculate the correct gain and clamp values. The data is fed back to the analog clamping and gain control. This architecture eliminates any offset and gain mismatch in the analog front end.

Figure 1. Analog Front End

The analog inputs must be AC coupled through an external 0.1 μ F capacitor. Due to the high sampling rate of the ADC's inside the KS0127, most video sources will not require a low-pass filter for alias reduction. For those video sources with harmonics above 13 MHz, a simple single order pole at 6 MHz will provide sufficient high frequency signal reduction. This can be implemented with a 400 pf capacitor in parallel with the 75 Ω load.

Figure 2. Typical Analog Video Input

INSEL[3:0](hex)	Selected Input(s)	Video Type
0	AY0	Composite
1	AY1	Composite
2	AY2	Composite
4	AC0	Composite
5	AC1	Composite
6	AC2	Composite
8	AY0, AC0	S-Video
9	AY1, AC1	S-Video
А	AY2, AC2	S-Video
F	AY2(Y), AC1(Cb), AC2(Cr)	YCbCr component video

Table 1: Analog Video Input selections

1.1.2. Digital AGC Control

The AGC normally references to the ADC code difference between sync tip and back porch. Two sets of sync tip-back porch ADC values are available for different AGC gain requirements: if **AGCGN** = 0, the sync tip locks to code 2, and the back porch locks to code 70; when **AGCGN** = 1, the sync tip locks to 16, and the back porch locks to code 70. Video signal with abnormal sync tip or very bright saturated colors may cause the ADC to limit the maximum value. This situation can be corrected by enabling the **AGCOVF** bit in the **CMDB** register to force the gain tracking loop to reduce AGC when maximum limiting conditions occur. The AGC may also be programmed to freeze the AGC at the current value by setting the **AGCFRZ** bit in the **CMDB** register. Once the AGC is frozen, the gain can be manually adjusted with the **AGC** register.

1.1.3. Digital Video Input

The high quality digital video down scaler in the KS0127 can be directly accessed via the EXV bi-directional port. The KS0127 accepts CCIR 656 compliant 8-bit YCbCr digital video input with embedded or external timing. Video timing may also be generated by the KS0127. Data path for 8-bit YCbCr input is shown in Figure 3. Selection of analog video input or digital CCIR 656 data is with the **INPSL[1:0]** register bits. The KS0127 can operate in master or slave timing mode when the chip is programmed for digital video input.

1.1.4. Pixel Clock and Timing Mode Selection for Digital Video Input

Pixel clock and synchronization timing can be individually selected to either come from an external generator or be generated internally. In addition, if synchronization is provided by an external source, the KS0127 supports embedded syncs as defined in CCIR 656, or TTL HS and VS inputs. Selection of pixel clock is via **CKDIR** bit in **CMDD** register. Timing selection is through either **SYNDIR** or **EAV** bit.

By using an external pixel clock, the reference clock input at XTALI is no longer required. Additional register bits have to be programmed for different selections of pixel clock and timing, which are detailed in Table 2. The following register/bit-settings are required for digital video input:

INSEL[3:0] = 8, 9, A, or F. TSTCGN = 1. DMCTL[1:0] = 2 or 3. UGAIN = 238. BRT = 34. SAT = 229. RGB = UNIT = PED = 1.

TTL Timing	Embedded Timing		Additional Register Programming						
SYNDIR ^{*2}	EAV ^{*3}	VMEN	TSTPH	TSTGEN	TSTGFR	PIXSEL	MNFMT	IFMT	
0	0	1	0	1	3	0 if input	1	0 if input	
0	1	0	1	1	3	data is at square pixel rate	1	Is 50 Hzvideo.11is 60 Hz1video.	
1	0	0	1	1	1		1		
0	0	1	0	1	3	is at	1		
0	1	0	1	1	1	601 rate.	1		
1	0	0	1	1	1		1]	
	TTL Timing SYNDIR*2 0 1 0 1 0 1 0 1 1 1 1 1	TTL TimingEmbedded TimingSYNDIR*2EAV*30001100001100110	Embedded Timing SYNDIR*2 EAV*3 VMEN 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0	Embedded Timing Embedded Timing SYNDIR*2 EAV*3 VMEN TSTPH 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1	Embedded Timing Embedded Timing EAUtional F SYNDIR*2 EAV*3 VMEN TSTPH TSTGEN 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1	TTL TimingEmbedded TimingAdditional Register Provide the Provident and the Provide	TTL TimingEmbedded TimingAdditional Register ProgramminSYNDIR*2EAV*3VMENTSTPHTSTGENTSTGFRPIXSEL0010130 if input data is at square0101130 if input data is at square100111300111110011111001111101011111001111	TTL TimingEmbedded TimingAdditional Register ProgrammingSYNDIR*2EAV*3VMENTSTPHTSTGENTSTGFRPIXSELMNFMT0010130 if input data is at square10101113110111131001111110011111100111111010111010111101111101111	

Table 2: Digital Video Input Pixel Clock and Timing Selection

*1: CKDIR = 0 - CK is output and is internally generated. CKDIR = 1 - CK is input from an external source.
*2: SYNDIR = 0 - HS1 and VS are output. SYNDIR = 1 - HS1 and VS are inputs from external sources.
*3: EAV = 0 - chip will not sync to embedded timing. EAV = 1 - chip will sync to embedded timing.
Note: the combination X11 for CKDIR, SYNDIR, EAV is not valid.

When in digital input mode, all programmable timing registers are still functional except for HS1 and VS when they are inputs. An example of horizontal timing for digital input is shown in Figure 4.

Figure 4. Horizontal Timing for EXV Port as Digital Input

1.2. VIDEO TRACKING AND TIMING GENERATION

When the KS0127 is configured for analog video input, the chip tracks the video input and generates a sampling clock that is line locked to the input video. The KS0127 requires an external reference clock for video tracking. This reference can be supplied via a crystal using the on chip crystal interface or any TTL compatible source. These configurations are shown in Figure 5

1.2.1. Clock Input Timing Reference

The KS0127 can use either a 24.576 MHz or a 26.8 MHz reference. However, it is recommended that the 24.576 MHz reference be used for CCIR 601 operation, and the 26.8 MHz reference be used for square pixel or dual mode operation. Other specifications for the crystal are:

- Fundamental or third overtone
- Load capacitance of ~20 pF
- Series resonance resistance of 40 Ω or less
- Frequency deviation of 50 ppm or less

Figure 5. Standard Clock Configurations

1.2.2. THe Sampling Clock

The sampling clock is generated by multiplying the line rate by N. This ensures that samples are aligned horizontally, vertically and in time. The required N factor for the KS0127 is based upon the field rate (60 Hz or 50 Hz) and the desired sampling rates (CCIR 601 or square pixel). Field rate can be automatically detected and can be monitored with the **FFRDET** bit in the **STAT** register. Manual control of the field rate can be controlled with the **MNFMT** and **IFMT** bits. The **PIXSEL** bit in register **CMDD** selects CCIR 601 or square pixel. Table 3 shows the constants for the various combinations of input formats and output pixel rates.

	CCIR 601	Data Rates	Square Pixe		
	М	N,B,G,H,I,D,K,K1,L	М	N,B,G,H,I,D,K,K1,L	Units
Field Rate	60	50	60	50	Hz
Pixels/Line (N)	858	864	780	944	Pixels
Active Pixels/Line	720	720	640	768	Pixels
Active Lines/Frame	480	580	480	580	Lines
Pixel Rate	13.5	13.5	12.27	14.75	MHz
ADC Sampling Rate	27	27	24.54	29.5	MHz

Table 3:	Timing for	Different	Pixel	Rates
----------	------------	-----------	-------	-------

The time constants for the pixel clock tracking loop can be adjusted with the HFSEL[1:0] bits.

In addition to providing the pixel clock, the KS0127 also outputs various timing signals to indicate the beginning of a line, a field, and for field and frame identification. All the timing and clock pins may be optionally put into high impedance state. Three-state of these pins are software controlled and initial state of these pins at power up is controlled via two configuration pins (3 and 4).

The KS0127 can generate all the video timing without video input. This enables the KS0127 to be used as a video timing generator for a system that contains both the KS0127 for live video input and a MPEG decoder which requires a video timing generator.

1.2.3. Horizontal Timing

The KS0127 creates many internal timing signals aligned to the horizontal sync tip (mid-way of the falling edge of horizontal sync, typically ADC code 36). These include locations of color burst (CBG, CBGW) used in chrominance

processing, back porch (BPG), and sync tip timing signals (SLICE, FS_PULSE) used for AGC and clamp functions. SLICE is high whenever the input is below half way level of horizontal sync (typically ADC code 36). FS_PULSE is a single clock pulse coincide with the start of SLICE. One of these internal signals can be made available at the PORTA or PORTB pin at any time.

The chip outputs two horizontal synchronization signals: HS1 and HS2. The start and stop locations for these signals are fully programmable. Offset programmed to HSXB, HSXE, and HSXBE0 are added to the default edge locations as shown in Table 4. Note that there are different modulo numbers for different input video standards and output pixel rates.

An additional signal, HAV, is provided for horizontal video cropping. This signal has programmable polarity, start and stop locations. Two 11-bit registers, **HAVB** and **HAVE**, are used to define the first and last pixel locations of the horizontal portion of the cropped video. Numbers programmed into these registers are used as offset to the default locations as shown in Table 4.

Table 4 shows the default edge locations relative to the midway of the falling edge of the analog horizontal sync. Note the numbers shown are in multiple of CK clocks. Figure 6 shows the approximate locations for the horizontal timing signals.

		60	Hz	50 Hz		
Description	Signal	CCIR 601 (modulo 1716)	Square Pixel (modulo 1560)	CCIR 601 (modulo 1728)	Square Pixel (modulo 1888)	
Chip delay		120	120	120	120	
Sync gate (1-CK pulse)	SYG	72	72	72	72	
Back porch gate	BPG	[147 222]	[129 204]	[154 234]	[168 254]	
Color burst gate (1-CK pulse)	CBG	222	204	234	254	
Wide color burst gate	CBGW	[159 254]	[147 233]	[173 254]	[186 277]	
Two pulses per line (1-CK each pulse)	FH2	42, 900	42, 822	42, 906	42, 986	
Default one pulse per line	HS1	[65 238]	[45 220]	[69 250]	[65 270]	
Default one pulse per line	HS2	[65 238]	[45 220]	[69 250]	[65 270]	
Default horizontal cropping	HAV	[351 75]	[334 58]	[379 91]	[415 59]	

 Table 4: Horizontal Timing Signal Edge Locations (in # of CK)

Horizontal timing signal used for scaling will be discribed in Section 1.6.1.

Figure 6. Approximate Locations for the Horizontal Timing Signals

1.2.4. Vertical Timing

The vertical timing signals include VS, VAV, ODD, SCH, and PID.

The VS is used for identifying the first line of video in the vertical position. The VS leading edge can be programmed to either track the incoming video's serration pulses or to be aligned to the beginning of the video line or half way, as shown in Figure 7 and Figure 8. If **VALIGN** = 0, the VS leading edge is based on an internal low pass filter, and its location is dependent on the noise conditions of the video input. The trailing edge of VS is locked to either the beginning of the video line or half way. The half way location relative to the beginning of the video line changes depending on current input standard and output format. If **VALIGN** = 1, the leading edge of the VS is aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way.

The VAV signal is used for vertical cropping. The start and stop lines for VAV are programmable through the **VAVB** and **VAVE** registers.

The ODD signal signifies the current field number. When ODD is active, the current field is 1 or 3 (or 5 or 7 if in PAL mode). The leading and trailing edges of ODD can be aligned to either the leading edge of VS (**VALIGN** = 1) or the trailing edge of VS (**VALIGN** = 0). The signal may be used in conjunction with SCH and PID to exactly identify the current field. To distinguish between fields 1, 2 verse fields 3, 4 (or fields 1, 2, 3, 4 verse fields 5, 6, 7, 8 for PAL) the phase of the color burst relative to the sync tip must be measured. That information is provided by the SCH pin.

The KS0127 provides the output of a comparator that measures whether the current color burst phase relative to the falling edge of the sync is greater or less than a predetermined constant. This constant is controlled with **SCHCMP[3:0]**. The polarity of the SCH output pin depends on the current **SCHCMP[3:0]** value. The SCH signal changes every video line. The SCH for line 260 is held for the entire vertical blanking period. By using the SCH signal for the same line from each field, proper field identification can be determined. Figure 10 shows field identification values for **SCHCMP[3:0]**=0. It is important to note that the SCH value is only valid for video signals that have a constant sync tip to color burst relationship. This is not the case with consumer VCRs.

I

I

Note: Numbers shown are in CK. Active high polarities are used. Timing shown for VAV and EVAV are with qualifier off.

Figure 9. Short Term Vertical Timing

The PID pin is used to identify whether the current V-axis is inverted in PAL mode. This signal changes at the color burst. By noting this value at the same line of each field, a determination of whether a field is from {1-4} or {5-8} can be made. As with the SCH pin, the KS0127 is designed to hold the line 260 PID measurement for the entire vertical blank period. This allows easy sampling of the PID or current field identification.

The ODD, SCH and PID signals change at different times and more than once within the video fields. Proper data for field identification is determined by latching all three signals at the trailing edge of VS. Figure 11 shows the VS, ODD, SCH, and PID signals and their latched values for each of the 8 possible fields. Figure 12 is the line to line timing diagram for these signals in PAL mode.

1.3. HORIZONTAL LUMA PROCESSING

A simplified block diagram for the luma path is shown in Figure 13.

Figure 13. Horizontal Luma Processing Unit

1.3.1. Luminance DC Gain

The KS0127 can accommodate CCIR 624 M/N/H/G standards, which fall into categories of -40 or -43 sync tip and inclusion or exclusion of 7.5 setup. The KS0127 can produce correct CCIR 601 luminance output levels by controlling the gain and offset in the luminance path via **PED**. This register should be set for the appropriate input standard. The programmable **CONT** and **BRT** registers provide the user with additional flexibility to create non-standard luminance gain and offset values.

Luminance levels produced by the KS0127 for different broadcast standards (assuming **AGCGN**=0, **CONT**=0 and **BRT**=0) are summarized in Table 5.

	M/N PED=1			M/N PED=0			B/G/H PED=1		
Signal	Level (IRE)	ADC (CVBS)	Y[7:0]	Level (IRE)	ADC (CVBS)	Y[7:0]	Level (IRE)	ADC (CVBS)	Y[7:0]
Max Input	109	255	255	109	255	255	117	255	255
Peak White	100	240	235	100	240	235	100	229	235
Black	7.5	83	16	0	70	16	0	70	16
Blank	0	70	1	0	70	16	0	70	
Sync	-40	2	1	-40	2	1	-43	2	
KS0127 Data Path Equation	C _Y = 1.37CVBS-100		$C_Y = 1.288CVBS-74$			$C_Y = 1.37 CVBS - 80$			

Table 5: Luminance Digital Level Code

When digital component output is desired in RGB mode, the **RGBH** register can be programmed to increase the 0-100% values from standard CCIR 601 levels to full range levels. The gain variations are shown in Table 6.

Table 6: RGB Output Range

	RGB normal	gain (RGBH=0)	RGB high gain (RGBH=1)		
Signal	Су	Cy RGB (U,V=0)		RGB (U,V=0)	
Peak White	235	235	255	255	
Black	16	16	0	0	

For CCIR 601 digital video input (INPSL[1:0] = 1), register UNIT must be set to 1 to produce unit gain.

1.3.2. Horizontal Luma Frequency Shaping

The luma path contains many programmable filters for different purposes. The combination of these filters will give different frequency characteristics.

The over sampled video data from the ADC pass through a decimation filter. The decimation filter has user programmable bandwidth. Three registers are used to control the decimation filter characteristics and each is designed for certain purposes. The **HYBWI**, when set to "1", provides extra bandwidth for very high quality video source. The **HYBWR**, when set to "1", reduces the bandwidth so high frequency noise can be eliminated. The 3-bit register **HYLPF[2:0]** provides the necessary bandwidth reduction for horizontal scaling. When all three registers are programmed to "0", the decimation filter has the bandwidth of the normal video. The KS0127 provides the option of bypassing the decimation filter. This option should be used only when the input video is band limited and with low high frequency noise.

For composite video input, the notch filter can be enabled (**CTRAP** set to "1") to extract the luminance. The notch filter has different center frequencies for different input video format. User selectable peaking function is included for edge enhancement. The notch filter should be bypassed for S-video and component video input, or if luma comb filter is enabled.

The luminance filter characteristics have been designed to be very similar for all combinations of 60/50 Hz video and CCIR 601/square pixel sampling rates. Figure 15 and Figure 16 show the output characteristics of the luminance path with different filter combinations for the supported input standards and output pixel rates.

Figure 15. Medium to High Frequency Luma Filter Characteristics (CTRAP=0)

Figure 16. Medium to Low Frequency Luma Filter Characteristics (NTSC, CTRAP=1)

Figure 18. Luma Filter Characteristic with Peaking On (NTSC, CTRAP=1)

SAMSUNG ELECTRONICS

1.4. Horizontal Chroma Processing

A simplified block diagram for the horizontal chroma processing unit is shown in Figure 19.

Figure 19. Horizontal Chroma Processing Unit

The KS0127 supports chroma input in NTSC, PAL, SECAM and component formats. The color standard is automatically detected and the various chroma processing blocks are enabled as required for the given chroma standard. Details of the various chroma processing blocks follow.

1.4.1. IF Compensation

For improved chroma demodulation when the input video is from a mis-tuned IF source, an IF compensation filter is included that has variable gain for the upper chroma side band. This is controlled by the **CIFCMP**[1:0] bits at location **CHROMA**. The frequency response is shown in Figure 20. For convenience, all plots are normalized to the NTSC modulation frequency.

Figure 20. Chroma IF Compensation Frequency Response

1.4.2. Demodulation Gain

The demodulation gain block is controlled by feedback from the gain tracking block. For NTSC and PAL type inputs, the gain constant is derived from a programmable reference compared against the U component of the input video. This reference is controlled by the **SAT** register. The default value "0" is the correct gain (saturation for nominal output). For SECAM type input, the feedback is calculated such that proper frequency demodulation is obtained. When external calibration is desired, the gain feed back loop can be "opened" be setting **TSTCGN=1**. The **SAT** then controls bits 8 through 1 of a 10 bit multiplier.

For standard auto tracking applications, it is recommended that the **SAT** register be used as an end customer saturation control. This register is 2's compliment

1.4.3. Demodulation Low Pass Filter

The demodulation circuit also contains a programmable low pass filter and a coring function for noise reduction. The chroma low pass filter frequency response for the demodulation circuit for the various video standards are shown in Figure 21

Figure 21. Chroma Low Pass Filter Frequency Response

1.4.4. SECAM Demodulation

SECAM processing includes a frequency differentiator, a Cloche and a de-emphasis filter. Frequency response for the filters are shown in Figure 22 and Figure 23.

Figure 22. Cloche Filter Frequency Characteristic

Figure 23. De-emphasis Filter Frequency Response

1.4.5. Additional Chroma Functions

KS0127 has many built in auto detection circuits. These allow KS0127 to track any type of video standard input automatically.

For analog component video input, the demodulation function is not enabled. The low pass filter provides a group delay for Cb and Cr alignment. This enables the two components to be sampled by one ADC.

1.5. COMB FILTER

Comb filters provide superior Y/C separation for composite NTSC and PAL than simple chroma trap filter. The KS0127 contains on-chip separate 2-line stored luma and chroma comb filters. An internal signal COMB controls for what lines the comb function is enabled. This signal is available through the PORTB pin. The timing for COMB is shown in Figure 7 and Figure 8. Combing is part of the vertical processing which also includes vertical scaling, which is discussed in Section 1.6. A block diagram for the vertical processing section is shown in Figure 24.

Figure 24. Vertical Processing

1.5.1. Luma Comb Filter

The luma comb filter reduces high frequency chroma leakage into the luminance path. The KS0127 uses 2-line stored luma data for combing. Filter coefficients for different video input standards are provided and can be selected automatically based on the video input. Filter coefficients may also be set manually.

An optional active comb is employed for NTSC video. Selection of luma comb coefficients is based on line-to-line chroma correlation.

Provision is made to disable luma comb for S-video, component, or digital video input. This is achieved by programming the luma comb control register **MNYCMB** to "1", and by choosing the value 3 or 4 for **YCMBCO[2:0]**. This will result either a 1-line or 2-line luma delay. Care must be exercised when disabling the luma comb so that luma line delay matches the chroma path line delay.

Special filtering is applied to ensure that high vertical bandwidth is retained for the luma path.

1.5.2. Chroma Comb Filter

The chroma comb filter provides further color separation from the composite video. Filter coefficients can be automatically selected based on the input video standard or manually set using **NMCCMB** and **CCMBCO[2:1]**.

1.6. SCALING

The KS0127 includes a high quality down scaler. The video images can be down scaled in both horizontal and vertical direction to an arbitrary size.

1.6.1. Horizontal Scaler

The horizontal scaler uses a 5-tap 32-phase interpolation filter for luma, and a 3-tap 8-phase interpolation filter for chroma. Scaled pixel data are stored in an on-chip FIFO so they can be sent out in a continuous stream.

Horizontal scaling ratio is programmed via the 15-bit register **HSCL**. The timing signal EHAV is used to indicate when scaled pixel data is available at the video output port. EHAV can be programmed so that it is active for every line regardless of vertical cropping and scaling. It can also be programmed to be active only for valid video lines. For example, Figure 25 shows the timing for CIF output assuming HAV is programmed to be active for 720 pixels. The **HSCL** register is programmed with the value 4000 (hex). The trailing edge of EHAV is either aligned with the trailing edge of HAV if the total number of scaled pixels is even, or is one pixel clock earlier if the number is odd.

Figure 25. Horizontal Scaler Timing for CIF Output (CCIR 601 Pixel Rate)

Frequency response and group delay for the luma scaler are shown in Figure 26 and Figure 27, respectively. The luma interpolation filter is designed to achieve relatively flat frequency response and minimal group delay up to the normal video bandwidth. A flat full data path frequency response may be obtained with the help of the luma peaking control register **HYPK[1:0]**. The high quality filter ensures minimal artifacts for any scaling ratio.

Figure 26. Horizontal Luma Scaler Interpolation Filter Frequency Response

Because of the limited bandwidth of the chroma data, a simpler interpolation filter is used for the horizontal chroma scaler. The frequency response and group delay for this filter are shown in Figure 28 and Figure 29, respectively.

Figure 28. Horizontal Chroma Scaler Interpolation Filter Frequency Response

Figure 29. Horizontal Chroma Scaler Interpolation Filter Group Delay

1.6.2. Luma Vertical Scaler

Vertical luma scaling uses either a 3-tap or 5-tap 8-phase interpolation filter depending on the horizontal scaling ratio.

Vertical scaling ratio is programmed via the 14-bit register **VSCL**. A valid scaled line is indicated by the timing signal EVAV being active. The EVAV can be programmed to be internally gated by the VAV signal so it can only be valid within the vertically cropped region.

Luma horizontal scaling can use either a 3-tap or a 5-tap interpolation filter depending on the horizontal scaling ration. If the scaled horizontal line has less than or equal to 384 pixels, the 5-tap luma interpolation filter can be turned on by programming the **VRT2X** bit to a "1". Otherwise, the **VRT2X** bit should be set to "0" and the 3-tap filter be used.

The **VYBWR** bit provides additional vertical bandwidth control for vertical scaling. Typically, when the vertical scaling ratio is less than 1/2, this bit should be set to "1" to eliminate any aliasing effect.

Luma vertical scaler interpolation filter frequency response is shown in Figure 30.

Figure 30. Luma Vertical Scaler Interpolation Filter Frequency Response

In vertical scaling, the start of signal VAV controls the phase of the vertical scaler interpolation filter. If **VAVB**, **VAVE**, **VAVOD0**, **VAVEV0**, and **VSCL** are programmed such that the vertical interpolation filter has the same phase and scaling ratio as that of a memory controller (most memory controller has simple line dropping vertical scaling), it is possible to interface the KS0127 to the memory controller without using EVAV.

1.6.3. Chroma Vertical Scaling

Chroma vertical scaling uses different algorithms depending on video input standard and horizontal scaling ratio. If horizontal scaling results in line with less than or equal to 384 pixels, and the **VRT2X** is set to a "1", a 5-tap interpolation filter will be used for all video inputs. Otherwise, for NTSC, a 3-tap interpolation filter will be used for NTSC input, and decimation (line dropping without filtering) will be used for PAL and SECAM. Filter characteristics for the 3-tap and 5-tap filters are shown in Figure 31.

Figure 31. Chroma Vertical Scaler Interpolation Filter Frequency Response

1.7. VBI DATA PROCESSING

The KS0127 VBI data processing is very flexible in that it supports VBI data formats of:

- Closed Caption
- Teletext NTSC standards (Intercast)
- Teletext European standard
- SMPTE time code.

This data can be accessed from the part via 4 different methods:

- Enabling the ADC samples to be output for the appropriate lines
- Slicing the data (creating a clock and comparing the data to a threshold at the clock) and bursting this data out on Y output.
- Reading the data from the I2C bus.
- Via 2 external pins that output the sliced VBI data and the time at which the slice is valid.

In the interests of simplicity and standards compatibility, the KS0127 has been designed to always output VBI data during the active video period, that is, when the output timing signal HAV is active. Output of VBI data starts at the leading edge of HAV. If the KS0127 is programmed to CCIR 656 mode with SAV and EAV codes (**OFMT**=3), the EAV and SAV code will remain for the VBI processing lines. A simplified block diagram for the VBI section is shown in Figure 32.

Figure 32. VBI Decoder Block Diagram

Table 7 lists all the video standards that the VBI decoder supports.

Mode	Sample Clock Freq	Format	Pixel	SECAM	Generated Freq MHz
Intercast / Teletext NTSC 601	27	1	1	0	5.7272
Intercast /Teletext NTSC Square Pixel	24.54	1	0	0	5.7272
Teletext PAL 601	27	0	1	0	6.9375
Teletext PAL Square Pixel	29.5	0	0	0	6.9375
Teletext SECAM 601	27	0	1	1	6.2031
Teletext SECAM Square Pixel	29.5	0	0	1	6.2031
Closed Caption NTSC 601	27	1	1	0	0.503
Close Capt. NTSC Square Pixel	24.54	1	0	0	0.503
SMPTE Time Code NTSC 601	27	1	1	0	3.579545
SMPTE Time Code NTSC Square Pixel	24.54	1	0	0	3.579545

Table 7: Video Standards Supported by VBI Decoder

Configuring the VBI processing consists of many different steps which are individually explained below.

1.7.1. Enabling the VBI Processor

The VBI processor can be enabled independently for the ODD or EVEN fields with the **ODDEN** and **EVEN** bits. Some VBI data lines are only present on 1 of the 2 fields, These independent field enables allow control of the total VBI data output from the chip.

1.7.2. Selecting the Type of Output Data

As previously mentioned, there are 4 different ways the VBI data can be extracted. Three of these are selected as shown in the table, the fourth method (CCEN and CCDAT pins) is always available if VBI processing is enabled.

VBCVBS	VBINSRT	Output Mode
0	0	The VBI data is available via the I2C registers CCDAT1 and CCDAT2. Only the Last 2 extracted bytes are stored in these registers. Thus, this mode is only useful for extraction of Closed Caption data.
0	1	This mode enables output of the sliced VBI data.
1	0	Not a valid mode.
1	1	This mode enables output of direct data from the ADC.

Table 8: VBI Data Output Mode

1.7.3. Select Individual Lines enabled for VBI processing

KS0127 allows programmable selection of processing for the various video lines. For example Teletext/Intercast data can be sliced for lines 14 - 17, and closed caption for line 21.

The VBIL0 through VBIL15 define 2 bit register locations that enable specific VBI processing for a video line. As can be seen in Figure 7 for 60Hz and Figure 8 for 50Hz video The following alignments exist:

VBIL	Line Number That the VBIL Processing command applies to (Assuming ODDOS=1)					
number	Odd Field 60 Hz	Even Field 60 Hz	Odd Field 50 Hz	Even Field 50Hz		
VBILO	All Lines Except 10-24	All Lines Except 273-287	All lines Except 7-21	All lines Except 320 - 334		
VBIL1	10	273	7	320		
VBIL2	11	274	8	321		
VBIL3	12	275	9	322		
VBIL4	13	276	10	323		
VBIL5	14	277	11	324		
VBIL6	15	278	12	325		
VBIL7	16	279	13	326		
VBIL8	17	280	14	327		
VBIL9	18	281	15	328		
VBIL10	19	282	16	329		
VBIL11	20	283	17	330		
VBIL12	21	284	18	331		
VBIL13	22	285	19	332		
VBIL14	23	286	20	333		
VBIL15	24	287	21	334		

Table 9: VBI Line(s) Selection

The **ODDOS[1:0]** bits allow offset between the odd and even fields. Thus VBIL9 can be lines 17,18 or 19 for ODD fields while VBIL9 is still line 281 for EVEN fields. This extra controls account for variations of VBI data locations from ODD and EVEN fields.

When Intercast or Teletext data is selected, an 8-bit user programmable register (**TTFRAM**) is provided for the framing byte. The frame alignment processor uses this information to properly locate the first data bit on each line.

			Number of Output Bytes							
VYFMT[1:0]	Bit Alignment	Header		Teletext		Closed	SMPTE			
			NTSC	PAL	SECAM	Caption				
0	1 bit on Y7	None	264	352	232	16	88			
1	1 bit on Y7	1 bit on Y3	264	352	232	16	88			
2	4 bits on Y7Y4	1 bit on Y3	66	88	58	4	22			
3	8 bits on Y7Y0	None	33	44	29	2	11			

Table 10: VBI Data Insertion On Y Output

Figure 33 shows the timing diagram for **VYFMT[1:0]**=3.

Figure 33. VBI Insertion Timing for VYFMT[1:0]=3

Digitized CVBS data can also be output on the video output port using output format (**OFMT**[3:0]) 8 or 9. CVBS is always digitized at the CK clock rate. CVBS data is available when HAV is active. For byte alignment and output sequence, refer to Table 11. More detail is shown in the Digital Output Section.

For Closed Caption data, two read-only registers, **CCDAT1** and **CCDAT2**, are provided so the Closed Caption data can be read via the host interface. The **VBIFLG** bit can be polled to see if data captured in the two registers can be safely read.

1.8. COLOR SPACE CONVERTER AND GAMMA CORRECTION

The color space converter processes the video data as YCbCr 4:4:4 when converting to RGB. A programmable limiter **(YCRANG)** can be imposed on the Y/C data to limit the ranges. One can choose to limit the Y/C to 1 - 254, or Y to 16 - 235 and C to 16 - 240.

When selected, YCbCr 4:4:4 is converted to 24 bit RGB according to the following equations:

$$R = C_Y + 1.375C_R$$

$$G = C_Y - 0.703C_R - 0.328C_B$$

$$B = C_Y + 1.734C_B$$

For 16-bit RGB output, truncation with dithering is used to convert the data from 24 bit to 16 bit.

The KS0127 provides programmable ga,,a correction. For details on how to utilize this feature, please contact the Application Department.

1.9. DIGITAL VIDEO OUTPUT

The KS0127 can output digital video data in various formats, which are tabulated in Table 11. All 8-bit output

Clock					C	CK2						С	K	
OFMT	()		1			4	5	6	7		2, 3, 8	^{*1} , 9 ^{*2}	
Туре	YC 4:2	bCr 2:2	,	YCbC	r 4:1:1		YCbCr 4:4:4	RGB 565	RGB 888	RGB 888	,	YCbC	r 4:2:2	2
Pin	2N	+1	4N	+1	+2	+3	N	Ν	Ν	Ν	4N	+1	+2	+3
C0	Cb0	Cr0					Cb0	B0	B0	B3				
C1	Cb1	Cr1					Cb1	B1	B1	B4				
C2	Cb2	Cr2					Cb2	B2	B2	B5				
C3	Cb3	Cr3					Cb3	B3	B3	B6				
C4	Cb4	Cr4	Cr6	Cr4	Cr2	Cr0	Cb4	B4	B4	B7				
C5	Cb5	Cr5	Cr7	Cr5	Cr3	Cr1	Cb5	G0	B5	G2				
C6	Cb6	Cr6	Cb6	Cb4	Cb2	Cb0	Cb6	G1	B6	G3				
C7	Cb7	Cr7	Cb7	Cb5	Cb3	Cb1	Cb7	G2	B7	G4				
Y0	Y0	Y0	Y0	Y0	Y0	Y0	Cr0	G3	G0	G5	Cb0	Y0	Cr0	Y0
Y1	Y1	Y1	Y1	Y1	Y1	Y1	Cr1	G4	G1	G6	Cb1	Y1	Cr1	Y1
Y2	Y2	Y2	Y2	Y2	Y2	Y2	Cr2	G5	G2	G7	Cb2	Y2	Cr2	Y2
Y3	Y3	Y3	Y3	Y3	Y3	Y3	Cr3	R0	G3	R3	Cb3	Y3	Cr3	Y3
Y4	Y4	Y4	Y4	Y4	Y4	Y4	Cr4	R1	G4	R4	Cb4	Y4	Cr4	Y4
Y5	Y5	Y5	Y5	Y5	Y5	Y5	Cr5	R2	G5	R5	Cb5	Y5	Cr5	Y5
Y6	Y6	Y6	Y6	Y6	Y6	Y6	Cr6	R3	G6	R6	Cb6	Y6	Cr6	Y6
Y7	Y7	Y7	Y7	Y7	Y7	Y7	Cr7	R4	G7	R7	Cb7	Y7	Cr7	Y7
EXV0							Y0		R0	B0				
EXV1							Y1		R1	B1				
EXV2							Y2		R2	B2				
EXV3							Y3		R3	G0				
EXV4							Y4		R4	G1				
EXV5							Y5		R5	R0				
EXV6							Y6		R6	R1				
EXV7							Y7		R7	R2				
 *1 This mode is the same as mode 2 plus non-scaled video also available at EVX07. *2 This mode is the same as mode 3 plus non-scaled video also available at EVX07. 														

Table 11: Digital Video Output Format

formats use CK as pixel clock; the other formats use CK2 as pixel clock. The first pixel is always aligned to the leading edge of the HAV signal.

1.9.1. Validation Code Insertion

KS0127 inserts Validation codes during inactive video (HAV is inactive), and invalid video (HAV is active but EHAV is inactive) to assist in recognition of scaled data and VBI data. Table 12 lists the available codes, when they are inserted, and related programming registers.

Code	Description
INVALY	This user programmed code is inserted in the Y or G output stream in scaling operation when HAV is active while EHAV is inactive. Insertion of this code is independent of the output format. Related register is INVALY .
INVALU	This user programmed code is inserted in the U or B output stream in scaling operation when HAV is active while EHAV is inactive. Insertion of this code is independent of the output format. Related register is INVALU .
INVALV	This user programmed code is inserted in the V or R output stream in scaling operation when HAV is active while EHAV is inactive. Insertion of this code is independent of the output format. Related register is INVALV .
UNUSEY	This user programmed code is inserted in the Y or G output stream when HAV is inactive and no other reference code is inserted. Insertion of this code is independent of the output format. Related register is UNUSEY .
UNUSEU	This user programmed code is inserted in the U or B output stream when HAV is inactive and no other reference code is inserted. Insertion of this code is independent of the output format. Related register is UNUSEU .
UNUSEV	This user programmed code is inserted in the V or R output stream when HAV is inactive and no other reference code is inserted. Insertion of this code is independent of the output format. Related register is UNUSEV .

Table 12: Invalid and Unused Code Insertion

An example timing diagram for some of the programmable modes is shown in Figure 34. In this diagram, The field rate is 60 Hz, A CCIR 601 sampling rate has been selected thus giving 720 active pixels. The horizontal scaling ratio has been selected for an output of 718 out of 720 pixels.

Legend

1.9.2. 656 Op Codes

The KS0127 supports timing synchronization through embedded (656) timing reference codes in the output video data stream. This mode is available for output format 3 (**OFMT**[3:0] = 3). The 656 Op Codes follow the CCIR 656 standard. An optional set of 656 Op Codes can be enabled to identify VBI data using the **TASKB** bit.

The (A,B,C,D) inserted codes for 656 output modes are explained below. Locations in the data stream are shown in Figure 34. The D' data is substituted for the standard codes shown in column D if **TASKB** bit is set and the current line is processing VBI data (sliced or raw ADC data format).

:

	Condition	SAV / E. Refere	AV Outp nce Out tur	ience ng pic-		656 FVH values				
Field	Vertical	Horizontal	Α	В	С	D	D'	F	v	Н
Field 2	Vertical Blank	End Active Video	FFh	00h	00h	F1h	7Fh	1	1	1
Field 2	Vertical Blank	Start Active Video	FFh	00h	00h	ECh	62h	1	1	0
Field 2	Vertical Active	End Active Video	FFh	00h	00h	DAh	54h	1	0	1
Field 2	Vertical Active	Start Active Video	FFh	00h	00h	C7h	49h	1	0	0
Field 1	Vertical Blank	End Active Video	FFh	00h	00h	B6h	38h	0	1	1
Field 1	Vertical Blank	Start Active Video	FFh	00h	00h	ABh	24h	0	1	0
Field 1	Vertical Active	End Active Video	FFh	00h	00h	9Dh	13h	0	0	1
Field 1	Vertical Active	Start Active Video	FFh	00h	00h	80h	0Eh	0	0	0

Table 13: 656 and TASKB 656 Op Codes

1.9.3. 656 Op Code Vertical Transitions

The vertical transition locations of the various 656 Op Codes are shown in the following figures. Note that for proper transition locations of the SAV and EAV Op Codes **VSE**=0 and **VALIGN**=1.

ELECTRONICS

1.10. HOST INTERFACE

The KS0127 supports the IIC serial interface for programming the chip registers.

1.10.1. IIC Interface

The two wire interface consists of the SCLK and SDAT signals. Data can be written to or read from the KS0127. For both read and write, each byte is transferred MSB first, and the data bit is valid when the SCLK is high.

To write to the slave device, the host initiates a transfer cycle with a START signal. The START signal is HIGH to LOW transition on the SDAT while the SCLK is high. The host then sends a byte consisting of the 7-bit slave device ID and a 0 in the R/W bit. The arrangement for the slave device ID and the R/W bit is depicted in Figure 36. AEX1 and AEX0 are configuration pins used to configure the KS0127 to use one of the four addresses. Up to four KS0127's can be used in one system each with a unique address.

slave device ID

Figure 36. IIC Slave Device ID and R/W Byte

The second byte the host sends is the base register index. The host then sends the data. The KS0127 increments the index automatically after each byte of data is sent. Therefore, the host can write multiple bytes to the slave if they are in sequential order. The host completes the transfer cycle with a STOP signal which is a LOW to HIGH transition when the SCLK is high.

Each byte transfer consists of 9 clocks. When writing to the KS0127, an acknowledge signal is asserted by the salve device during the 9th clock.

Figure 37. IIC Data Write

A read cycle takes two START-STOP phases. The first phase is a write to the index register. The second phase is the read from the data register.

The host initiates the first phase by sending the START signal. It then sends the slave device ID along with a 0 in the R/W position. The index is then sent followed by the STOP signal.

The second phase also starts with the START signal. It then sends the slave device ID but with a 1 in the R/W position to indicate data is to be read from the slave device. The host uses the SCLK to shift data out from the

KS0127. A typical second phase in a read transaction is depicted in Figure 38.

Figure 38. Second Phase of a Read Cycle

PAGE 45 OF 86 101797

2. CONTROL REGISTER DESCRIPTION

This section contains information concerning the programmable control registers. Table 14 provides the default power up values for each index, and a bit map for each register. The following pages describe each register in detail and the possible programing values (an * indicates the power-on default).

Index	Mnomonio	Dofoult				Bit	Мар			
maex	Minemonic	Delault	7	6	5	4	3	2	1	0
0x00	STAT	-	CHIPID	VBIFLG	NOVID	FFRDET	PALDET	CDET	HLOCK	CLOCK
0x01	CMDA		POWDN	VSE	HFSE	L[1:0]	XT24	PIXSEL	MNFMT	IFMT
0x02	CMDB		AGCGN	VALIGN	AGCOVF	AGCFRZ		INSE	L[3:0]	
0x03	CMDC		VMEN	TSTGE1	0	TSTGPK	TSTGPH	TSTG	FR[1:0]	TSTGEN
0x04	CMDD		EAV	0	CKDIR	INPS	L[1:0]	SYNDIR	Y1MHZ	GPPORT
0x05	HAVB					HAVI	B[7:0]			
0x06	HAVE					HAVI	E[7:0]			
0x07	HS1B					HS1E	3[8:1]			
0x08	HS1E					HS1E	E[8:1]			
0x09	HS2B					HS2E	B[8:1]			
0x0A	HS2E					HS2	E[8:1]			
0x0B	AGC					AGC	2[7:0]			
0x0C	HXTRA		I	HAVB[10:8]		HAVE[10:8]	HS1BE0	HS2BE0
0x0D	CDEM		OUTHIZ	FSEC - CIFCM			/IP[1:0]	0	0	0
0x0E	PORTAB		DIRB		DATAB[2:0]	DIRA		DATAA[2:0	
0x0F	LUMA		-	UNIT	RGBH	PED	HYBWR	CTRAP	HYP	<[1:0]
0x10	CON					CON	T[7:0]			
0x11	BRT					BRT	[7:0]			
0x12	CHROMA		ACCFRZ	PALM	PALN	CBW	CORI	E[1:0]	CKIL	L[1:0]
0x13	CHROMB			CDL	/[3:0]			SCHCI	MP[3:0]	
0x14	DEMOD		FSCDET	SECDET	CDMLPF	CTRACK	MNFS	C[1:0]	MNSEC	AM[1:0]
0x15	SAT					SAT	[7:0]			
0x16	HUE					HUE	[7:0]			
0x17	VERTIA		MNYCMB	Y	CMBCO[2:	0]	VRT2X	,	VCTRL[2:0]
0x18	VERTIB		I	HYLPF[2:0]	HYBWI	HYDEC	VSCL	EN[1:0]	0
0x19	VERTIC		MNCCMB	С	CMBCO[2:	0]	ACMBEN	VYBW	EVAVEV	EVAVOD
0x1A	HSCLL					HSCL[6:0]				CMBMOD
0x1B	HSCLH		HSCL[14:7]							
0x1C	VSCLL				VSC	L[5:0]			ACMBCO	ACMBRE
0x1D	VSCLH					VSCL	[13:6]			

Table 14: Register Summary

I

Table	e14: R	egister	Summary	

Indox	Mnomonio	Dofoult				Bit	Мар				
muex	Milemonic	Delault	7	6	5	4	3	2	1	0	
0x1E	OFMTA		0	0	OEN	C[1:0]		OFM	T[3:0]		
0x1F	OFMTB		VSVAV	EVAN	D[1:0]	EVHS1	EVHAV	EVEHAV	EVAVG	-	
0x20	VBICTL		VBCVBS	VYFM	IT[1:0]	VBINSRT	ODDEN	EVENEN	ODDC	S[1:0]	
0x21	CCDAT2		b0	b1	b2	b3	b4	b5	b6	P2	
0x22	CCDAT1		b0	b1	b2	b3	b4	b5	b6	P1	
0x23	VBIL30		VB	IL3	VB	IL2	VB	IL1	VB	IL0	
0x24	VBIL74		VB	VBIL7 VBIL6			VB	IL5	VB	IL4	
0x25	VBIL118		VBI	VBIL11 VBIL10			VB	IL9	VB	IL8	
0x26	VBIL1512		VBI	L15	VB	L14	VBI	L13	VBI	L12	
0x27	TTFRAM					TTFRA	M[7:0]				
0x28	TESTA		-	-	0	0	-	-	-	-	
0x29	UVOFFH		TSTCLC	TSTCGN	0	TSTCFR	UOFF	ST[5:4]	VOFF	GT[5:4]	
0x2A	UVOFFL			UOFF	ST[3:0]	•		VOFF	ST[3:0]		
0x2B	UGAIN					UGAI	N[7:0]				
0x2C	VGAIN			VGAIN[7:0]							
0x2D	VAVB			VAVB[6:1] VAVOD0 VAVEV							
0x2E	VAVE					VAV	E[8:1]				
0x2F	CTRACK		0	0	DMC	FL[1:0]	CGT	C[1:0]	CFTC	C[1:0]	
0x30	POLCTL		EVAVPL	VSPL	ODDPL	HAVPL	EHAVPL	HS2PL	VAVPL	HS1PL	
0x31	REFCOD		YCRANG	VSINST	1	HSINS	ST[1:0]	1	0	0	
0x32	INVALY					INVAL	Y[7:0]	<u>+</u>	L		
0x33	INVALU					INVAL	U[7:0]				
0x34	INVALV					INVAL	V[7:0]				
0x35	UNUSEY					UNUSI	EY[7:0]				
0x36	UNUSEU					UNUSI	EU[7:0]				
0x37	UNUSEV					UNUSI	EV[7:0]				
0x38						Rese	erved				
0x39						Rese	erved				
0x3A	SHS1A					SHS1	A[7:0]				
0x3B	SHS1B		SHS1B[7:0]								
0x3C	SHS1C		SHS1C[7:0]								
0x3D	CMDE		ODFST	VSALG	-	-	-	-	-	-	
0x3E	VSDEL		-	-		1	VSDE	L[5:0]	1		
0x3F	CMDF		-	-	EVAVY	UVDLEN	UVDLSL	REGUD	TASKB	CBWI	

PAGE 47 OF 86 101797

ADVANCE INFORMATION MULTIMEDIA VIDEO

	Read Only Status Bits											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
00h	STAT	CHIPID	VBIFLG	NOVID	FFRDET	PALDET	CDET	HLOCK	CLOCK			
CLOC	К	Status for co	olor lock.									
	(л (lot locked.									
		1 C	olor lock a	chieved.								
HLOC	K S	Status for cu	irrent line tr	acking mod	e.							
	() C	hip is in ini	tial tracking	mode.							
		1 C	hip is in ste	eady state tr	acking mod	le.						
CDET		Status for de	etection of c	olor.								
	0 No color signal is detected.											
1 Color signal is detected.												
PALDE	ET S	Status for cu CLOCK is 1	irrent detec	ted color fo	rmat. Inform	nation conta	ined in this	bit is valid c	only if			
	(л с	ITSC color	format.								
		1 P	PAL color fo	rmat.								
FFRDI	ET S	Status for cu	irrent detec	ted field fre	quency.							
	() 5	0 Hz field f	requency, i.e	e. N,B,G,H,I	,D,K,K1,L s	ystem.					
		1 6	0 Hz field f	requency, i.e	e. M system	ı.						
NOVIE) \	video detect	t flag.									
	() S	sync has be	en detected	for the last	32 lines.						
		1 N	lo sync has	been deteo	cted.							
VBIFL	G	Vertical blan	king interva	al flag.								
	() V	'ideo is in a	ctive region	•							
		1 V	'ideo is in v	ertical blank	king region.							
CHIPII	D (Chip version	ID.									
	() K	S0122.									
		1 K	S0127.									

ADVANCE INFORMATION MULTIMEDIA VIDEO

	Control Register A											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
01h	CMDA	POWDN	VSE	HFSE	L[1:0]	XT24	PIXSEL	MNFMT	IFMT			
IFMT	Ma	anual video NFMT =0	input stand	ard select. S	Standard se	lection can	be controlle	ed automatio	cally if			
	0	Ch	ip is forced	to assume	input is 50 ł	⊣z.*						
	1	Ch	ip is forced	to assume	input is 60 l	Hz.						
MNFM	IT Ma	anual input f	' ormat conti	ol override.	When this I	bit is 1 the I	FMT bit is e	enabled.				
	0 The chip determines the input video standard based on the detected field rate: NTSC if 60 Hz. PAL/SECAM if 50 Hz.											
	1	Inp	out video sta	andard is se	elected with	the IFMT b	it.					
PIXSE	L Se	elect pixel sa	mpling rate) .								
	0	Ou	tput data is	at square p	oixel rate.							
1 Output data is at CCIR 601 rate.*												
XT24	Se	elect the exte	ernal clock	reference fr	equency.							
	0	Ext	ternal clock	is 26.8 MH	Ζ.							
	1	Ext	ternal clock	is 24.576 N	/Hz.*							
HFSEI	_[1:0] Ho	prizontal trac	king loop fi	requency se	elect.							
	0	Fo	rce loop to	very fast.								
	1	Fo	rce loop to t	fast.								
	2	Fo	rce loop to	normal time	constant. L	Jse for sign	al with smal	I frequency	variation.*			
	3	Foi sig	rce loop to nal generat	slow time co or, as track	onstant. Use ing range is	e for very go limited.	ood signal s	uch as that	from a			
VSE	Cł	nange the ve	ertical end le	ocation of th	ne VS.							
	0	Lin	e 10/10.5.*									
	1	Lin	e 9/9.5.									
POWD	N Po	wer down m	node.									
	0	No	rmal opera	tion.*								
	1	All dis the	chip functio abled. The power dor	ons except r output of th ie mode is e	nicroproces e CK/CK2 p enabled.	sor interfac	e and CK/C the most re	K2 generati	on are ncy when			

				Control R	legister B				
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
02h	CMDB	AGCGN	VALIGN	AGCOVF	AGCFRZ		INSE	L[3:0]	
			L		L				
INSEL	.[3:0] Ar	alog input o	hannel sel	ect.					
	0	A١	'0 is compo	site input.*					
	1	A١	'1 is compo	site input.					
	2	A١	2 is compo	site input.					
	4	AC	0 is compo	site input.					
	5	AC	C1 is compo	site input.					
	6	AC	2 is compo	site input.					
	8	A١	′0 is lumina	nce input, A	C0 is chrom	inance inpu	ıt.		
	9	A١	'1 is lumina	nce input, A	C1 is chrom	inance inpu	ıt.		
	А	A١	′2 is lumina	nce input, A	C2 is chrom	inance inpu	ıt.		
	F AY2 is luminance input, AC1 is Cb input, AC2 is Cr input.								
AGCF	RZ Fro cu	eeze the an rrent gain v	alog AGC f alue for the	or the Y and Y and C A0	d C paths at t GCs can be r	their curren ead or set u	t values. Whusing the AC	nen set to " GC register	1", the
	0	AC AC	GC is runnir GC gain.*	ng. Reading	AGC registe	er returns re	gister settin	ng, not the c	current
	1	AC	GC is frozer	. Gain can	be changed	or read with	AGC regis	ter.	
AGCC	VF AC	GC gain con	trol mode.						
	0	AC	GC gain trad	cks to sync t	tip and back	porch delta			
	1	lf / sy	ADC overflo	ows, AGC ga k porch trac	ain will be re king).*	duced (this	has higher	priority ove	r normal
VALIG	N VS	6 edge align	ment contr	ol.					
	0	VS pu the	8 leading eo Ise). VS tra e field.*	lge occurs o iling edge is	during serrati aligned to h	on pulses (alf line or b	typically wit eginning of	hin the first the line dep	serration bending on
	1	VS fie	leading eo Id. VS traili	lge is aligne ng edge is a	ed to half line Iways aligne	or beginnii d to beginn	ng of the line	e dependin ne.	g on the
AGCG	SN AC	GC gain cal	culation.						
	0	No eq	ormal mode ual to 68 A	. AGC gain DC code.*	calculation is	s based on	sync tip to b	oack porch	difference
	1	AC co Wi dy	GC gain cal de. This wil hen used in namic rang	culation is b I reduce the conjunctior e.	ase on sync AGC gain b <u>y</u> with PED a	tip to back y a factor of nd RGBH , t	porch differe 1/1.25 com his effective	ence equal pare to nor ely increase	to 54 ADC mal mode. s the input

I

I

I

ADVANCE INFORMATION MULTIMEDIA VIDEO

KS0127 Data Sheet

	Control register C											
Index	Mnemoni	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
03h	CMDC	VMEN	TSTGE1	0	TSTGPK	TSTGPH	TSTGFR[1:0] TSTGE					
TSTGI	EN I	Enable manua	al control of	horizontal	phase and fi	requency tra	cking.					
	() Aut	o phase and	d frequency	/ tracking.*							
		1 Ena TS '	able manual TGPH .	control of	horizontal pl	nase and fre	quency wit	h TSTGFR	[1:0] and			
TSTGI	FR[1:0]	When TSTGE	N == 1, the	se two bits	control the I	norizontal fre	equency tra	acking.*				
	(00 Sto	p frequency	tracking a	nd freeze the	e frequency	at the curre	ent value.				
	(D1 Ho	izontal frequ	uency track	ks the input.							
1X Horizontal frequency tracking ignores video input and runs at nominal value							alue based					
TOTO		on on	the field rate	and outpu	It pixel rate s	selected by I	FMI and F	IXEL bits.				
ISIG	PH	When TSTGE	N == 1, this	bit control	s the horizor	ntal phase tr	acking.					
	() No	phase track	ing.*								
		1 Ho	izontal phas	se tracks th	ne input vide	o or HS1 inp	ut if in slav	ve mode.				
TSTG	PK I	f TSTGE1 ==	1, this bit c	ontrols AG	C.							
	() AG	C clamps to	back porcl	h and gain is	set based o	on sync tip-	back porch	difference.*			
		1 AG	C clamps to	sync tip ar	nd gain is se	t based on p	eak-valley	difference				
TSTG	E1 I	Enables the fu	unction of T	STGPK.								
	() Dis	ables TSTG	PK.*								
		1 Ena	ables TSTG	PK.								
VMEN	'	Vertical maste	er mode.									
	() No	ormal vertica	al sync ope	ration.*							
		1 Ve to	ertical sync ig generate vio	gnores inpu deo timing f	ut and free ru for a slave d	uns at 50 Hz evice.	or 60 Hz. ٦	This mode (can be used			

Note: Indice 03h and 04h should always be written as a pair in that order. NEVER WRITE TO INDEX 03h WITHOUT FOLLOWING BY WRITING TO INDEX 04h.

				Control R	egister D						
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
04h	CMDD	EAV	0	CKDIR	INPS	L[1:0]	SYNDIR	Y1MHZ	GPPORT		
GPPOF	RT Ge rea ap	eneral purpos ad only and re pear at POR	e port. This eflects the lo TA pin.	s register is ogic state at	useful only PORTA pin	if DATAA[2 If DIRA ==	: :0] == 7. If I = 1, any valu	DIRA == 0, ie written to	this bit is this bit will		
Y1MHZ	Lu Lu	ma bandwidt	h control.								
	0	Lum	na bandwidt	h is controll	ed by other	luma filters	in the luma	path.*			
	1	Lum	na data is lo	w pass filte	red to 1MHz	z bandwidth).				
SYNDI	R HS	S1 and VS pir	n direction o	control.							
	0	HS1	and VS ar	e output.*							
	1	HS1	and VS ar	e input.							
INPSL[1:0] Vie	deo input and	l clock sour	ce select.							
	0	Vide gen	eo source is erated.*	analog and	l connected	to the chip	's analog in	put. Clock i	s internally		
	1	Vide	eo source is	8-bit digita	I CbYCr and	d connected	to EXV0 th	rough EXV	7 pins.		
	3	Vide	eo source is	s 8-bit digitiz	ed CVBS a	nd connect	ed to EXV0	through EX	V7 pins.		
CKDIR	Cle	ock select.									
	0	Cloc	ck is from in	iternal clock	generator.	A reference	e clock at XT	TALI pin is r	equired.*		
1 Clock is from CK pin. When this is selected, the CK pin automatically become input.									comes an		
EAV In 8-bit digital CbYCr input mode, this bit selects the sync source.											
	0	Hori	Horizontal and vertical syncs are from HS1 and VS pins, respectively.*								
	1	Syn	cs are emb	edded in the	e 8-bit digita	l data strea	am (CCIR 6	56 compatib	ole).		

	HAV Start Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
05h	HAVB				HAVB	[7:0]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS2B									

HAVB[10:0] This 11-bit register is used to define the start location of the HAV signal relative to the sync tip (for CVBS input, this is the composite video sync tip. For 8-bit CbYCr input, this is the leading edge of the HS1 or EAV). The content of this register is a 2' complement number which is used as an offset to the default HAVB location as defined in Table 4. The resolution for this register is 1 CK clock.

	HAV End Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
06h	HAVE				HAVE	[7:0]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS2B									

HAVE[10:0]This 11-bit register is used to define the end location of the HAV signal relative to the sync tip.
The content of this register is a 2' complement number which is used as an offset to the default
HAVE location as defined in Table 4. The resolution for this register is 1 CK clock.

HS1 Start Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
07h	HS1B		HS1B[8:1]								
0Ch	HXTRA	HAVB[10:8] HAVE[10:8]						HS1BE0	HS2BE0		

HS1B[8:1] -HS1BE0 If HS1 is programmed as an output, this 9-bit register defines the start location of the HS1 signal. The content of this register is a 2's complement number which is used as an offset to the default HS1B location as defined in Table 4. The resolution for this register is 1 CK clock.

	HS1 End Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
08h	HS1E				HS1E	[8:1]						
0Ch	HXTRA	ł	HAVB[10:8] HAVE[10:8] HS1BE0 HS2B									

HS1E[8:1] -If HS1 is programmed as an output, this 9-bit register defines the end location of the HS1HS1BE0signal. The content of this register is a 2's complement number which is used as an offset to
the default HS1E location as defined in Table 4. The resolution for this register is 1 CK clock.

	HS2 Start Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
09h	HS2B		HS2B[8:1]									
0Ch	HXTRA	÷	HAVB[10:8] HAVE[10:8] HS1BE0 HS2BE									

HS2B[8:1] -This 9-bit register defines the start location of the HS2 signal. The content of this register is aHS2BE02's complement number which is used as an offset to the default HS2B location as defined in
Table 4. The resolution for this register is 1 CK clock.

	HS2 End Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0Ah	HS2E				HS2E	[8:1]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS2B									

HS2E[8:1] -This 9-bit register defines the end location of the HS2 signal. The content of this register is a
2's complement number which is used as an offset to the default HS2E location as defined in
Table 4. The resolution for this register is 1 CK clock.

				AGC C	ontrol					
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x0B	AGC		AGC[7:0]							

AGC[7:0] This register is used to manually set AGC when **AGCFRZ** is set to "1". The content in the register is unsigned.

	Chroma Demodulation Control											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0											
0Dh	ODh CDEM OUTHIZ FSEC - CIFCMP[1:0] 0 0 0											

CIFCMP[1:0]	IF compe	nsation for the chroma path.
	0	No compensation.*
	1	Upper chroma side band is 1 dB higher than lower side band.
	2	Upper chroma side band is 3 dB higher than lower side band.
	3	Upper chroma side band is 6 dB higher than lower side band.
FSEC	Chroma fi	requency demodulation filter select for SECAM video.
	0	Select SECAM chroma frequency demodulation filter if SECAM video is detected.*
	1	Always use SECAM chroma frequency demodulation filter.
OUTHIZ	This is the logic LOV additional	e software output three-state control bit. If this bit is set to a "1", or the OEN pin is at a / level, output pins can be selectively put in the high impedance state using the software control bits OENC[1:0] .
	0	This is default setting.*
	1	This will enable the output pins to be three-stated regardless the state of the OEN pin.

				Port A and	B Control				
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0Eh	PORTAB	DIRB		DATAB[2:0]		DIRA		DATAA[2:0]	
DATAAĮ	[2:0] Por	t A data sel	ect. For inte	ernal gate si	gnal locatio	ns, refer to	Table 4.		
	0	Pui		inected for	RPC (back	ai signai pa	un.		
	ו ס	Pui		cted to the	SVG (sync	tin gate)	signal.		
	2	Por	A is conne	ected to the	CBG (color	hurst date)	sianal		
	4	Por	A is conne	ected to the	CBGW (col	or hurst dat	e wide) siar	nal The CB	GW is high
	т	for t	he entire co	plor burst pe	eriod.	or burst gat	e wide) sigi		ow is night
	5	Por	t A is conne	ected to the	SLICE (mid	way of the	sync tip) si	gnal.	
	6	Por	t A is conne	ected to the	VBI (vertica	I blanking ir	nterval) sigr	nal.	
	7	Por	t A is conne	ected to the	GPPORT b	it.			
DIRA	Por	t A directior	control.						
	0	Por sele the	t A is config ected by DA signal path	ured as inp . TAA[2:0] . T .*	ut. The inpu The internall	it is connect y generated	ted directly I gate signa	to the signa al is disconn	l path ected from
	1	Por DA	t A is an ou [AA[2:0] .	tput and is o	driven by the	e internally	generated s	signal as sel	ected by
DATAB[[2:0] Por	t B data sel	ect. For inte	ernal gate si	gnal locatio	ns, refer to	Table 4.		
	0	Por	t B is discor	nnected fror	n the intern	al signal pa	th.*		
	1	Por	B is conne	ected to the	SCH (sync	tip to color l	burst phase	e) signal.	
	2	Por	B is conne	ected to the	FH2 (twice	per line pul	ses) signal.		
	3	Por	t B is conne	ected to the	FS_PULSE	(falling edg	e of the sy	nc tip) signa	l.
	4	Por	t B is conne	ected to the	VBI_CVBS	(VBI raw Al	DC) signal.		
	5	Por	B is conne	ected to the	VBI_PROC	(VBI sliced) signal.		
	6	Do	not use.						
	7	Por	t A is conne	ected to the	COMB (cor	nb enable) :	signal.		
DIRB	Por	t B directior	control.						
	0	Por sele the	t B is config ected by DA signal path	jured as inp . TAB[2:0] . T .*	ut. The inpu The internall	it is connect y generated	ted directly d gate signa	to the signa al is disconn	l path ected from
	1	Por DA	t Β is an ou Γ ΑΒ[2:0] .	tput and is o	driven by the	e internally	generated s	signal as sel	ected by

Luma Control Register											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x0F	LUMA	-	UNIT	RGBH	PED	HYBWR	CTRAP	HYPI	<[1:0]		
HYPK[1	l:0] Lun	ninance hori	zontal peal	king control	around 3 N	/Hz.					
	0	Les	s than nom	inal peaking	.*						
	1	Non	ninal peakir	ng.							
	2	Incr	eased peak	king.							
	3	Max	imum peak	king.							
CTRAP	Chr	oma trap (n	otch filter) i	n the luma p	oath.						
	0	No d	chroma trap	o. This mode	e is recomr	nended for S	S-video or co	omponent v	ideo input.		
	1	Chro	oma trap is	enabled*							
HYBWF	R Lun	ninance hori	zontal band	dwidth reduc	ction contro	ol.					
	0	Full	bandwidth.	*							
	1	Red	uced band	width.							
PED	Ena	ible gain coi	rection for	7.5 blank-to	-black setu	ıp (pedestal)					
	0	No p	pedestal. 0	% = Y code	16. 100% :	= Y code 23	5.*				
	1	Gair 100	n adjusted f % input pro	or 7.5% bla duce Y cod	nk-to-black e 16 - 235.	setup (pede	estal). 7.5%	= Y code 1	6. 7.5% -		
RGBH	Higl	h gain to pro	oduce full ra	ange Y for 0	% (or 7.5%	6 if PED = 1)	to 100% inj	out.			
	0	Blac	k (0% or 7	.5%) to peal	k white(100)%) input pro	oduce Y cod	e 16 to 235	5.*.		
	1	Blac	k (0% or 7	.5%) to peal	k white(100)%) input pro	oduce Y cod	e 0 to 255.			
UNIT	Wh CCI	en PED and R 601 digita	l RGBH are al input (INI	e both set to PSL[1:0] = 1	a "1", sett 1).	ting this bit to	o a "1" prod	luces a unit	gain for		
	0	Lum	a DC gain	is controlled	l by PED a	nd RGBH as	s described	for each bit	*		
	1	Lum	a DC gain	is unity for C	CCIR 601 c	ligital input.					

				Contrast	Control					
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x10	CON		CON[7:0]							

CON[7:0] This 8-bit register contains a 2's compliment number for contrast control.

Brightness Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x11	BRT				BRT	[7:0]					

BRT[7:0] Brightness control register. The number contained in the register is 2's compliment.

			Ch	roma Cont	rol Registe	r A			
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x12	CHROMA	ACCFRZ	PALM	PALN	CBW	COR	E[1:0]	CKIL	L[1:0]
CKILL[1	:0] Co	lor kill.							
	0	Auto	o detect mo e 128.*	de. If color	burst is too l	ow or no co	olor burst, ch	nroma data	is forced to
	2	Chr	oma is alwa	ays ON.					
	3	Chr	oma data is	always for	ced to code	128.			
CORE[1:0] Ch	roma data co	oring.						
	0	No	coring.						
	1	Chr	oma data w	ithin the rai	nge 128±1, i	nclusive, w	ill be forced	to 128.	
	2	Chr	oma data w	rithin the rai	nge 128±3, i	nclusive, w	ill be forced	to 128.*	
	3	Chr	oma data w	ithin the rai	nge 128±7, i	nclusive, w	ill be forced	to 128.	
CBW	Ch	roma bandw	idth control						
	0	Chr	oma 3 dB b	andwidth is	s 850 kHz.*				
	1	Chr	oma 3 dB b	andwidth is	s 550 kHz.				
PALN	Sel	ect color tra	cking for PA	L-N, or NT	SC-N when	input field r	ate is 50 Hz	and Fsc is	3.58 MHz.
	0	Sele	ect NTSC-N	.*					
	1	Sele	ect PAL-N.						
PALM	Sel	ect color tra	cking for PA	L-M or NT	SC-M when	input field ı	ate is 60 Hz	Ζ.	
	0	Sele	ect color tra	cking for N	TSC-M.*				
	1	Sele	ect color tra	cking for PA	AL-M.				
ACCFR	Z Chi	roma gain tra	acking free:	ze control.					
	0	Chr	oma gain tr	acks the inp	put. Color sa	aturation ca	n be adjuste	ed with SAT	*
	1	Chr	oma gain fr	eezes at the	e current sa	turation lev	el.		

Chroma Control Register B											
Index	Mnemo	onic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x13	CHRO	MB		CDĽ	Y[3:0]			SCHC	MP[3:0]	I	
SCHCM	/IP[3:0]	Phas degr	se constant ees with th	compare v e value of (value for co D equal to 0	lor burst pha) degree.	ase relative	to sync tip.	Each step i	s 22.5	
CDLY[3	:0]	Chro	oma path gi	oup delay	relative to t	he luma pat	h (in unit of	CK):			
		0	No d	delay.*							
		1	-0.5								
		2	1								
		3	0.5								
		4	2								
		5	1.5								
		6	3								
		7	2.5								
		8	-4								
		9	-4.5								
		А	-3								
		В	-3.5								
		С	-2								
		D	-2.5								
		Е	-1								
		F	-1.5								

				Chroma De	emodulatio	n Control a	nd Status			
Index	Mnemo	onic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x14	DEMO	D	FSCDET	SECDET	CDMLPF	CTRACK	MNFS	C[1:0]	MNSEC	AM[1:0]
MNSEC	CAM[1:0]	Ena	ible manual	SECAM in	out detectio	n.				
		0	Dete	ection of SE	CAM input	is automation	c.*			
		2	For	ce the chip	to assume i	nput is not \$	SECAM.			
		3	For	ce the chip	to assume i	nput is SEC	AM.			
MNFSC	:[1:0]	Ena	ible manual	Fsc detecti	on.					
		0	Dete	ection of Fs	c frequency	/ is automat	ic.*			
		2	For	ce chip to a	ssume inpu	t Fsc is 4.43	3 MHz or 4.2	286 MHz.		
		3	For	ce chip to a	ssume inpu	t Fsc is 3.58	3 MHz.			
CTRAC	К	Chr	oma freque	ncy trackinę	g mode.					
		0	Chr	oma freque	ncy tracking	g is based o	n the field r	ate and Fso	2.*	
		1	Chr	oma freque	ncy tracking	g is based o	n field rate o	only.		
CDMLP	۲F	Вур	ass the LPF	in the chro	oma demod	ulator.				
		0	Chr	oma data p	ass through	the LPF for	r color demo	odulation.*		
		1	Chr	oma data b	ypass the L	PF. This set	ting is used	for compo	nent video i	nput.
SECDE	т	SEC	CAM detecti	on (read or	nly).					
		0	Chip	o did not de	tect SECAN	/l input.				
		1	Chi	o detected	SECAM inp	ut.				
FSCDE	т	Col	or subcarrie	r detection	(read only).					
		0	Chir	o detected	4.43 MHz oi	r 4.286 MHz	r Fsc.			
		1	Chi	o detected 3	3.58 MHz F	SC.				
		-	5							

Color Saturation Control												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x15	0x15 SAT SAT[7:0]											

SAT[7:0]

Color saturation control register. Register content is in 2's compliment if **TSTCGN**=0. 0 value corresponds to nominal saturation.

				Hue C	ontrol				
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x16	HUE				HUE	E[7:0]			
HUE[7:0]	Hue -18	e control reg 0° to +178.5	ister. The r 9°. The re	egister cont solution is 1	ent is in 2' .41°∕LSB.	s complime	nt format. It	covers the	range fron
			Vert	ical Proces	sing Cont	rol A			
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x17	VERTIA	MNYCMB	١	CMBCO[2:	0]	VRT2X		VCTRL[2:0]
VRT2X	3 4 3/5 0 1	Scal Scal tap vertical Sele Sele	ler uses LF ler is disab scaler filte ect 3-tap ve ect 5-tap ve	PF, comb is o led, comb u r select. ertical scaler rtical scaler	disabled. ses HPF. filter.* filter. This (option can b	e used only	, if horizonta	illy croppe
VOMDOO		line na aamh filta	is less that	n or equal to	384 pixels				
I CIVIDOC	עביטן בטו 0	1/4 [1/4	1/2 1/4].*				5 561 10 1	•	
	1	[3/8	1/2 1/8].						
	2	[1/2	1/2 0].						
	3	[1 0	0].						
	4	[0 1	0].						
	5	[1/2	0 1/2].						
	6	[0 1/	/2 1/2].						
	7	[1/8	1/2 3/8].						
MNYCME	3 Sel	ect between	auto and r	manual luma	a comb filte	r coefficient	S.		
	0	Lum stan	a comb filt dard.*	er coefficier	its are auto	omatically se	lected base	ed on input	video
	1	Lum	a comb filt	er coefficier	nts are sele	cted with V(MBCOI2	ור	

I

I

I

				Vert	ical Proces	ssing Contr	ol B			
Index	Mnem	onic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x18	VER	ΓΙΒ		HYLPF[2:0]	HYBWI	HYDEC	VSCL	EN[1:0]	0
							· · · · · ·			
VSCLE	N[1:0]	Vert	ical scaling	enable.						
		0	Ver	tical scaling	is enabled	.*				
		1	Ver	tical scaling	is disabled	ł.				
		2	Ver	tical scaling	is disabled	l. Video is 1	-line delayed	ł.		
		3	Ver	tical scaling	is disabled	d. Video is 2	-line delayed	ł.		
HYDEC	;	Lum	a path dec	imation filte	r enable.					
		0	Lun	na path dec	imation is e	enabled.*				
		1	Lun	na path dec	imation is c	lisabled.				
HYBWI		Lum	a path dec	imation filte	r bandwidtł	n select.				
		0	Nor	mal bandwi	dth.*					
		1	Ban	dwidth is 1	MHz highe	r.				
HYLPF	[2:0]	Hori	zontal luma	a LPF band	width contro	ol.				
		0	Full	bandwidth.	*					
		1	4.5	MHz bandv	vidth.					
		2	3.5	MHz bandv	vidth.					
		3	2.5	MHz bandv	vidth.					
		4	1.5	MHz bandv	vidth.					

			Vert	ical Proces	ssing Cont	rol C			
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x19	VERTIC	MNCCMB	C	CMBCO[2	:0]	ACMBEN	VYBW	EVAVEV	EVAVOD
EVAVO	D Ena	able VAV sig	nal output	during ODD) field.				
	0	VAV	/ signal is d	isabled (alv	vays inactiv	e) during O	DD field.		
	1	VAV	/ signal is e	nabled duri	ng ODD fie	ld.*			
EVAVE	V Ena	able VAV sig	nal output	during EVE	N field.				
	0	VAV	/ signal is d	isabled (alv	vays inactiv	e) during E∖	'EN field.		
	1	VAV	/ signal is e	nabled duri	ng EVEN fi	eld.*			
VYBW	Lur	na vertical b	andwidth c	ontrol.					
	0	Full	bandwidth.	*					
	1	Red	uced band	width.					
ACMBE	N Ena	able luma ac	tive comb f	or NTSC.					
	0	Acti	ve comb is	disabled.*					
	1	Acti	ve comb is	enabled.					
CCMBC	O[2:0] Ma	nual chorma	comb filter	r coefficient	s select.				
	0	Sele	ect the coef	ficient set [1/2 1/2 0] (i	f VRT2X = 0).*		
	1	Sele	ect the coef	ficient set [1/4 1/2 1/4]	(if VRT2X =	0).		
	2	Sele	ect the coef	ficient set [0 1/2 1/2 0	0] (if VRT2X	= 1).		
	3	Sele	ect the coef	ficient set [0 1/4 1/2 1/4	4 0] (if VRT2	X = 1).		
	4	Sele	ect the coef	ficient set [1 0 0].				
	5	Sele	ect the coef	ficient set [0 1 0].				
	6	Sele	ect the coef	ficient set [0 0 1].				
	7	No d	output (disa	bled).					
MNCCN	/IB Chi	roma comb f	ilter coeffic	ients are se	elected auto	matically or	manually.		
	0	Filte stan	er coefficien dard.*	its are auto	matically se	elected base	d on the se	lected video	o input
	1	Filte	r coefficien	its are seled	cted manua	Ily with CCN	IBCO[2:0].		

			Н	orizontal S	Scaling Rat	io			
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x1A	HSCLL				HSCL[6:0]				CMBMOD
0x1B	HSCLH				HSCI	[14:7]			1
CMBMO		s hit control	s when com	h is enable	d internally				
CINDING	0	Cor	nb is enable	ed by the in	ternal signa		N.*		
	1	Cor	nb is enable	ed when VA	V is active.				
HSCL[1	4:01 The	15-bit reais	ster defines	a horizonta	al scaling ra	tio of HSCL	[14:0]/2 ¹⁵ .	Anv change	to this
	valu	le will beco	me effective	e during the	next vertica	al sync.	1	, · · · · · · · · · · · · · · · · · · ·	
				Vertical Sc	aling Ratio)			
Index	Mnemonic	bit 7	bit 6	Vertical Sc bit 5	aling Ratio	bit 3	bit 2	bit 1	bit 0
Index 0x1C	Mnemonic	bit 7	bit 6	Vertical Sc bit 5 VSC	aling Ratio	bit 3	bit 2	bit 1 ACMBCO	bit 0
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH	bit 7	bit 6	Vertical Sc bit 5 VSC	bit 4 L[5:0]	bit 3	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH	bit 7	bit 6	Vertical Sc bit 5 VSC	bit 4 L[5:0] VSCI	bit 3 _[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH	bit 7	bit 6	Vertical Sc bit 5 VSC	bit 4 bit 4 L[5:0] VSCI	bit 3 _[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH	bit 7	bit 6	Vertical Sc bit 5 VSC	bit 4 L[5:0] VSCI	bit 3 -[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH	bit 7	bit 6	Vertical Sc bit 5 VSC d select.	bit 4 L[5:0] VSCI	bit 3 _[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH RE Act 0	bit 7 ve comb fill Hig Low	bit 6 ter threshold. h threshold.	Vertical Sc bit 5 VSC d select.	bit 4 L[5:0] VSCI	bit 3 _[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH RE Act 0 1 CO Act	bit 7 ve comb filt Hig Low	bit 6 ter threshold h threshold. v threshold. ter coefficie	Vertical Sc bit 5 VSC d select. .*	t.	bit 3 -[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH RE Act 0 1 CO Act 0	bit 7 ive comb filt Hig Low ive comb filt Use	bit 6 ter threshold. h threshold. v threshold. ter coefficie e the set of o	Vertical Sc bit 5 VSC d select. * nt set select coefficients	t. for 100% c	bit 3 _[13:6]	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D	Mnemonic VSCLL VSCLH RE Act 0 1 CO Act 0 1	bit 7 ive comb filt Hig Low ve comb filt Use Use	bit 6 ter threshold. ter coefficie the set of c the set of c	Vertical Sc bit 5 VSC d select. * nt set select coefficients coefficients	t. for 100% co	bit 3 _[13:6] omb.* mb.	bit 2	bit 1 ACMBCO	bit 0 ACMBRE
Index 0x1C 0x1D ACMBR ACMBR	Mnemonic VSCLL VSCLH RE Act 0 1 CO Act 0 1 3:0] The	bit 7 ive comb filt Hig Low ve comb filt Use Use	bit 6 ter threshold. h threshold. v threshold. ter coefficie e the set of d ster defines	Vertical Sc bit 5 VSC d select. * nt set select coefficients coefficients a vertical s	t. for 100% co scaling ratio	bit 3 _[13:6] omb.* mb. of VSCL[13	bit 2	bit 1 ACMBCO	bit 0 ACMBRE

I

Output Control A												
Index	Mnemoni	c bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x1E	OFMTA	0	0	OEN	C[1:0]		OFM	T[3:0]				
OFME	D.01 D											
	3:0] D	utput at CK c	lock rate.	select. 16 a	and 24 dit da	ata are outp	ut at CK2 c	lock rate. 8	bit data are			
	0	16-	bit YCbCr 4	:2:2.*								
	1	12-	bit YCbCr 4	:1:1.								
	2	8-b	it YCbCr 4:2	2:2 without	embedded t	iming refere	ence codes.					
	3	8-b	it YCbCr 4:2	2:2 with em	bedded timi	ng referenc	e codes.					
	4	24-	bit YCbCr 4	:4:4.								
	5	16-	bit RGB 565	5								
	6	24-	bit RGB 888	3 with linear	bit ordering	g.						
	7	24-	bit RGB 888	3, bit orderir	ng is an exte	ension of th	e 16-bit RG	B 565 form	at.			
OENC[1:0] W	/hen either th utput pins are	e OEN pin i three-state	s low or the d.	OUTHIZ is	a "1", thes	se two bits v	will determir	ne which			
	0	All	video pins a	re three-sta	ated.							
	1	All thre	video pins, p ee-stated.	olus HAV, V	AV, EVAV, E	EHAV, PID,	ODD, HS1,	HS2, VS, a	nd SCH are			
	2	All	pins listed a	bove, plus	CK and CK2	2 are three-	stated.					
	3	Re	served.									

				Output C	ontrol B				
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x1F	OFMTB	VSVAV	EVAN	ID[1:0]	EVHS1	EVHAV	EVEHAV	EVAVG	-
EVAVG	Ga	te EVAV wit	n VAV befoi	re sending t	o output.				
	0	EVA	V is not ga	ted with VA	V. EVAV ma	y be active	outside of a	ctive VAV r	egion.*
	1	EVA	V is gated	with VAV. E	VAV can be	active only	when VAV	is active.	
EVEHA	V Ad	ditional quali	fier for EHA	V.					
	0	No	additional q	ualifier.*					
	1	EHA	AV uses qua	alifier from I	EVAND[1:0]				
EVHAV	Ad	ditional quali	fier for HA∖	<i>'</i> .					
	0	No	additional q	ualifier.*					
	1	HAV	/ uses qual	ifier from E	/AND[1:0].				
EVHS1	Ad	ditional quali	fier for HS1						
	0	No	additional q	ualifier.*					
	1	HS1	l uses quali	fier from E	/AND[1:0].				
EVAND	[1:0] Qu	alifier based	on EVAV a	nd VAV (th	ese are the	internal act	ive high sigi	nals).	
	0	Qua	alifier is logi	c"0".*					
	1	Qua	alifier is EVA	V.					
	2	Res	erved.						
	3	Qua	alifier is VAV	/					
VSVAV	En	able VAV to	be output to	o VS.					
	0	Out	put normal	VS.*					
	1	VS	has the san	ne output as	s VAV.				

I

VBI Decoder Control										
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x20	VBICTL	VBCVBS	VYFN	IT[1:0]	VBINSRT	ODDEN	EVENEN	ODDC	DS[1:0]	
ODDOS	S[1:0] Line	e offset for C	DD field. S	See also VB	I L [15:0].					
	0	ODI	D field line o	offset is -1 o	compared to	EVEN field	1.*			
	1	No d	offset.							
	2	ODI	O field line o	offset is 1 c	ompared to	EVEN field				
	3	ODI	O field line o	offset is 2 c	ompared to	EVEN field				
EVENE	N VB	data proces	ssing for E	/EN field.						
	0	No p	processing.	*						
	1	VBI	processing	is enabled	for EVEN fi	eld.				
ODDEN	I VB	data proces	ssing for O	DD field.						
	0	No p	processing.	*						
	1	VBI	processing	is enabled	for ODD fie	ld.				
VBINSR	RT Ena	able VBI data	a to be outp	out on the Y	bus.					
	0	VBI	data is not	output on tl	he Y bus.*					
	1	VBI	data is out	out on the Y	′ bus.					
VYFMT	[1:0] Wh	en VBINSR	F = 1, these	e bits contro	ol how VBI d	lata are out	put on the Y	bus.		
	0	1 bit	on Y7 per	CK2 clock.	*					
	1	1 bit	on Y7 plus	s a "1" on Y	/3 per CK2	clock.				
	2	4 bit	s on Y7Y4	4, with first	bit on Y7, la	st bit on Y4	, plus a "1"	on Y3 per	CK2 clock.	
	3	8 bit	s on Y7Y	D, with first	bit on Y7, la	st bit on YC), per CK2 cl	ock.		
VBCVB	VBCVBS Enable digitized CVBS data from ADC to be output for the selected VBI line instead of sliced VBI data.									
0 Output sliced VBI data.*										
	1	Outp	out digitized	d CVBS dat	a.					

First Decoded Close-Caption Data Byte (Read Only)												
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x21	0x21 CCDAT2 b0 b1 b2 b3 b4 b5 b6 P2											

CCDAT2 This byte contains the second byte of the decoded close-caption data as defined in EIA-608. In order for this register to receive the CC data, **VBINSRT** must be programmed to a "1", and **VYFMT[1:0]** must be programmed with the value 3. The same applies to **CCDAT1**. For normal NTSC Closed Caption decoding, **ODDEN** should be set to a "1"; **VBIL12** should be programmed with the value 1.

Second Decoded Close-Caption Data Byte (Read Only)												
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0											
0x22	0x22 CCDAT1 b0 b1 b2 b3 b4 b5 b6 P1											

CCDAT1 This byte contains the first byte of the decoded close-caption data as defined in EIA-608.

VBI Data Decoding												
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 1											
0x23	VBIL30	VBIL3		VB	VBIL2		VBIL1		VBIL0			
0x24	VBIL74	VB	IL7	VB	VBIL6		VBIL5		IL4			
0x25	VBIL118	VBI	L11	VBI	VBIL10		IL9	VBIL8				
0x26	VBIL1512	VBI	L15	VBIL14		VBIL13		VBIL12				

VBIL0..VBLI15 These 16 2-bit numbers select how the chip should decode the VBI data for each VBI line. For 60 Hz video, **VBIL1** through **VBIL15** correspond to lines 10 through 24 in the ODD field, and lines 273 through 286 in the EVEN filed for NTSC (refer to Figure 10 for NTSC line numbering convention). For 50 Hz video, **VBIL1** corresponds to line 7 in the ODD field, and line 320 in the EVEN field. **VBIL0** is used for all other lines not covered by **VBIL1** through **VBIL15**.

- 0 Decode normal video.*
- 1 Decode Closed Caption data.
- 2 Decode Teletext data.
- 3 Decode SMPTE data.

	Teletext Frame Alignment Pattern											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0											
0x27	TTFRAM		TTFRAM[7:0]									

TTFRAM[7:0] User programmable Teletext frame alignment pattern.

UV Offset Adjustment													
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0												
0x29	UVOFFH	TSTCLC	TSTCGN	0	TSTCFR	UOFF	ST[5:4]	VOFF	ST[5:4]				
0x2A	UVOFFL		UOFF	ST[3:0]			VOFF	ST[3:0]					

VOFFST[5:0], UOFFST[5:0]	These tw the chror	to 6-bit 2's compliment values are for offset adjustment to the U and V components of ma data. The resolution is 1/4 LSB of the 8-bit U and V.					
TSTCFR	Chroma	frequency tracking control.					
	0	Chroma frequency tracking is enabled.*					
	1	Chroma frequency tracking is open loop.					
TSTCGN	Chroma gain control.						
	0	Chroma gain tracks input.*					
	1	Chroma gain is controlled by SAT only.					
TSTCLC	Cloche fi	ilter bypass.					
	0	Cloche filter is enabled for SECAM input.*					
	1	DC bypass of the cloche filter.					

U Component Gain Adjustment											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0										
0x2B UGAIN UGAIN[7:0]											

UGAIN[7:0] U component gain adjustment. The nominal value is 0.

V Component Gain Adjustment											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x2C	VGAIN		VGAIN[7:0]								

VGAIN[7:0] V component gain adjustment. The nominal value is 0.

	VAV Begin											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0											
0x2D	0x2D VAVB VAVB[6:1] VAVOD0 VAVEVO											

VAVEV0	The LSB for VAVB and VAVE for the even field.
VAVOD0	The LSB for VAVB and VAVE for the odd field.
VAVB[6:1]	The 6 MSB's of a 7-bit unsigned number which defines the start of VAV. The value " 0 " corresponds to line 4.

VAV End											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0										
0x2E	0x2E VAVE VAVE[8:1]										

VAVE[8:1] The 8 MSB's of a 9-bit unsigned number which defines the end of VAV. The value "0" corresponds to line 4.

I

I

I

			Chrom	a Tracking	Control Re	egister			
Index	Mnemoni	ic bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x2F	CTRACK	K 0	0	DMC	TL[1:0]	CGT	C[1:0]	CFT	C[1:0]
CFTC[1	:0]	Chroma frequ	ency trackir	ng time cons	stant.				
		0 Slo	wer.*						
		1 Slo	w.						
		2 Fas	it.						
		3 Fas	ter.						
CGTC[1	:0]	Chroma gain	tracking time	e constant.					
		0 Slo	wer.*						
		1 Slo	w.						
		2 Fas	it.						
		3 Fas	ter.						
DMCTL	[1:0]	Chroma demo	dulation by	pass mode.					
		0 Chi	oma democ	lulation is e	nabled.*				
		1 Chi	oma democ	lulation is b	ypassed for	digital YCb	Cr input.		
		2 Chi del	oma democ ayed by one	lulation is b half of CK2	ypassed for 2 clock peric	[·] analog YC od.	bCr input. (Cb path is p	hase
		3 Chi del	analog YC	bCr input. (Cr path is ph	nase			

Timing Signal Polarity Control											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0										
0x30	POLCTL	EVAVPL	VSPL	ODDPL	HAVPL	EHAVPL	HS2PL	VAVPL	HS1PL		

HS1 polar	ity.
0	Active high.*
1	Active low.
VAV polar	ity.
0	Active high.*
1	Active low.
HS2 polar	ity.
0	Active high.*
1	Active low.*
EHAV pol	arity.
0	Active high.*
1	Active low.
HAV pola	rity.
0	Active high.*
1	Active low.
ODD pola	rity.
0	Active high.*
1	Active low.
VS polarit	у.
0	Active high.*
1	Active low.
EVAV pola	arity.
0	Active high.*
4	A attern Larry
	HS1 polar 0 1 VAV polar 0 1 HS2 polar 0 1 EHAV polar 0 1 ODD polar 0 1 VS polarit 0 1 EVAV polar 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Reference Code Insertion Control												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x31	REFCOD	YCRANG	VSINST	1	HSINS	ST[1:0]	1	0	0			
HSINST	Г[1:0] HS	1 leading e	dge timing	reference c	ode insertio	n.						
0 Never insert HS1 leading edge timing code.*												
1 Insert HS1 timing code for every line.												
	2	Inse	rt HS1 timii	ng code onl	y if EVAV is	inactive.						
VSINST	r vs	leading edg	ge timing re	ference co	de insertion							
	0	Nev	er insert VS	leading ed	lge timing c	ode.*						
	1	Inse	rt VS leadii	ng edge tim	ing code.							
YCRAN	IG Dig	gital video o	utput range	control.								
	0	Y ar	nd C ranges	are limited	l to 1 - 254;	R, G, and E	3 ranges are	e limited to	1 - 254.*			
	1	Y ra limit	nge is limite ed to 16 - 2	ed to 16 - 23 40.	35; C range	is limited to	o 16 - 240; F	R, G, and B	ranges are			

Invalid Y Code											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x32	INVALY	INVALY[7:0]									

INVALY[7:0] User programmed code to be output for Y data when HAV is active but EHAV is inactive.

Invalid U Code											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x33	INVALU	INVALU[7:0]									

INVALU[7:0] User programmed code to be output for U data when HAV is active but EHAV is inactive.

	Invalid V Code											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x34	INVALV		INVALV[7:0]									

INVALV[7:0] User programmed code to be output for V data when HAV is active but EHAV is inactive.

	Unused Y Code											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x35	UNUSEY		UNUSEY[7:0]									

UNUSEY[7:0] User programmed code to be output for Y data when HAV is inactive.

	Unused U Code											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x36	UNUSEU		UNUSEU[7:0]									

UNUSEU[7:0] User programmed code to be output for U data when HAV is inactive.

Unused V Code												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x37	UNUSEV	UNUSEV[7:0]										

UNUSEV[7:0] User programmed code to be output for V data when HAV is inactive.

				User Defin	ed SHS1 A							
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x3A	SHS1A				SHS1	A[7:0]						
SHS1A	\[7:0] Pro bot	grammable h inactive.	HS1 leadir	ng edge tim	ing referenc	ce code inse	erted when	VAV and E ^v	/AV are			
User Defined SHS1 B												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x3B	SHS1B			ł	SHS1	B[7:0]						
SHS1E	8[7:0] Pro EV	grammable AV is active	e HS1 leadii	ng edge tim	ing referenc	ce code inse	erted when	VAV is inac	tive and			
				User Defin	ed SHS1 C							
		L : 4 7	1.14.0			1.11.0	h:4 0	L:4.4				
Index	Mnemonic	DIT /	Dit 6	bit 5	bit 4	bit 3		DIT 1	bit 0			

SHS1C[7:0] Programmable HS1 leading edge timing reference code inserted when VAV is active and EVAV is inactive.

Command Register E												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x3D	CMDE	ODFST	VSALG	-	-	-	-	-	-			
VSALG	G Ve 0	rtical scaling Vert	g line dropp	ing algorith drops the s	m. same lines i	n the Odd a	ınd Evan fie	lds good	for fast			
	1	Vert	Vertical scaling drops lines based on the final de-interlaced video. This is a better vertical scaling but may be sensitive to fast motion video.									
ODFST	Γ Alte	ernate the f	irst scaling I	ine betwee	n Odd and	Even fields.						
	0	Eve	n field is the	e first scale	d field.*							
	4	Oda	l fiold is the	first scaled	field							

	VS Delay Control												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
0x3E	0x3E VSDEL VSDEL[5:0]												

VSDEL[5:0] When the chip is programmed for digital video input operation, this register provides an offset for the internal line counter to align with input video (VS can be either from the VS pin or from embedded timing code). The register content is unsigned.

Command Register F											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x3F	CMDF	-	-	EVAVY	UVDLEN	UVDLSL	REGUD	TASKB	CBWI		
0.514											
CBWI Chroma bandwidth increase.											
	0	Nor	mal chroma	a bandwidth	.^						
	1	Incr	eased chro	ma bandwi	dth.						
TASKE	B Se	Select between task A and B as described in "VIP Specification V. 1.0".									
	0	Sele	Select CCIR 656 timing codes (T-bit is always 1).*								
1 Select between task is set to 1(task A). If					task A and B when VBI data is output. If active video is output, T-bit A). If VBI data is output, T-bit is set to 0 (task B).						
REGU	D Co	Control register update control.									
	0	Reg	Registers are updated immediately after being written to.*								
1 The following registers and register sync after they are written to: Index 0x02, indices 0x17 through 0 index 0x0E.				d register bit to: hrough 0x1[ts are updat D, bit 0 of in	ed only dur dex 0x04, b	ing the star its [2:0] and	t of vertical d [6:4] of			
UVDLSL U or V delay control when UVI					is set to 1.						
	0	V is	V is delayed by 1 CK period.*								
	1	U is	U is delayed by 1 CK period.								
UVDLE	EN Er	Enable the function of UVDLSL.									
	0	UVI	UVDLSL is disabled.*								
	1	UVI	UVDLSL is enabled.								
EVAVY Control the output of INVALY, INVALU, and INVALV codes when EVAV is inactiv							s inactive.				
	0	Out	put of these	e codes are	not affected	by EVAV.*					
1 These codes are output when EVAV is inactive (line is being o scaler).					dropped by	the vertical					

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Units
5-V supply voltage (measured to VSS)	V _{DD}	-0.5 to + 7.0	V
3.3-V supply voltage (measured to VSS)	V _{DD3}		V
Voltage on any digital pin	V _{PIN}	-0.5 to (V _{DD} +0.5)	V
Ambient operating temperature (case)	T _A	-10 to + 100	°C
Storage temperature	Τ _S	-65 to + 150	°C
Junction temperature	Τ _J	150	°C
Vapor phase soldering (1 min.)	Tvsol	220	°C

Notes: 1.Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.

2. Functional operation under any of these conditions is not implied.

3.Applied voltage must be current limited to a specified range.

OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Мах	Units
5-V supply voltage (measured to VSS)	V _{DD}	4.75	5.0	5.25	V
3.3-V supply voltage (measured to VSS)			3.3		V
Ambient operating temperature, still air	T _A	0		70	°C

I

ELECTRICAL CHRACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Units
Supply					
+5V supply current	I _{DD5}	133	142	151	mA
+3.3V supply current	I _{DD3}	124	141	160	mA
Analog Characteristics				11	
Integral linearity error (AGC/ADC only)	E _{I-ADC}			1.5	lsb
Differential linearity error (AGC/ADC only)	E _{D-ADC}			0.75	lsb
Total harmonic distortion (4 MHz full scale)	THD		42		dB
Signal to noise ratio (4 MHz full scale)	SNR		42		dB
Analog bandwidth (50 IRE to 3 dB point)	BW	4			MHz
Input voltage range (peak-peak) 100 IRE input	V _{I(PP)}	0.5		1.5	V _{pp}
Input resistance AY0-AY2,AC0-AC2	R _{IN}	200			kΩ
Input capacitance for analog video inputs	C _{IN}		10		pF
Charge current for offset control	I _{OFF}		±4		μΑ
Cross talk between analog inputs	α			-50	dB
Video Performance					
Luminance frequency response (maximum variation to 4.2 MHz - multi burst)	F _{LUMA}		2		dB
Differential gain - complete chip (Modulated 40 IRE ramp)	D _G		1.5		%
Differential phase - complete chip (Modulated 40 IRE ramp)	D _P		1.0		degree
Chrominance frequency response (3 dB point) - CBWR=0/1	F _{CHROMA}		800/500		kHz
Chroma nonlinear gain distortion (NTC-7 Combination)	C _{NGD}		1		%
Chroma nonlinear phase distortion (NTC-7 Combination)	C _{NPD}		1.25		degree
Chroma to luma intermodulation (NTC-7 Combination)	C _{LI}		1		IRE
Chroma luma gain equality (NTC-7 Composite)	DEL _{CL}		±20		ns
Chroma luma delay equality (NTC-7 Composite)	AMP _{CL}		98-101		%
Noise level for unified weighting 10 kHz-5 MHz (100 IRE unmodulated ramp)	N _{LUMA}		-58		dB
Chroma AM noise (red field)	N _{CAM}		-60		dB
Chroma PM noise (red field)	N _{CPM}		-54		dB
Digital I/O Characteristics	1		1	ı — — — I	
Input low voltage	V _{IL}	VSS-0.5		0.8	V
Input high voltage	V _{IH}	2.0		VDD+0.5	V

ADVANCE INFORMATION MULTIMEDIA VIDEO

Characteristics	Symbol	Min	Тур	Max	Units	
Input low current (V _{IN} = 0.4 V)	IIL			-1	μΑ	
Input high current(VIN=2.4)	I _{IH}			-1	μA	
Digital output low voltage (I _{OL} =3.2mA)	V _{OL}			0.4	V	
Digital output high voltage (IOH=400µA)	V _{OH}	2.4			V	
Digital three-state current	I _{OZ}			50	μA	
Digital output capacitance	C _{OUT}			7	pF	
Maximum capacitance load for digital data pins	C _{L-DATA}			30	pF	
Maximum capacitance load for CK and CK2 outputs	C _{L-CK}			60	pF	
Timing Characteristics - Digital Inputs						
XTALI input pulse width low	t _{pwlX}	15	20		ns	
XTALI input pulse width high	t _{pwhX}	15	20		ns	
Clock and Data Timing						
Analog video input to digital video output delay	t _{dCHIP}		120		СК	
Pulse width high for CK (KS0112 operates at frequencies from 24.5 MHz to 29 MHz)	t _{pwhCK}	15	18.5	22	ns	
Pulse width high for CK2	t _{pwhCK2}	30	37	44	ns	
Delay from rising edge of CK to CK2	t _{CK2}		1.5		ns	
Delay from rising edge CK2 to data change (including pins Y0-Y7, C0-C7, HAV, VAV, EHAV, EVAV, HS1, HS2, VS, ODD, PID, SCH)	t _{dD}		20		ns	
Minimum hold time from rising edge of CK2 for data output)	t _{hD}	7			ns	
Delay from falling edge of OEN to data bits in 3-state	t _{zD}			30	ns	
Delay from rising edge OEN to data bits enabled	t _{enD}			35	ns	
Timing Characteristics -I2C Host Interface						
SCLK clock frequency	r _{SCLK}	0		400	kHz	
Capacitive load for each bus line	C _b			400	pF	
Hold time for START condition	t _{hSTA}	0.6			μs	
Setup time for STOP condition	t _{sSTO}	0.6			μs	
Rise and fall times for SCLK and SDAT	t _R , t _F	20		300	ns	
SCLK minimum pulse width low	t _{pwISCLK}	1.3			μs	
SCLK minimum pulse width high	t _{pwhSCLK}	0.6			μs	
SDAT setup time to rising edge of SCLK	t _{SSDAT}	100			ns	
SDAT hold time from rising edge of SCLK	t _{hSDAT}	0			ns	

Note: AC/DC characteristics provided are per design specifications.

Figure 40. Analog Video Input to Digital Video Output Delay

Package Dimension

100-QFP-1420C

Dimensions are in Millimeters

