
MULTISTANDARD VIDEO DECODER

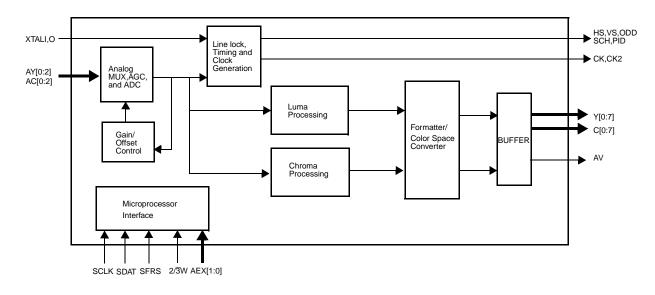
The KS0122 converts analog NTSC or PAL video in composite or S-video format to digitized component video. Output data can be selected for CCIR 601 or square pixel sample rates in either YUV or RGB formats. All required clocks and video timing signals are generated. The KS0122 performs line lock tracking, AGC, ADC sampling, lumachroma luminance processing, separation, color demodulation, chrominance processing, and format conversion. In addition, the ability to control the image's contrast, hue, saturation, brightness, and frequency response is provided.

FEATURES

- Accepts NTSC-M and PAL-M/N/B/G/H formats with auto detection
- 6 analog inputs: 3 S-video or 6 composite ports
- 2 main AGC-clamp-ADC data paths
- Independent line and color burst synchronization
- Digital luma and chroma comb filters to achieve superior Y/C separation
- Full bandwidth decoding; horizontal resolution equivalent to 330 lines
- Programmable luma bandwidth, contrast, brightness, and edge enhancement
- Programmable chroma bandwidth, hue, and saturation
- Supports both square pixel and CCIR 601 output data rates

ORDERING INFORMATION

Device	Package	Temperature Range
KS0122	100 PQFP	0°~+70°C

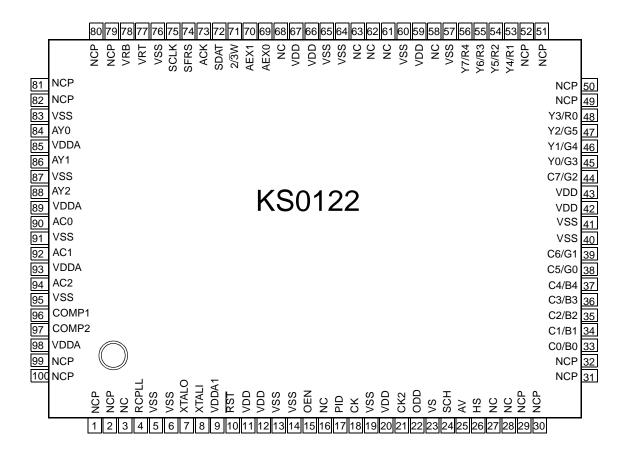

- Output in 8- or 16-bit YCbCr component, or 16-bit RGB 565 formats with dithering
- · Power down mode
- 3 or 2 wire serial interface

APPLICATIONS

- Multimedia
- Digital Video
- Video Capture
- Video Editing

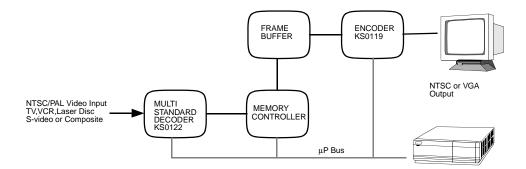
RELATED PRODUCT

• KS0119 VIDEO ENCODER



PAGE 1 OF 48 022497

BLOCK DIAGRAM


KS0122 Data Sheet

PIN ASSIGNMENT - 100 PQFP

TYPICAL APPLICATION

The KS0122 is shown in a typical application with the KS0119 NTSC Encoder.

PIN DESCRIPTION

Pin Name	Pin #	Туре	Description
INPUT			
AY0 - AY2	84,86,88	I	Analog composite or luminance video input.
AC0 - AC2	90,92,94	I	Analog composite or chrominance video input.
XTALI	8	I	Pin1 for external crystal or TTL clock input.
XTALO	7	0	Pin 2 for external crystal.
RST	10	I	Chip reset. Active low signal.
OUTPUT (All ou	tput pins are thr	ee-stata	ble)
Y0/G3 - Y2/G5, Y3/R0 - Y7/R4	45-48,53-56	0	Digital video outputs for YCbCr or RGB data.
C0/B0 - C4/B4, C5/G0 - C7/G2	33-39,44	0	Digital video outputs for YCbCr or RGB data.
HS	26	0	User programmable horizontal timing signal. One pulse every video line.
VS	23	0	Vertical Sync.
ODD	22	0	Odd field flag. High for fields 1 and 3.
SCH	24	0	Color burst to sync phase (field 1or 3 detect, stable SCH data only).
PID	17	0	PAL ID flag. High for phase alternating line.
AV	25	0	Active video flag.
OEN	15	I	Digital video bus output enable. The video output signals can be 3- stated regardless the input on this pin if the OENC[1:0] bits in the LUMA register are set to 11 (binary).
СК	18	0	Pixel output clock.
CK2	21	0	Pixel output clock (rate is one half of CK) aligned to AV signal.

REFERENCE AND COMPENSATION

VRT	77	I/O	ADC VRT compensation (requires an external 0.1 μF capacitor and a 1 k Ω resistor to VSSA).
VRB	78	I/O	ADC VRB compensation (requires an external 0.1 μ F capacitor).
RCPLL	4	I/O	PLL filter (external RC filter is required).
COMP2	97	I/O	Internal 1.3 V reference decouple (requires an external 0.1 μF capacitor).
COMP1	96	I/O	Internal 1.5 V reference decouple (requires an external 0.1 μF capacitor).

PIN DESCRIPTION (Continued)

Pin Name	Pin #	Туре	Description			
HOST INTERFACE						
SFRS	74	I	Frame sync for 3-wire host interface.			
SCLK	75	I	Serial clock.			
SDAT	72	I/O	Serial data.			
ACK	73	0	Write acknowledge for 2-wire serial mode.			
2/3W	71	I	Selects 2 or 3 wire host interface.			
AEX0 - AEX1	69 - 70	I	Device ID selection for host interface.			

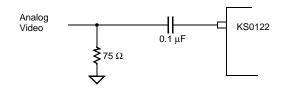
POWER AND GROUND

VDD	11,12,20,42,43, 59,66,67	+5V	Digital power supply.
VDDA	85,89,93,98	+5V	Analog power supply.
VDDA1	9	+5V	Analog power supply.
VSS	5,6,13,14,19,40, 41,57,60,64,65, 76,83,87,91,95	GND	Common ground.

NC

NC	3,16,27,28,58, 61-63,68	-	These pins are reserved and should not be connected.
NCP	1,2,29-32,49-52, 79-82,99,100	-	These pins are directly connected to the die substrate. They are intended as heat dissipation points. It is recommended that each corner set of 4 NCP pins be connected to as large as possible solid metal plane on the PCB component surface side. If electrical connect is desired (not required) only connection to VDDA is allowed.

PIN CROSS REFERENCE: NUMERICAL ORDER BY PIN NUMBER


Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
1	NCP	26	HS	51	NCP	76	VSS
2	NCP	27	NC	52	NCP	77	VRT
3	NC	28	NC	53	Y4/R1	78	VRB
4	RCPLL	29	NCP	54	Y5/R2	79	NCP
5	VSS	30	NCP	55	Y6/R3	80	NCP
6	VSS	31	NCP	56	Y7/R4	81	NCP
7	XTALO	32	NCP	57	VSS	82	NCP
8	XTALI	33	C0/B0	58	NC	83	VSS
9	VDDA1	34	C1/B1	59	VDD	84	AY0
10	RST	35	C2/B2	60	VSS	85	VDDA
11	VDD	36	C3/B3	61	NC	86	AY1
12	VDD	37	C4/B4	62	NC	87	VSS
13	VSS	38	C5/G0	63	NC	88	AY2
14	VSS	39	C6/G1	64	VSS	89	VDDA
15	OEN	40	VSS	65	VSS	90	AC0
16	NC	41	VSS	66	VDD	91	VSS
17	PID	42	VDD	67	VDD	92	AC1
18	СК	43	VDD	68	NC	93	VDDA
19	VSS	44	C7/G2	69	AEX0	94	AC2
20	VDD	45	Y0/G3	70	AEX1	95	VSS
21	CK2	46	Y1/G4	71	2/ 3 W	96	COMP1
22	ODD	47	Y2/G5	72	SDAT	97	COMP2
23	VS	48	Y3/R0	73	ACK	98	VDDA
24	SCH	49	NCP	74	SFRS	99	NCP
25	AV	50	NCP	75	SCLK	100	NCP

1. FUNCTIONAL DESCRIPTION

1.1. Analog Front End

The KS0122 has six analog video input pins. These inputs can be configured as six composite video sources, three S-video sources or a combination. The allowed pairings for the Y-C inputs are: AC0-AY0, AC1-AY1, and AC2-AY2. Inputs are selected using the **INSEL[3:0]** bits in the **CMDB** register. The input is ac coupled through a 0.1 μ F external capacitor. Due to the high sampling rate of the ADCs inside the KS0122 most video sources will not require a LPF for alias reduction. For those video sources with data above 13 MHz, a low pass filter with a simple single pole at 6 MHz will provide sufficient high frequency signal reduction. This can be implemented with a 400 pF cap in parallel with the 75 Ω load. Timing mismatch in S-video mode can be compensated with the **YDEL[2:0]** bits in the **CMDE.** Unused video inputs can be connected to VSS, VDD, or left floating.

As shown in Figure 2, the KS0122 has two complete internal analog paths, each including analog gain control, clamping control, and an 8-bit ADC. For composite video input, only the luma path is used. For S-video input, both the luma and chroma paths are utilized. Both ADCs operate at twice the output pixel rate to ease the requirement for the external analog anti-alias filter. The ADC digital data is used to calculate the correct gain and clamp values. The data is fed back to the analog clamping and gain control. This architecture eliminates any offset and gain mismatch in the analog front end.

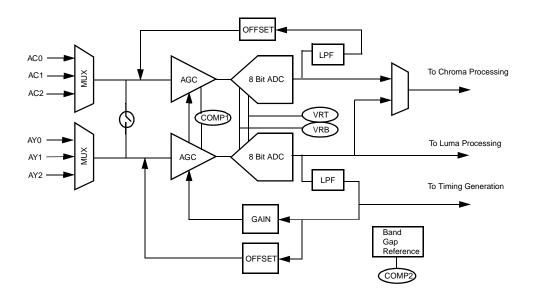


Figure 2. Analog Front End

The AGC normally references to sync tip, back porch delta. Video signal with abnormal sync tip or very bright saturated colors may cause the ADC to limit the maximum value. The user can enable the **AGCOVF** bit in the

KS0122 Data Sheet

CMDB register to force the gain tracking loop to reduce AGC when maximum limiting conditions occur. The AGC may also be programmed to freeze the AGC at the current value by setting the **AGCFRZ** bit in the **CMDB** register. Once the AGC is frozen, the gain can be manually adjusted with the **AGC** register.

The COMP1, COMP2, VRT, and VRB pins shown in Figure 2 are internal voltage reference nodes. Each needs to be decoupled with an external 0.1 μ F capacitor placed as close as possible to the pin. VRT also requires a 1k resistor to VSS.

1.2. External Clock Reference

The KS0122 requires an external reference clock to track the analog video input. This reference (at 24.576 MHz or 26.8 MHz) can be supplied via a crystal using the on chip crystal interface or any TTL compatible source. These configurations are shown in Figure 3

The reference frequency selection should be based upon the intended operating modes of the KS0122. For CCIR 601 operation, the 24.576 MHz reference is recommended. For square pixel or dual mode operation, the 26.8 MHz reference is recommended. A reference of 50 ppm or better is required.

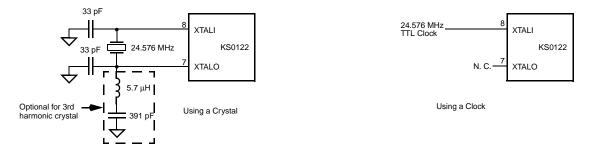


Figure 3. Standard Clock Configurations

The internal clock generation circuits require an external analog filter for the on-chip PLL as shown in Figure 4. These three components should be placed as close as possible to pin 4. The internal biasing circuits require a decoupling capacitor for pins COMP1 and COMP2 (pins 96 and 97).

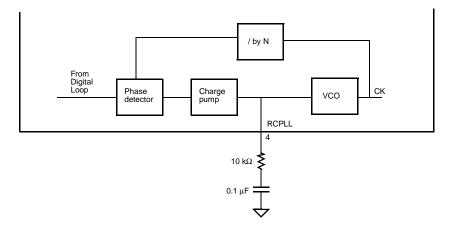
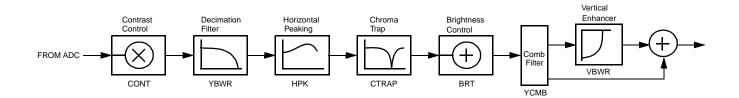
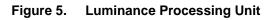


Figure 4. Analog PLL and RC Filter

1.3. Video Tracking


One of the critical functions of the KS0122 is to generate a time-base-corrected sampling clock. The KS0122 contains a sophisticated digital tracking system to support analog video sources with various signal conditions, such as VCR (with head switching), single field VCR, and noisy TV signals. The **HFSEL[1:0]** bits in the **CMDA** register are used to select different tracking algorithms. For all conditions except noisy broadcast, the **HFSEL** bit should be set to VCR mode (**HFSEL[1:0]**=01).


To ensure that samples are aligned horizontally, vertically in time, the sampling clock is generated by multiplying the line rate by N. The required N factor for the KS0122 is based upon the detected field rate (60 Hz or 50 Hz) and the desired sampling rates (CCIR 601 or square pixel). Field rate is automatically detected and can be monitored with the **FFRDET** bit in the **STAT** register. The **PIXSEL** bit in register **CMDD** selects CCIR 601 or square pixel. Table 1 shows the constants for the various combinations of input formats and output pixel rates.

		CCIR 601 Data Rates				Square Pixel Data Rates				
	NTSC-M	PAL- B/G/H	PAL-M	PAL-N	NTSC-M	PAL- B/G/H	PAL-M	PAL-N	Units	
Line Time	63.55	64.0	63.55	64.0	63.55	64.0	63.55	64.0	μS	
Field Rate	60	50	60	50	60	50	60	50	Hz	
Pixels/Line (N)	858	864	858	864	780	944	780	944	Pixels	
Active Pixels/Line	720	720	720	720	640	768	640	768	Pixels	
Active Lines/Frame	480	580	480	580	480	580	480	580	Lines	
Pixel Rate	13.5	13.5	13.5	13.5	12.27	14.75	12.27	14.75	MHz	
ADC Sampling Rate	27	27	27	27	24.54	29.5	24.54	29.5	MHz	
Color Modulation Frequency	3.579	4.43	3.575	3.582	3.58	4.43	3.575	3.582	MHz	

1.4. Luminance Processing Unit

The luminance path separates the luma from the CVBS for composite video input, provides digital filtering to reduce noise, enhances image quality, and adjusts contrast and brightness levels. Figure 5 shows the block diagram.

1.4.1. Luminance Separation and Frequency Shaping

The CVBS or luma data is over-sampled at twice the output pixel rate. This high sampling rate, when combined with the decimation filter, reduces harmonic spurs folding into baseband and increases the luma resolution. The **YBWR** bit in the **LUMA** register allows the luminance bandwidth to be reduced when the video input contains high frequency noise. Video image edge sharpness can be adjusted via the **HPK[1:0]** bits in the **LUMA** register.

A programmable chroma trap can be disabled if the input is S-video format. The KS0122 also includes a programmable one or two line luminance comb filter to further separate the luminance from composite video. The filtering characteristics of the comb filter which control the luminance vertical bandwidth can be controlled with the **VBWR** bit in the **CMDC** register.

The luminance filter characteristics have been designed to be very similar for all combinations of 60/50 Hz video and CCIR 601/square pixel sampling rates. Figure 6 through Figure 13 show the output characteristics of the luminance path with different filter combinations for the supported input standards and output pixel rates.

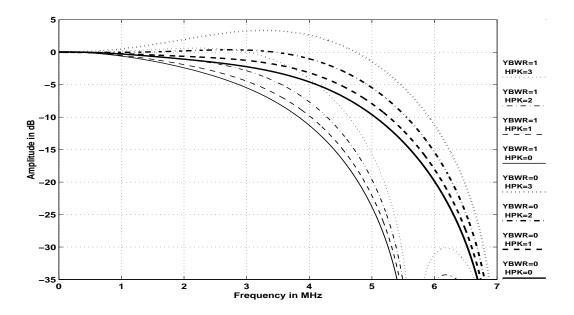


Figure 6. S-Video (CTRAP=0), CCIR 601, NTSC

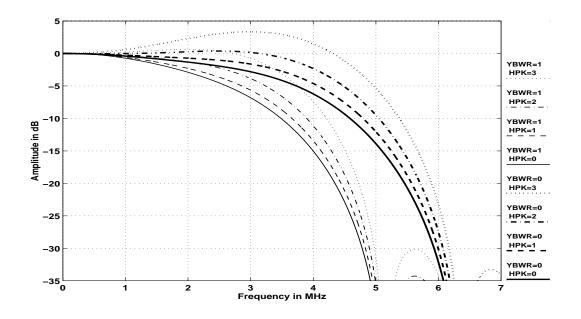


Figure 7. S-Video (CTRAP=0), Square Pixel, NTSC

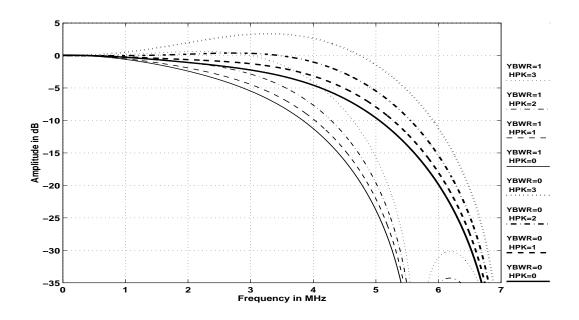


Figure 8. S-Video (CTRAP=0), CCIR 601, PAL

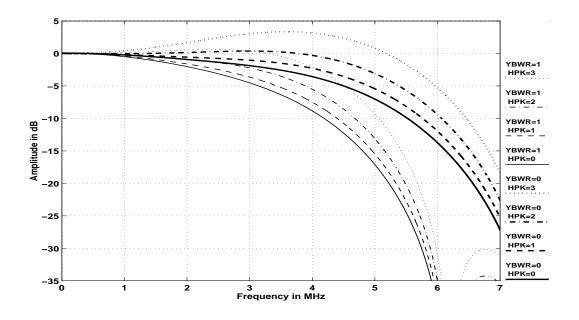


Figure 9. S-Video (CTRAP=0), Square Pixel, PAL

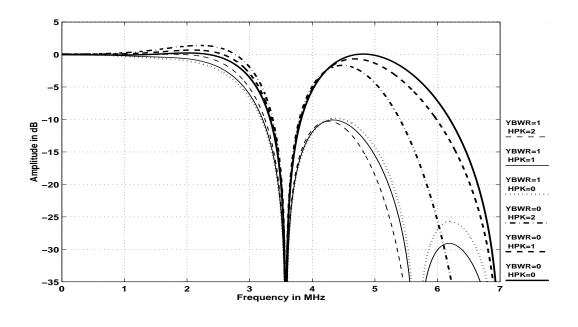


Figure 10. Composite Video (CTRAP=1), CCIR 601, NTSC

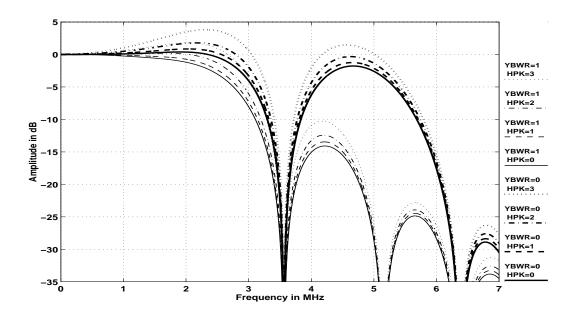


Figure 11. Composite Video (CTRAP=1), Square Pixel, NTSC

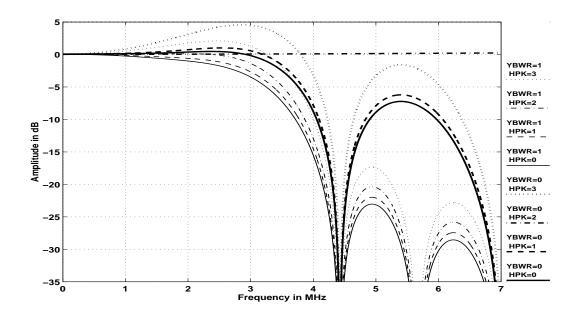


Figure 12. Composite Video (CTRAP=1), CCIR 601, PAL

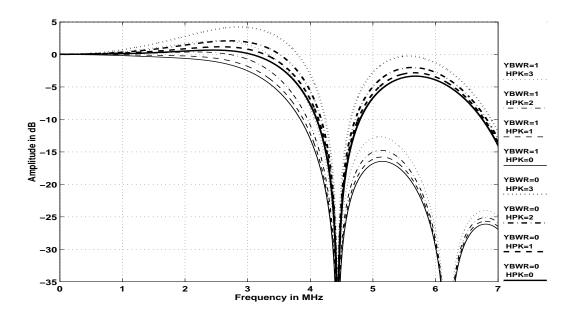
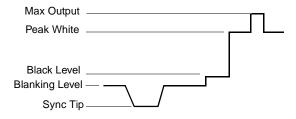
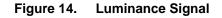




Figure 13. Composite Video (CTRAP=1), Square Pixel, PAL

1.4.2. Luminance DC Gain

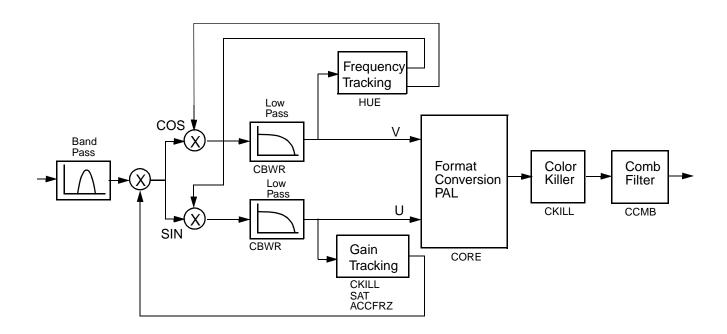
The KS0122 can accommodate CCIR 624 M/N/H/G standards, which fall into categories of -40 or -43 sync tip and inclusion or exclusion of 7.5 IRE setup. The KS0122 can produce correct CCIR 601 luminance output levels by controlling the gain and offset in the luminance path via the **PED** bit in the **LUMA** register. This register should be set for the appropriate input standard. The programmable **CONT** and **BRT** registers provide the user with additional flexibility to create non-standard luminance gain and offset values.

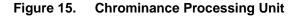
Luminance levels produced by the KS0122 for different broadcast standards (assuming **CONT**=0 and **BRT**=0) are summarized in Table 2.

	NTSC/PAL- M/N (w/ Pedestal) - PED=1			NTSC/PAL- M/N (w/o Pedestal) - PED=0			PAL- B/G/H PED=1		
Signal	Level (IRE)	ADC (CVBS)	Y[7:0] Code	Level (IRE)	ADC (CVBS)	Y[7:0] Code	Level (IRE)	ADC (CVBS)	Y[7:0] Code
Max Input	109	255	255	109	255	255	117	255	255
Peak White	100	240	235	100	240	235	100	229	235
Black	7.5	83	16	0	70	16	0	70	16
Blank	0	70	1	0	70	16	0	70	16
Sync	-40	2	1	-40	2	1	-43	2	1
KS0122 data Path equation	$C_Y = 1.37 CVBS - 100$			$C_Y = 1.288CVBS-74$			$C_Y = 1.37 CVBS - 80$		

Table 2: Luminance Digital Level Code

When digital component output is desired in RGB mode, the **RGBH** bit in the **LUMA** register can be programmed to increase the 0-100% values from standard CCIR 601 levels to full range levels. The gain variations are shown in Table 3.


Table 3:	RGB	Output	Range
----------	-----	--------	-------


	RGB normal	gain (RGBH=0)	RGB high gain (RGB=1)			
Signal	Су	RGB (U,V=0)	Су	RGB (U,V=0)		
Peak White	235	235	255	255		
Black	16	16	0	0		

1.5. Chrominance Processing Unit

Data from the composite or chroma S-video ADC is routed to the chroma data path depending on the input type selection. This chroma data can be NTSC or PAL type color encoding. The KS0122 will automatically determine the color encoding method and adjust the tracking algorithm. Due to the limited frequency tracking range of any video chroma loop, some type of information as to chroma center frequency must be fed into the tracking loop. The KS0122 infers a NTSC-M 3.579 MHz chroma modulation frequency when a 60Hz video signal is detected. A 50 Hz video signal infers a 4.43 MHz chroma signal. These assumptions can be override with the **PALN** and **PALM** bits found in register **CMDB**.

An optional 1 line chroma comb filter can be enabled to reduce luma leakage into the chroma path. The control is via the **CCMB** bit in the **CMDC** register. The comb filter offers the trade-off between chroma vertical resolution and luma cross interference. This comb filter can be disabled when the input is S-video.

The chroma horizontal bandwidth can be varied between 550 KHz and 850 KHz with the **CBWR** bit in the **CHRM** register. These selections offer the trade-off between chroma bandwidth and luminance interference. For S-video input, the **CBWR** bit should be set to maximum bandwidth. The frequency response of the chroma path is shown in Figure 16 for CCIR 601 output format data.

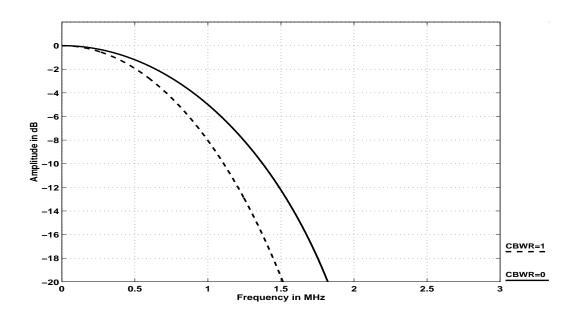


Figure 16. NTSC/PAL Input, CCIR 601 Output

The chroma channel can be programmed to automatically suppress the color burst if the amplitude is too small. This allows auto detection of black and white video. The chroma output can be manually disabled or forced on independent of color burst level. The **CKILL[1:0]** bits in the **CHRM** register are used to select the different color kill options.

The saturation of the color can be varied via the 8-bit **SAT** register. The **ACCFRZ** bit in the **CHRM** register can be set to 1 to freeze the saturation at its current value. Once the **ACCFRZ** bit is set to 1, the function of the **SAT** register is disabled. The phase reference for the frequency tracking loop may be adjusted using the 8-bit **HUE** register. This register provides an 8 bit reference dispersed across the 360° hue range.

The chrominance path offers a coring option to reduce low level noise to zero. Coring may be selected via the **CORE[1:0]** bits in the **CMDD** register. When coring is enabled, any chroma data within code levels 128±1 or 128±3 is forced to 128, depending on whether 1- or 2-lsb coring is selected.

1.6. Formatter and Color Space Converter

The formatter, color space converter receives the luma and chroma data and converts it to the selected output format. The KS0122 can output in various YUV and RGB digital formats selectable via the **OFMT[1:0]** bits in register **CMDC**. Table 4 shows the supported output formats.

			Clock	Alignm	ent (Ck	(2)		Clock Alignment (CK)					
Pin		2:2 1T=0		4:1:1a OFMT=1			RGB 565 OFMT=2	CCIR 656 YC OFMT=3					
	2N	+1	4N	+1	+2	+3	N	4N	+1	+2	+3		
C0/B0	Cb0	Cr0					B0						
C1/B1	Cb1	Cr1					B1						
C2/B2	Cb2	Cr2					B2						
C3/B3	Cb3	Cr3					B3						
C4/B4	Cb4	Cr4	Cr6	Cr4	Cr2	Cr0	B4						
C5/G0	Cb5	Cr5	Cr7	Cr5	Cr3	Cr1	G0						
C6/G1	Cb6	Cr6	Cb6	Cb4	Cb2	Cb0	G1						
C7/G2	Cb7	Cr7	Cb7	Cb5	Cb3	Cb1	G2						
Y0/G3	Y0	Y0	Y0	Y0	Y0	Y0	G3	Y0	Cb0	Y0	Cr0		
Y1/G4	Y1	Y1	Y1	Y1	Y1	Y1	G4	Y1	Cb1	Y1	Cr1		
Y2/G5	Y2	Y2	Y2	Y2	Y2	Y2	G5	Y2	Cb2	Y2	Cr2		
Y3/R0	Y3	Y3	Y3	Y3	Y3	Y3	R0	Y3	Cb3	Y3	Cr3		
Y4/R1	Y4	Y4	Y4	Y4	Y4	Y4	R1	Y4	Cb4	Y4	Cr4		
Y5/R2	Y5	Y5	Y5	Y5	Y5	Y5	R2	Y5	Cb5	Y5	Cr5		
Y6/R3	Y6	Y6	Y6	Y6	Y6	Y6	R3	Y6	Cb6	Y6	Cr6		
Y7/R4	Y7	Y7	Y7	Y7	Y7	Y7	R4	Y7	Cb7	Y7	Cr7		

Table 4: Digital Video Output Formats

The color space converter uses the following equations for conversions from YUV to RGB:

$$\begin{split} R &= C_Y + 1.375 C_R \\ G &= C_Y + (-0.703) C_R + (-0.328) C_B \\ B &= (C_Y + 1.734 C_B) \end{split}$$

1.7. Synchronization Signals

The KS0122 internal tracking loops create a sampling clock that is phase and frequency locked to the video sync tip. In addition to providing the pixel clock, the KS0122 also outputs necessary timing signals to locate the first and last pixels, to indicate the beginning of a line, a field, and to identify the field. All the timing and clock pins may be optionally put into high impedance state.

The KS0122 can also generate all the video timing without video input. This enables the KS0122 to be used as a video timing generator for a system that contains both the KS0122 for live video input and a MPEG decoder.

1.7.1. Horizontal Timing

The KS0122 creates many internal timing signals aligned to the horizontal sync tip. These include timing for locations of color burst used in chrominance processing, along with back porch, and sync tip timing signals used for AGC and clamp functions.

The KS0122 includes two external horizontal timing signals. The HS signal has no function inside the KS0122. It is provided as a user programmable signal that sends a pulse every video line. The start and stop locations of the pulse can be programmed via the 2's compliment **HSE** and **HSB** registers. Default values provide a pulse whose rising edge is aligned with the delayed video sync tip.

The AV is an active high signal indicating that active video is being output. When the signal is low, the output is forced to blank with no color. The two registers **AVB** and **AVE** are used to control the start and stop locations of the AV signal. Care must be taken to specify the correct number of active video pixels. As with the HS signal, the default value 0 for **AVB** and **AVE** defines an AV pulse at the correct default location with the correct number of active pixels (e.g. 720 pixels for CCIR 601 format). The approximate signal locations are shown in Figure 17.

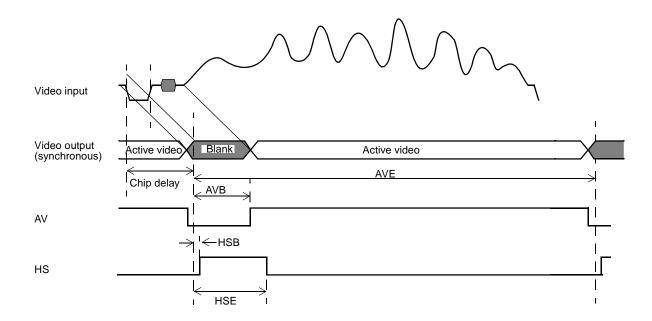
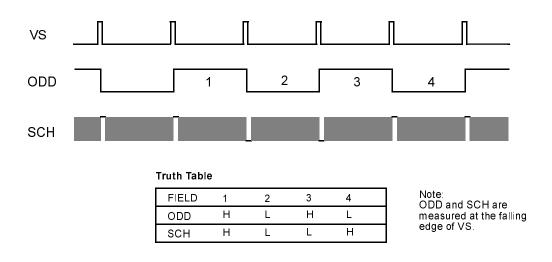


Table 5 shows the default edge locations relative to the video sync tip as it would appear at the Y[7:0] pins, as well

as the maximum and minimum programmable ranges for each of the possible operating mode. Note the numbers shown are in multiple of CK clocks relative to the delayed horizontal sync tip.

			NTSC	(60 Hz)			PAL (50 Hz)						
		CCIR 601			Square Pixel			CCIR 601			Square Pixel		
	min	default	max	min	default	max	min	default	max	min	default	max	
AVB	115	243	370	107	235	362	128	256	383	170	298	425	
AVE	1555	1683	1810	1387	1515	1643	1568	1696	1823	1707	1834	1962	
HSB	-128	0	127	-128	0	127	-128	0	127	-128	0	127	
HSE	142	270	398	117	245	373	142	270	398	167	295	423	

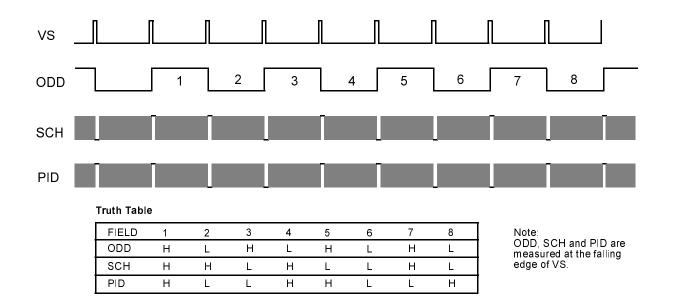
Table 5: Programmable Range for AV and HS (in Number of CK Clocks)

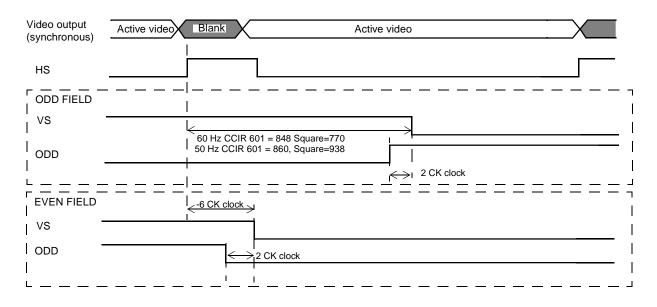

1.7.2. Vertical Timing

The vertical timing signals include VS, ODD, SCH, and PID. The VS is an active high signal which is used for identifying the first line of video in the vertical position. The VS signal's rising edge is based upon an internal low pass filter. Its rising location is dependent on the noise conditions of the video input. The falling edge of the vertical sync is locked to either the beginning of the video line or half way. The half way location relative to the beginning of the video line changes depending on current input standard and output format. The **VSE** bit in the **CMDA** register can be programmed to shorten the VS falling edge by one horizontal line.

The ODD signal signifies the current field number. When ODD is high, the current field is 1 or 3 (or 5 or 7 if in PAL mode). The signal may be used in conjunction with SCH and PID to exactly identify the current field. Although the ODD status can be determined by using the AV and VS signals with minimal external logic, it is recommended that the ODD signal be used. The KS0122 has extensive internal circuits that generate the correct ODD sense even when tracking single field video sources such as consumer VCR in trick mode.

To distinguish between fields 1, 2 verse fields 3, 4 (or fields 1, 2, 3, 4 verse fields 5, 6, 7, 8 for PAL) the phase of the color burst relative to the sync tip must be measured. That information is provided by the SCH pin. The KS0122 provides the output of a comparator that measures whether the current color burst phase is greater or less than a predetermined constant. This constant is controlled with the **SCHCMP[3:0]** bits in the **CMDE** register. The polarity of the SCH output pin depends on the current **SCHCMP[3:0]** value. The SCH signal changes every video line. The SCH for line 260 is held for the entire vertical blanking period. By using the SCH signal for the same line from each field, proper field identification can be determined. Figure 18 shows field identification values for **SCHCMP[3:0]**=0. It is important to note that the SCH value is only valid for video signals that have a constant sync tip to color burst relationship. This is not the case with consumer VCRs.




The PID pin is used to identify whether the current V-axis is inverted in PAL mode. This signal changes at the color burst. By noting this value at the same line of each field, a determination of whether a field is from {1-4} or {5-8} can be made. As with the SCH pin, the KS0122 is designed to hold the line 260 PID measurement for the entire vertical blank period. This allows easy sampling of the PID or current field identification.

The ODD, SCH and PID signals change at different times and more than once within the video fields. Proper data for field identification is determined by latching all three signals at the falling edge of VS. Figure 19 shows the VS, ODD, SCH, and PID signals and their latched values for each of the 8 possible fields.

Note: Numbers shown are with default **HSB** and **HSE** register settings.

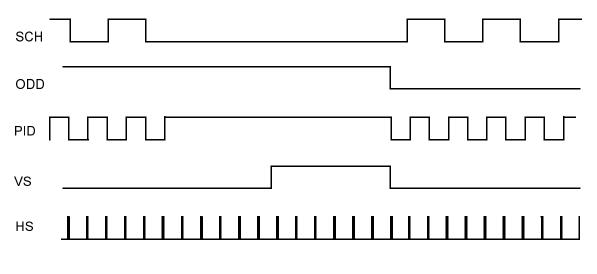
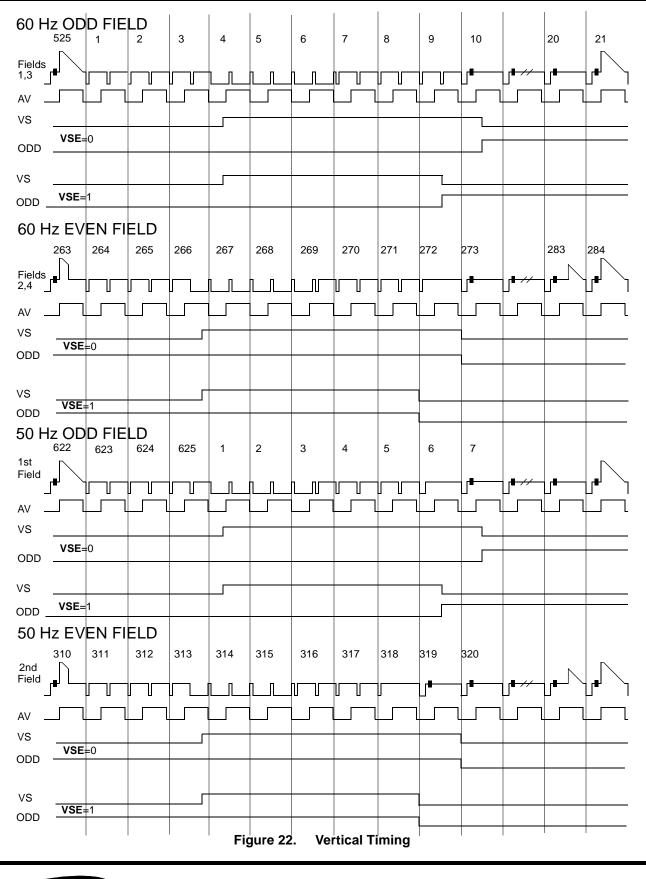



Figure 21. Line to Line VS,SCH and PID Timing (PAL input)

SAMSUNG ELECTRONICS

1.8. Digital Video Output

The KS0122 has a sixteen-bit wide, tri-statable digital video output bus. The video data is clocked out by the CK2 (CK if output is CCIR 656 YC format) pixel clock. The Y and C data is aligned with the AV signal as shown in Figure 23. To ease board design, up to three valid pixels are provided before the rise of AV and after the fall of AV, otherwise, the Y output is forced to 16 and the C output is forced to 128.

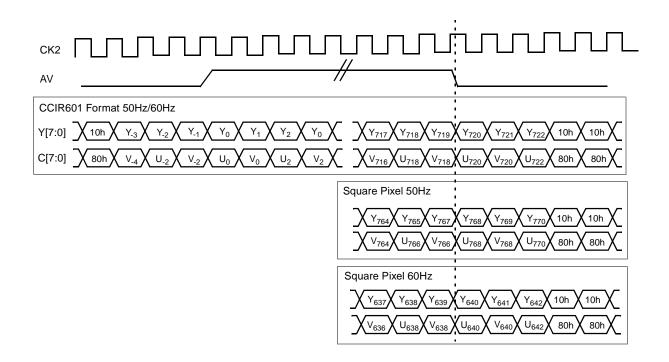
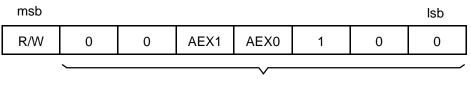


Figure 23. Data Output for 4:2:2 Format

2. HOST INTERFACE

The KS0122 provides two serial host interface protocols to communicate to the internal registers. The selection of the two interfaces is controlled through the 2/3W pin. The KS0122 always functions as a slave device. This means that the KS0122 will never initiate a data transfer.

The KS0122 contains two types of registers: an index register used for indirect data register access, and a set of data registers.

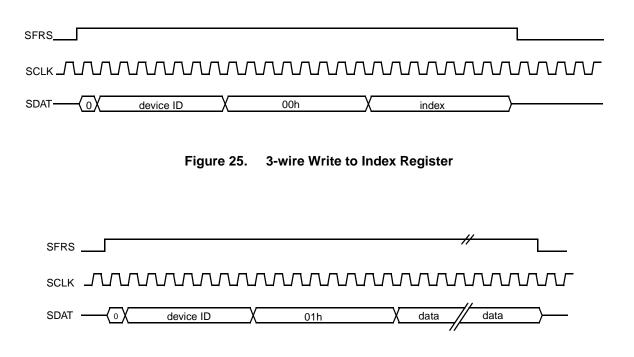

2.1. Three Wire Serial Interface

The three wire serial interface is selected by connecting the 2/3W to ground. This interface uses three signals: SFRS, SDAT, and SCLK. The SFRS indicates a valid data transfer. Serial data is carried through the SDAT and clocked in or out with the SCLK. The data protocol sends each byte as msb first.

2.1.1. Three Wire Write/Read to KS0122

Each data transfer cycle is called a frame. A valid frame is indicated by a HIGH on the SFRS signal. A frame consists at least three bytes: the first byte contains a 7-bit slave device ID and a R/W bit (bit assignment shown in Figure 24); the second byte indicates which type of register the data transfer is intended for (00h for index, 01 for data); and the third and consequent byte(s) are the data to be transferred to/from the register. If the data transfer is to/from the index register, three bytes are needed each frame. Since the KS0122 features an auto index increment function, consecutive data transfer to/from the data registers can be completed within the same frame.

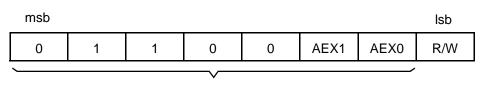
The KS0122 may be configured with one of four slave device ID's using the AEX1 and AEX0 pins. Up to 4 KS0122's can be used in the same system by configuring each device with a unique device ID.



slave device ID

Figure 24. 3-wire Device ID and R/W

Figure 25 shows an example of a write to the index register. Each bit is latched into the device by the rising edge of the SCLK. A write to the data register is similar to a write to the index register except the second byte is 01h and the third and so on byte(s) are the data to be written (Figure 26). When the data is read from the device, the KS0122 outputs each bit is after the falling edge of the SCLK.



2.2. Two Wire Serial Interface

The two wire interface consists of the SCLK and SDAT signals. There is no dedicated qualifying signal like the SFRS used in the three wire interface. Data can be written to or read from the KS0122. For both read and write, each byte is transferred msb first. For both read and write, the data bit is valid when the SCLK is high.

2.2.1. Two Wire Write to KS0122

The host initiates a transfer cycle with a START signal. The START signal is HIGH to LOW transition on the SDAT while the SCLK is high. The host then sends a byte consisting of the 7-bit slave device ID and a 0 in the R/W bit. The arrangement for the slave device ID and the R/W bit is depicted in Figure 27. AEX1 and AEX0 are configuration pins used to configure the KS0122 to use one of the four addresses. Up to four KS0122's can be used in one system each with a unique address.

slave device ID

The second byte the host sends is the base register index. The host then sends the data. The KS0122 increments

KS0122 Data Sheet

the index automatically after each byte of data is sent. Therefore, the host can write multiple bytes to the slave if they are in sequential order. The host completes the transfer cycle with a STOP signal which is a LOW to HIGH transition when the SCLK is high.

Each byte transfer consists of 9 clocks. When writing to the KS0122, the ACK pin can be wired to the SDAT pin so that an acknowledge signal is created during the 9th clock.

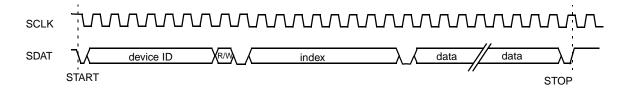


Figure 28. 2-wire Data Write

2.2.2. Two Wire Read from KS0122

The read cycle takes two START-STOP phases. The first phase is a write to the index. The second phase is the read from the data register.

The host initiates the first phase by sending the START signal. It then sends the slave device ID along with a 0 in the R/W position. The index is then sent followed by the STOP signal.

The second phase also starts with the START signal. It then sends the slave device ID but with a 1 in the R/W position to indicate data is to be read from the slave device. The host uses the SCLK to shift data out from the KS0122.

3. CONTROL REGISTER DESCRIPTION

This section contains information concerning the programmable control registers. Table 6 provides the default power up values for each index, the recommended values and a brief description of the function. The recommended values are for composite video at input AY0 assuming 24.576 MHz reference and CCIR 601 output data. The following pages describe each location in detail and the possible programing values (the * indicates the power-on default).

Index	Mnemonic	Power Up Default	Recommended Values	Description
00h	STAT	-	-	Read Only Status Bits
01h	CMDA	00h	28h	Control Register A
02h	CMDB	00h	20h	Control Register B
03h	CMDC	00h	00h	Control Register C
04h	CMDD	00h	08h	Control Register D
05h	CHRM	44h	40h	Chroma Control Register
06h	LUMA	05h	05h	Luma Control Register
07h	CONT	00h	00h	Luma Contrast Control
08h	BRT	00h	00h	Luma Brightness Control
09h	SAT	00h	00h	Chroma Saturation Control
0Ah	HUE	00h	00h	Chroma Hue Control
0Bh	AGC	60h	60h	Video Y/C AGC Override Control
0Ch	AVB	00h	00h	AV Signal Begin
0Dh	AVE	00h	00h	AV Signal End
0Eh	HSB	00h	00h	HS Signal Begin
0Fh	HSE	00h	00h	HS Signal End
10h	TESTA	00h	00h	Test register.
11h	FRUN	00h	00h	Free Run Control
12h	TESTC	00h	00h	Test registers.
13h	TESTD	00h	00h	
14h	CMDE	00h	00h	Control Register E

Table 6: Register Summary

	Read Only Status Bits											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
00h	00h STAT FFRDET PALDET CDET											

CDET	Status for	detection of color. This can be used to poll existence of video
	0	No color signal detected.
	1	Color signal detected.
PALDET	Status for	current detected color format.
	0	NTSC color format.
	1	PAL color format.
FFRDET	Status for	current detected field frequency.
	0	50 Hz field frequency, i.e. M system.
	1	60 Hz field frequency, i.e. N/B/G/H system.

Control Register A													
Index	Mnemon	c bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
01h	CMDA	XT26	VBIE	1	HFSEL1	HFSEL0	VSE	0	0				
VSE	VSE Change the ending location for the VS.												
0 Line 10/10.5.*													
	1 Line 9/9.5.												
HFSEL	[1:0]	Selects between standard algorithm and tracking algorithm optimized for VCR.											
	(Ex	reme head	switch VCR		-	-						
		Sta	Indard VCR	source - us	e for most v	video.							
		Go	od quality vi	deo - Laser	Disc, test s	ource.							
	:	No	isy broadcas	st source.									
VBIE	Ň	ertical Maste	r Mode enat	ole									
	(No	rmal vertical	sync opera	ation.*								
	1 Vertical sync ignores input and free runs at 50 or 60 Hz (depending on settings on MNFMT and IFMT). The FRUN register must be set to 14 (hex) for this mode to work. This mode can be used to generate timing for a slave device.												
XT26	XT26 Select the external clock reference frequency.												
	(Ex	ernal clock	is 24.5 MHz	<u>.</u>								
1 External clock is 26.8 MHz.													

Control Register B												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
02h	CMDB	PALM	PALN	AGCOVF	AGCFRZ	INSEL3	INSEL2	INSEL1	INSEL0			
INSEL[[3:0] Ar	alog input cl	nannel sele	ct.								
	0x	0 Y0	is composi	te input.*								
	0x	1 Y1	is composi	te input.								
	0x	2 Y2	is composi	te input.								
	0x	4 C0	is composi	te input.								
	0x	5 C1	is composi	te input.								
	0x	6 C2	is composi	te input.								
	0x	8 Y0	is Luminan	ce input, C0) Chrominan	ce input.						
	0x	9 Y1	is Luminan	ce input, C1	l Chrominan	ce input.						
	0x	A Y2	is Luminan	ce input, C2	2 Chrominan	ce input.						
AGCFF			•		C paths at th ead or set us			en high, the	current gair			
	0	AG	C is running	g. Reading /	AGC register	returns reg	jister setting	not current	t AGC gain.'			
	1	AG	AGC is frozen. Gain can be changed or read with AGC register.									
AGCO	VF AC	GC gain cont	rol mode.									
	0	AG	C gain trac	ks to sync ti	p and back p	orch.*						
	1			ws, AGC gai h tracking).	in will be red	uced (this h	as higher p	riority over r	normal sync			
PALN		election betw Hz field rate			G/H tracking	algorithm in	n the chrom	a processin	g unit when			
	0	Sel	ect PAL-B/0	G/H tracking	algorithm.*							
	1	Sel	ect PAL-N	racking algo	orithm.							
PALM		election betw Hz field rate		and NTSC-	M tracking a	llgorithm in	the chroma	processing	unit when			
	0	Sel	ect NTSC-I	M tracking a	lgorithm.*							
	1	Sel	ect PAL-M	tracking alg	orithm.							

Control register C												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
03h	CMDC	VBWR	0	YCMB1	YCMB0	0	CCMB	OFMT1	OFMT0			
OFMT[1:0] Dig	gital video da	ata output fo	ormat select	t.							
	0	YUY	V 4:2:2 form	nat.*								
	1	YUY	V 4:1:1a for	mat.								
	2	CC	IR 656 YC 1	format.								
	3	RG	B 565 form	at.								
CCMB	Ch	roma comb	filter contro	I.								
	0	Chr	oma comb	filter is on.*								
	1	Chr	oma comb	filter is disa	bled.							
YCMB[1:0] Lu	ma comb filt	er control.									
	0	Cor	nb filter is c	on. Auto sele	ection 1-2 lir	ne comb.*						
	1	1 lir	ne comb filte	er.								
	2	2 lir	ne comb filte	er.								
	3	No	comb filter.									
VBWR	Re	duce vertica	l bandwidth	n while incre	easing chron	na rejectior	n from comb	o filter.				
	0	Max	kimum verti	cal bandwid	dth.*							
	1	Ver	tical bandw	idth reduce	d.							

Control Register D													
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
04h	CMDD	POWDN	0	0	CORE1	CORE0	MNFMT	PIXSEL	IFMT				
IFMT	Mar	nual input st	andard sele	ect. Format	selection ca	an be contro	lled automa	atically if MN	IFMT =0.				
	0 Input field rate is 60 Hz.*												
	1 Input field rate is 50 Hz.												
PIXSEL	_ Sel	Select pixel sampling rate.											
	0 Output data is at CCIR 601 rate.*												
	1	Out	out data is a	at square p	ixel rate.								
MNFM	T Mar	nual input fo	rmat contro	l override.	When this b	it is 1 the IF	MT bit is er	nabled.					
	0	Inpu	ıt video staı	ndard is de	tected autor	natically.*							
	1	Inpu	ıt video staı	ndard is se	lected with t	he IFMT bit							
CORE[1:0] Chr	oma coring	- forces chi	oma signa	ls with small	amplitude	to zero (cod	le 128).					
	0	No	chroma cori	ng.*									
	1	1 Isl	o chroma co	oring.									
	2	2 Isl	o chroma co	oring.									
POWD	N Pov	ver down mo	ode.										
	0	Nor	mal operati	on.*									
1 All chip functions except microprocessor interface and CK/CK2 generat disabled. In power down mode the output frequency of the CK/CK2 pins locked but is within 5% of nominal frequency.													

Chroma Control Register											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
05h	CHRM	ACCFRZ	1	0	CBWR	0	0	CKILL1	CKILL0		
CKILL[′	1:0] Chr 0 2		mode. If th	e color burs is always er	st amplitude nabled.	is low, then	chroma da	ata is suppre	essed.*		

- 3 Chroma output is always suppressed (no color).
- CBWR Chroma bandwidth reduction control.
 - 0 Chroma 3 dB point at 850 kHz.*
 - 1 Chroma 3 dB point at 550 kHz.
- ACCFRZ Color gain freeze control.
 - 0 Normal operation on and tracking input.*
 - 1 Frozen at current saturation value.

Luma Control Register													
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
06h	LUMA	OENC1	OENC0	RGBH	PED	YBWR	CTRAP	HPK1	HPK0				
HPK[1:0)] Lum	ninance 3 M	Hz peaking	control.									
0 Peaking less than nominal.													
1 Nominal peaking.*													
2 Increased peaking.													
	3	Eve	n higher pe	aking.									
CTRAP	Lum	iminance channel chroma notch filter. Location depends on IFMT and PIXSEL .											
	0	0 No chroma trap. Used for composite test signals or S-Video.											
	1	Chro	oma trap en	abled. Used	d for most c	omposite so	ources.*						
YBWR	Lum	ninance ban	dwidth redu	ction.									
	0	Full	bandwidth.	*									
	1	Red	uced bandv	vidth.									
PED	Ena	ble gain cor	rection for 7	7.5 IRE blac	k level (ped:	estal).							
	0	No p	edestal 0 I	RE = CCIR	601 code 1	6.*							
	1	Ped	estal enable	ed 7.5 IRE =	= CCIR 601	code 16.							
RGBH	Sele	ects high ga	in mode for	RGB outpu	ıt data.								
	0	RGE	3 output dat	a for input o	of 0%-100%	are 4-56, 8	3-118, and 4	-56, respec	tively.*				
	1	RGE	3 output dat	a for input o	of 0%-100%	are 0-63, 0)-127, and 0	-63, respec	ctively.				
OENC[1	:0] Vide	eo data and	timing sign	al output 3-	state contro	I.							
0 3-state video data output when OEN input is low.*													
	1	3-sta	ate video da	ata output p	lus VS, HS,	ODD, PID,	SCH, and A	V when OE	EN is low.				
	2	3-sta	ate everythi	ng above pl	us CK and	CK2 when (OEN is low.						
	3	3-sta	ate all the a	bove output	s regardles	s what state	e OEN input	is.					

Luma Contrast Control												
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
07h	07h CONT CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0											

CONT[7:0] Contrast control register. The value contained in the register is in 2's compliment format. The default value of 0 provides standard CCIR 601 luminance gain.

Luma Brightness Control										
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
08h	BRT	BRT7	BRT6	BRT5	BRT4	BRT3	BRT2	BRT1	BRT0	

BRT[7:0] Brightness control register. The value contained in the register is in 2's compliment format. The nominal value is 0. Each lsb change corresponds to 1 lsb change in the luminance code.

Chroma Saturation Control										
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
09h	SAT	SAT7	SAT6	SAT5	SAT4	SAT3	SAT2	SAT1	SAT0	

SAT[7:0] Color saturation control register (2's compliment). The nominal saturation corresponds to the register value 0. The more positive the register value the more the saturation.

Chroma Hue Control										
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0Ah	HUE	HUE7	HUE6	HUE5	HUE4	HUE3	HUE2	HUE1	HUE0	

HUE[7:0] Hue control register. The value contained in this register is in 2's compliment format. It covers the range from -180° to $+180^{\circ}$ with a resolution of 1.41° /lsb.

Video Y/C AGC override control										
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0Bh	AGC	AGC7	AGC6	AGC5	AGC4	AGC3	AGC2	AGC1	AGC0	

AGC[7:0] If AGC is frozen (**FRZ0**=1) then this byte controls the AGC gain stage. The value contained in the register is unsigned.

	AV Signal Begin										
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										
0Ch	OCh AVB AVB7 AVB6 AVB5 AVB4 AVB3 AVB2 AVB1 AVB0										

AVB[7:0] This register is used to control the leading edge of the AV output signal. The leading edge location of the AV is relative to the start of the horizontal sync of the video in number of CK clocks. It is calculated by adding the register content (in 2's complement) to a nominal value (corresponding to the register content of 0x00). Some examples of the register values and their AV leading edge locations are shown below.

Register Content	CCIF	R 601	Square Pixel			
Content	NTSC	PAL	NTSC	PAL		
0x80	115	128	107	170		
0xFF	242	255	234	297		
0x00*	243	256	235	298		
0x01	244	257	236	299		
0x7F	370	383	362	425		

	AV Signal End									
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0								bit 0	
0Dh	ODh AVE AVE7 AVE6 AVE5 AVE4 AVE3 AVE2 AVE1 AVE0									

AVE[7:0]

This register is used to control the trailing edge of the AV output signal, in very much the same way as the AVB. Some examples are shown below.

Register	CCI	R 601	Square Pixel			
Content	NTSC	PAL	NTSC	PAL		
0x80	1555	1568	1387	1706		
0xFF	1682	1695	1514	1833		
0x00*	1683	1696	1515	1834		
0x01	1684	1697	1516	1835		
0x7F	1810	1823	1643	1962		

	HS Signal Begin									
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0								bit 0	
0Eh	0Eh HSB HSB7 HSB6 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0									

HSB[7:0] This register is used to control the leading edge of the HS output signal. The leading edge location of the HS is relative to the start of the horizontal sync of the video in number of CK2 clocks. It is calculated by adding the register content (in 2's complement) to the nominal value of 0. Some examples of the register values and their HS leading edge locations are shown below.

0x80	-128.
0xFF	-1.
0x00	0.*
0x01	1.
0x7F	127.

	HS Signal End									
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0								bit 0	
0Fh	HSE	HSE7	HSE6	HSE5	HSE4	HSE3	HSE2	HSE1	HSE0	

HSE[7:0]

This register is used to control the trailing edge of the HS output signal, in very much the same way as the HSB. Some examples are shown below.

Register	CCII	R 601	Square Pixel			
Content	NTSC	PAL	NTSC	PAL		
0x80	142	142	117	167		
0xFF	269	269	244	294		
0x00*	270	270	245	295		
0x01	271	271	246	296		
0x7F	398	398	373	423		

	Free Run Control									
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0								bit 0	
11h	11h FRUN FRUN7 FRUN6 FRUN5 FRUN4 FRUN3 FRUN2 FRUN1									

FRUN[7:0] This register controls whether the KS0122 tracks the input video for timing generation or free runs without tracking the input.

0x00 Timing generation tracks input video.*

0x14 Free run. The **VBIE** bit in register **CMDA** must be set for the free run to work.

	Control Register E									
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0								bit 0	
14h	14h CMDE YDEL2 YDEL1 YDEL0 0 SCHCMP3 SCHCMP2 SCHCMP1 SCHCMP0									

YDEL[2:0]

Y-C delay control. Group delay between Y and C can be adjusted as follows (in unit of CK2):

0	No delay.*
1	-2.0
2	-1.5
3	-1.0
4	-0.5
5	0.5
6	1.5
7	2.0

SCHCMP[3:0]

Phase constant compare value for color burst phase relative to sync tip. Each step is 22.5 degrees with the value of 0 equal to 0 degree.

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Units
Supply voltage (measured to VSS)	V _{DD}	-0.5 to + 7.0	V
Voltage on any digital pin	V _{PIN}	-0.5 to (V _{DD} +0.5)	V
Ambient operating temperature (case)	T _A	-10 to + 100	°C
Storage temperature	T _S	-65 to + 150	°C
Junction temperature	TJ	150	°C
Vapor phase soldering (1 min.)	Tvsol	220	°C

Notes: 1.Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.

2. Functional operation under any of these conditions is not implied.

3.Applied voltage must be current limited to a specified range.

OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Мах	Units
Supply voltage (measured to VSS)	V _{DD}	4.75	5.0	5.25	V
Ambient operating temperature, still air	T _A	0		70	°C

ELECTRICAL CHRACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Units
Supply					
Analog supply current	I _{DDA}		105	125	mA
Digital supply current	I _{DDD}		140	175	mA
Analog Characteristics					
Integral linearity error (AGC/ADC only)	E _{I-ADC}			1.5	lsb
Differential linearity error (AGC/ADC only)	E _{D-ADC}			0.75	lsb
Total harmonic distortion (4 MHz full scale)	THD		42		dB
Signal to noise ratio (4 MHz full scale)	SNR		42		dB
Analog bandwidth (50 IRE to 3 dB point)	BW	4			MHz
Input voltage range (peak-peak) 100 IRE input	V _{I(PP)}	0.5		1.5	V _{pp}
Input resistance AY0-AY2,AC0-AC2	R _{IN}	200			kΩ
Input capacitance for analog video inputs	C _{IN}		10		pF
Charge current for offset control	I _{OFF}		±4		μΑ
Cross talk between analog inputs	α			-50	dB
/ideo Performance					
Luminance frequency response (maximum variation to 4.2 MHz - multi burst)	F _{LUMA}		2		dB
Differential gain - complete chip (Modulated 40 IRE ramp)	D _G		1.5		%
Differential phase - complete chip (Modulated 40 IRE ramp)	D _P		1.0		degree
Chrominance frequency response (3 dB point) - CBWR=0/1	F _{CHROMA}		800/500		kHz
Chroma nonlinear gain distortion (NTC-7 Combination)	C _{NGD}		1		%
Chroma nonlinear phase distortion (NTC-7 Combination)	C _{NPD}		1.25		degree
Chroma to luma intermodulation (NTC-7 Combination)	C _{LI}		1		IRE
Chroma luma gain equality (NTC-7 Composite)	DEL _{CL}		±20		ns
Chroma luma delay equality (NTC-7 Composite)	AMP _{CL}		98-101		%
Noise level for unified weighting 10 kHz-5 MHz (100 IRE unmodulated ramp)	N _{LUMA}		58		dB
Chroma AM noise (red field)	N _{CAM}		60		dB
Chroma PM noise (red field)	N _{CPM}		54		dB
Digital I/O Characteristics	I	I		1	
Input low voltage	V _{IL}	VSS-0.5		0.8	V
Input high voltage	V _{IH}	2.0		VDD+0.5	V
		1			

KS0122 Data Sheet

Characteristics	Symbol	Min	Тур	Мах	Units
Input low current (V _{IN} = 0.4 V)	IIL			-1	μA
Input high current(VIN=2.4)	I _{IH}			-1	μA
Digital output low voltage (I _{OL} =3.2mA)	V _{OL}			0.4	V
Digital output high voltage (IOH=400µA)	V _{OH}	2.4			V
Digital three-state current	I _{OZ}			50	μA
Digital output capacitance	C _{OUT}			7	pF
Maximum capacitance load for digital data pins	C _{L-DATA}			30	pF
Maximum capacitance load for CK and CK2 outputs	C _{L-CK}			60	pF
Timing Characteristics - Digital Inputs	1				
XTALI input pulse width low	t _{pwIX}	15	20		ns
XTALI input pulse width high	t _{pwhX}	15	20		ns
Clock and Data Timing	1				
Total propagation delay from analog input to digital output	t _{dCHIP}		42ns + 28CK2		
Pulse width high for CK (KS0112 operates at frequencies from 24.5 MHz to 29 MHz)	t _{pwhCK}	15	18.5	22	ns
Pulse width high for CK2	t _{pwhCK2}	30	37	44	ns
Delay from rising edge of CK to CK2	t _{CK2}	3		7	ns
Delay from rising edge CK2 to data change (including pins Y0-Y7, C0-C7, AV, HS, VS, ODD, PID, SCH)	t _{dD-CK2}			25	ns
Delay from rising edge CK to data change (including pins Y0-Y7, C0-C7, AV, HS, VS, ODD, PID, SCH)	t _{dD-CK}			25	ns
Minimum hold time from rising edge of CK2 for data output)	t _{hD}	7			ns
Delay from falling edge of OEN to data bits in 3- state	t _{zD}			30	ns
Delay from rising edge OEN to data bits enabled	t _{enD}			35	ns
Timing Characteristics - 3-Wire Host Interface	, ,		1	L	
SCLK minimum pulse width low	t _{pwISCLK}	50			ns
SCLK minimum pulse width high	t _{pwhSCLK}	115			ns
Read mode - delay from rising edge of SLCK to when data is in 3-state	t _{3-stateD}			40	ns
Write mode - SDAT setup time to rising edge of SCLK	t _{sD}	20			ns
Write mode -SDAT hold time from rising edge of SCLK	t _{hD}	20			ns
Read mode - delay from falling edge of SDAT to when data is valid	t _{validD}			40	ns

KS0122 Data Sheet

MULTIMEDIA VIDEO

Characteristics	Symbol	Min	Тур	Max	Units
Read mode - delay from falling edge of SFRS to when data is in 3-state	t _{3-stateD}			50	ns
SFRS setup time to rising edge of SCLK	t _{sFRS}	20			ns
SFRS hold time from falling edge of SCLK	t _{hFRS}	20			ns
Timing Characteristics - 2-Wire Host Interfac	e				
SCLK clock frequency	f _{SCLK}	0		400	kHz
Capacitive load for each bus line	C _b			400	pF
Rise and fall times for SCLK and SDAT	t _{RF}	20		300	ns
SCLK minimum pulse width low	t _{pwISCLK}	1.3			μs
SCLK minimum pulse width high	t _{pwhSCLK}	0.6			μs
SDAT setup time to rising edge of SCLK	t _{sD}	100			ns
SDAT hold time from rising edge of SCLK	t _{hD}	0			ns

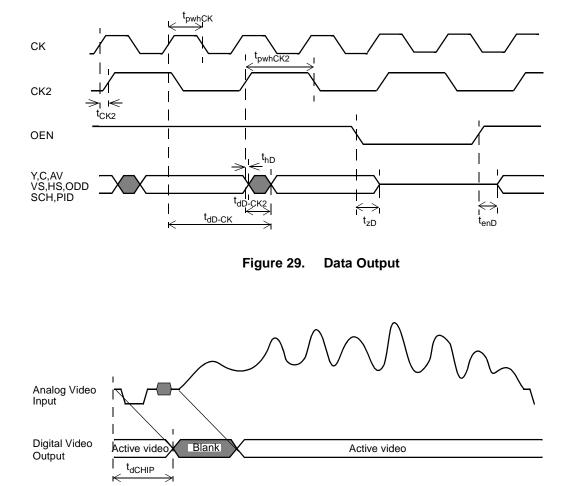
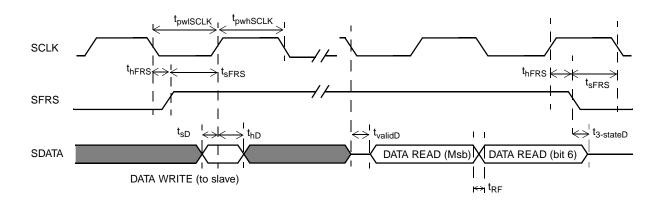
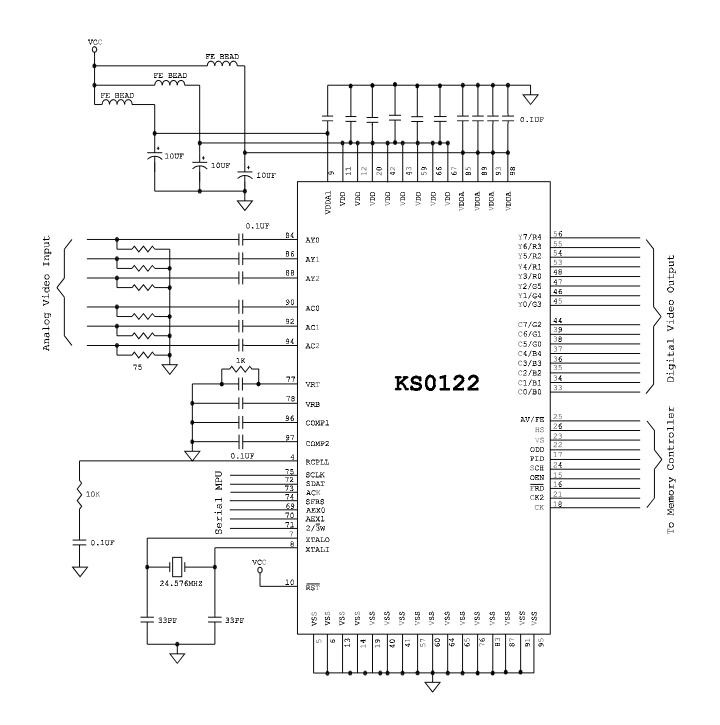
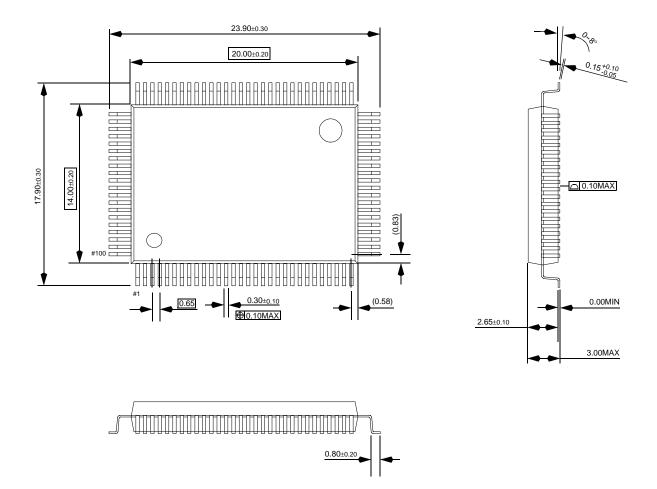




Figure 30. Analog Video Input to Digital Video Output Delay



KS0122 Data Sheet

Package Dimension

100-QFP-1420C

Dimensions are in Millimeters

Notes:

SAMSUNG SEMICONDUCTOR SALES OFFICES

NORTHEAST

119 Russell Street Littleton, MA 01460 TEL (508) 486-0700 FAX (508) 486-8209

NORTHWEST

3655 North Fist Street San Jose, CA 95134-1708 TEL (408) 954-7000 FAX (408) 954-7883

NORTH CENTRAL

300 Park Boulevard Suite 210 Itasca, IL 60143-2636 TEL (708) 775-1050 FAX (708) 775-1058

SOUTHEAST

2000 Regency Parkway Suite 285 Cary, NC 27511 TEL (919) 380-8483 FAX (919) 380-8492

SOUTHWEST

16253 Laguna Canyon Road Suite 100 Irvine, CA 92718 TEL (714)753-7530 FAX (714) 753-7544

SOUTH CENTRAL

15851 Dallas Parkway Suite 410 Dallas, TX 75248-3307 TEL (214) 770-7970 FAX (214) 770-7971

TECHNICAL SUPPORT HOT LINE

Phone: (714)-236-9507 Fax: (714)-236-9664 E-mail: video@sldc.com

Circuit diagrams utilizing SAMSUNG and/or SAMSUNG ELECTRONICS products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein any license under the patent rights of SAMSUNG and/or SAMSUNG ELECTRONICS, or others. SAMSUNG and/or SAMSUNG ELECTRONICS, reserve the right to change device specifications.

LIFE SUPPORT APPLICATIONS

SAMSUNG and/or SAMSUNG ELECTRONICS products are not designed for use in life support applications, devices, or systems where malfunction of a SAMSUNG product can reasonably be expected to result in a personal injury. SAMSUNG and/or SAMSUNG ELECTRONICS' customers using or selling SAMSUNG and/or SAMSUNG ELECTRONICS products for use in such applications do so at their own risk and agree to fully indemnify SAMSUNG and/or SAMSUNG ELECTRONICS for any damages resulting from such improper use or sale.

