MARCH. 1998

DATA SHEET

KB2511B

KB2511B

DEFLECTION PROCESSOR

The KB2511B is a monolithc integrated circuit assembled in 32 pins shrunk dual in line plastic package. This IC controls all the functions related to the horizontal and vertical deflection in multimodes or multi-frequency computer display monitors.

The internal sync processor, combined with the very powerful geometry correction block make the KB2511 suitable for very high performance monitors with very few external components. The horizontal jitter level is very low. It is particularly well suited for high-end 15" and 17" monitors.

FUNCTIONS

- Defiection Processor
- I²C BUS Control
- B+ Regulator
- Vertical Parabola Generator
- · Horizontal and Vertical dynamic focus

FEATURES

(HORIZONTAL)

- Self-adaptative
- Dual PLL concept
- 150kHz maximum frequency
- X-RAY protection input
- I²C controls : Horizontal duty-cycle, H-position, free running frequency, frequency generator for burn-in mode.

(VERTICAL)

- Vertical ramp generator
- 50 to 165Hz AGC loop
- · Geometry tracking with V-POS & AMP
- I²C Controls : V-AMP, V-POS, S-CORR, C-CORR

(I²C GEOMETRY CORRECTIONS)

 Vertical parabola generator (Pincushion-E/W, Keystone)

ORDERING INFORMATION

Device	Package	Operating Temperature
KB2511B	32-SDIP	0 °C ~ 70 °C

- Horizontal Dynamic Phase
 (Side Pin balance & parallelogram)
- Horizontal and vertical dynamic focus (Horizontal Focus Amplitude, Horizontal Focus Symmetry, Vertical Focus Amplitude)

(GENERAL)

- Sync Processor
- 12V supply voltage
- Hor. & Vert, lock/unlock outputs
- Read/Write I²C interface
- Vertical moire
- B+ Regulator
 - -Internal PWM generator for B+ current mode step-up converter.
 - Switchable to step-down converter
 - I²C adjustable B+ reference voltage
 - Output pulses synchronized on horizontal frequency

BLOCK DIAGRAM

PIN CONFIGURATIONS

PIN DESCRIPTION

NoPin NameDescription1H/HVINTTL compatible horizontal sync input (for separate or composite)2VSYNCINTTL compatible vertical sync input (for separated H&V)3HLOCKOUTFirst PLL lock/unlock output (fV unlocked - 5V locked)4PLL2CSecond PLL loop filter5COHorizontal oscillator capacitor6R0Horizontal oscillator resistor7PLL1FFirst PLL loop filter8HPOSITIONHorizontal position filter(Capacitor to be connected to HGND)9HFOCUSCAPHorizontal dynamic focus oscillator capacitor10FOCUSOUTMixed horizontal and vertical dynamic focus output11HGNDHorizontal Section Ground12HFLYHorizontal Section Ground13HREFHorizontal Section Reference Voltage (to be filtered)14COMPB+ error amplifier output for frequency compensation and gain setting15REGINRegulation input of B+ centrol loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section reference voltage (to be filtered)22VCAPVertical savtooth generator capacitor23VOUTVertical savtooth generator capacitor24EWOUTPincushine-EastWest correction parabola output25<			
2 VSYNCIN TTL compatible vertical sync input (for separated H&V) 3 HLOCKOUT First PLL lock/unlock output (0V unlocked - 5V locked) 4 PLL2C Second PLL loop filter 5 C0 Horizontal oscillator capacitor 6 R0 Horizontal oscillator resistor 7 PLL1F First PLL loop filter 8 HPOSTION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation)	No	Pin Name	Description
3 HLOCKOUT First PLL lock/unlock output (0/ unlocked - 5V locked) 4 PLL2C Second PLL loop filter 5 C0 Horizontal oscillator capacitor 6 R0 Horizontal oscillator resistor 7 PLL1F First PLL loop filter 8 HPOSITION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Reference Voltage (to be filtered) 13 HREF Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGND Vertical section reference voltage (to be filt	1	H/HVIN	TTL compatible horizontal sync input(Separate or composite)
4 PLL2C Second PLL loop filter 5 C0 Horizontal oscillator capacitor 6 R0 Horizontal oscillator resistor 7 PLL1F First PLL loop filter 8 HPOSITION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGRD Vertical section reference voltage (to be filtered) 21 VREF Vertical sawtooth generator capacitor 22 <td>2</td> <td>VSYNCIN</td> <td>TTL compatible vertical sync input (for separated H&V)</td>	2	VSYNCIN	TTL compatible vertical sync input (for separated H&V)
5 CO Horizontal oscillator capacitor 6 R0 Horizontal oscillator resistor 7 PLL1F First PLL loop filter 8 HPOSITION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Reference Voltage (to be filtered) 13 HREF Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGND Vertical section reference voltage (to be filtered) 22 VCAP Vertical ramp output (with frequency; independan	3	HLOCKOUT	First PLL lock/unlock output (0V unlocked - 5V locked)
6 R0 Horizontal oscillator resistor 7 PLL1F First PLL loop filter 8 HPOSITION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Ground 13 HREF Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B-GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGND Vertical section reference voltage (to be filtered) 22 VCAP Memory capacitor for automatic gain control loop in vertical ramp generator 23 VOUT Vertical ramp output (with fr	4	PLL2C	Second PLL loop filter
7 PLL1F First PLL loop filter 8 HPOSITION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Reference Voltage (to be filtered) 13 HREF Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGND Vertical section reference voltage (to be filtered) 22 VCAP Memory capacitor for automatic gain control loop in vertical ramp generator 23 VOUT Vertical section reference voltage (to be filtered) 24 <td< td=""><td>5</td><td>C0</td><td>Horizontal oscillator capacitor</td></td<>	5	C0	Horizontal oscillator capacitor
8 HPOSITION Horizontal position filter(Capacitor to be connected to HGND) 9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Section Reference Voltage (to be filtered) 13 HREF Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGND Vertical section reference voltage (to be filtered) 22 VCAP Memory capacitor for automatic gain control loop in vertical ramp generator 21 VREF Vertical section reference voltage (to be filtered) 22 VCAP Vertical section reference voltage and vertical morie. <tr< td=""><td>6</td><td>R0</td><td>Horizontal oscillator resistor</td></tr<>	6	R0	Horizontal oscillator resistor
9 HFOCUSCAP Horizontal dynamic focus oscillator capacitor 10 FOCUSOUT Mixed horizontal and vertical dynamic focus output 11 HGND Horizontal Section Ground 12 HFLY Horizontal Flyback Input (positive polarity) 13 HREF Horizontal Section Reference Voltage (to be filtered) 14 COMP B+ error amplifier output for frequency compensation and gain setting 15 REGIN Regulation input of B+ control loop 16 ISENSE Sensing of external B+ switching transistor current or switch for step-down converter 17 B+GND Ground (related to B+ reference adjustment) 18 BREATH DC breathing input control(Compensation of vertical amplitude against EHV variation) 19 VGND Vertical section ground 20 VAGCCAP Memory capacitor for automatic gain control loop in vertical ramp generator 21 VREF Vertical section reference voltage (to be filtered) 22 VCAP Vertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire. 24 EWOUT Pincushion-East/West c	7	PLL1F	First PLL loop filter
10FOCUSOUTMixed horizontal and vertical dynamic focus output11HGNDHorizontal Section Ground12HFLYHorizontal Flyback Input (positive polarity)13HREFHorizontal Section Reference Voltage (to be filtered)14COMPB+ error amplifier output for frequency compensation and gain setting15REGINRegulation input of B+ control loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical aswtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input <td>8</td> <td>HPOSITION</td> <td>Horizontal position filter(Capacitor to be connected to HGND)</td>	8	HPOSITION	Horizontal position filter(Capacitor to be connected to HGND)
11HGNDHorizontal Section Ground12HFLYHorizontal Flyback Input (positive polarity)13HREFHorizontal Section Reference Voltage (to be filtered)14COMPB+ error amplifier output for frequency compensation and gain setting15REGINRegulation input of B+ control loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (reference to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	9	HFOCUSCAP	Horizontal dynamic focus oscillator capacitor
12HFLYHorizontal Flyback Input (positive polarity)13HREFHorizontal Section Reference Voltage (to be filtered)14COMPB+ error amplifier output for frequency compensation and gain setting15REGINRegulation input of B+ control loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLi ² C clock input31SDAi ² C data input	10	FOCUSOUT	Mixed horizontal and vertical dynamic focus output
13HREFHorizontal Section Reference Voltage (to be filtered)14COMPB+ error amplifier output for frequency compensation and gain setting15REGINRegulation input of B+ control loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	11	HGND	Horizontal Section Ground
14COMPB+ error amplifier output for frequency compensation and gain setting15REGINRegulation input of B+ control loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	12	HFLY	Horizontal Flyback Input (positive polarity)
15REGINRegulation input of B+ control loop16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLi ² C clock input31SDAi ² C data input	13	HREF	Horizontal Section Reference Voltage (to be filtered)
16ISENSESensing of external B+ switching transistor current or switch for step-down converter17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	14	COMP	B+ error amplifier output for frequency compensation and gain setting
17B+GNDGround (related to B+ reference adjustment)18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	15	REGIN	Regulation input of B+ control loop
18BREATHDC breathing input control(Compensation of vertical amplitude against EHV variation)19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	16	ISENSE	Sensing of external B+ switching transistor current or switch for step-down converter
19VGNDVertical section ground20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI²C clock input31SDAI²C data input	17	B+GND	Ground (related to B+ reference adjustment)
20VAGCCAPMemory capacitor for automatic gain control loop in vertical ramp generator21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLl²C clock input31SDAl²C data input	18	BREATH	DC breathing input control(Compensation of vertical amplitude against EHV variation)
21VREFVertical section reference voltage (to be filtered)22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI²C clock input31SDAI²C data input	19	VGND	Vertical section ground
22VCAPVertical sawtooth generator capacitor23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI²C clock input31SDAI²C data input	20	VAGCCAP	Memory capacitor for automatic gain control loop in vertical ramp generator
23VOUTVertical ramp output (with frequency independant amplitude and S or C corrections if any). It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI²C clock input31SDAI²C data input	21	VREF	Vertical section reference voltage (to be filtered)
It is mixed with vertical position voltage and vertical moire.24EWOUTPincushion-East/West correction parabola output25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GND28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCL1 ² C clock input31SDA1 ² C data input	22	VCAP	Vertical sawtooth generator capacitor
25XRAYX-RAY protection input (with internal latch function)26HOUTHorizontal drive output (internal transistor, open collector)27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI²C clock input31SDAI²C data input	23	VOUT	
26 HOUT Horizontal drive output (internal transistor, open collector) 27 GND General ground (referenced to Vcc) 28 BOUT B+ PWM regulator output 29 Vcc Supply voltage (12V typ) 30 SCL I ² C clock input 31 SDA I ² C data input	24	EWOUT	Pincushion-East/West correction parabola output
27GNDGeneral ground (referenced to Vcc)28BOUTB+ PWM regulator output29VccSupply voltage (12V typ)30SCLI ² C clock input31SDAI ² C data input	25	XRAY	X-RAY protection input (with internal latch function)
28 BOUT B+ PWM regulator output 29 Vcc Supply voltage (12V typ) 30 SCL I ² C clock input 31 SDA I ² C data input	26	HOUT	Horizontal drive output (internal transistor, open collector)
29 Vcc Supply voltage (12V typ) 30 SCL I ² C clock input 31 SDA I ² C data input	27	GND	General ground (referenced to Vcc)
30 SCL I ² C clock input 31 SDA I ² C data input	28	BOUT	B+ PWM regulator output
31 SDA I ² C data input	29	Vcc	Supply voltage (12V typ)
	30	SCL	I ² C clock input
32 5V Supply voltage (5V typ)	31	SDA	I ² C data input
	32	5V	Supply voltage (5V typ)

Table 1. Pin Description

REFERENCE DATA

Parameter	Value	Unit
Horizontal frequency	15 to 150	kHz
Autosynch frequency (for given R0 and C0)	1 to 4.5FO	FH
± Horizontal sync polarity input	YES	
Polarity detection (on both horizontal and vertical section)	YES	
TTL Composite synch	YES	
Lock/Unlock identification (on both horizontal 1st PLL and vertical section)	YES	
I ² C control for H-Position	±10	%
XRay protection	YES	
I ² C horizontal duty cycle adjust	30 to 60	%
I ² C free running frequency adjustment	0.8 to 1.3FO	FH
Stand-by function	YES	
Dual polarity H-Drive outputs	NO	
Supply voltage monitoring	YES	
PLL1 inhibition possibility	NO	
Blanking output	NO	
Vertical frequency	35 to 200	Hz
Vertical autosync (for 150nF on Pin22 and 470nF on Pin20)	50 to 165	Hz
Vertical S-Correction	YES	
Vertical C-Correction	YES	
Vertical amplitude adjustment	YES	
DC breathing control on Vertical amplitude	YES	
East/West parabola output(also known as Pin cushion output)	YES	
East/West correction amplitude adjustment	YES	
Keystone adjustment	YES	
Internal dynamic horizontal phase control	YES	
Side pin balance amplitude adjustment	YES	
Parallelogram adjustment	YES	
Tracking of geometric corrections with vertical amplitude and position	YES	

Table 2. Reference Data

Parameter	Value	Unit
Reference voltage (both on horizontal and vertical)	YES	
Dynamic focus (both on horizontal and vertical)	YES	
I ² C horizontal dynamic focus amplitude adjustment	YES	
I ² C horizontal dynamic focus symmetry adjustment	YES	
I ² C vertical dynamic focus amplitude adjustment	YES	
Deflection of input Sync type(biased from 5V alone)	YES	
Vertical moire output	YES	
I ² C controlled V-moire amplitude	YES	
Frequency generator for burn-in	YES	
Fast I ² C read/write	400	kHz
B+ regulation adjustable by I ² C	YES	

Table 2. Reference Data (Continued)

ABSOLUTE MAXIMUM RATINGS

No	Item	Symbol	Value	Unit
1	Supply voltage (pin 29)	V _{CC}	13.5	V
2	Supply voltage (pin 32)	V _{DD}	5.7	V
3	Maximum voltage on Pin 4 Pin 9 Pin 5 Pins 6,7,8,14,15,16,20,22 Pins 10,18,23,24,25,26,28 Pins 1,2,3,30,31	V _{IN}	4.0 5.5 6.4 8.0 V _{CC} V _{DD}	V V V
4	ESD susceptibillty Human body model, 100pF discharge through $1.5K\Omega$ EIAJ norm, 200pF discharge through 0Ω	VESD	2 300	kV V
5	Storage temperature	Tstg	- 40, +150	°C
6	Operating temperature	Topr	0, +70	°C

THERMAL CHARACTERISTICS

No	Item	Symbol	Value	Unit
1	Junction temperature	Tj	+150	°C
2	Junction-ambient thermal resistance	θја	65	°C/W

SYNC PROCESSOR

OPERATING CODNITIONS

Table 3. Sync Processor Operating Codnitions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Horizontal sync input voltage	HsVR	Pin 1	0		5	V
Minimum horizontal input pulse duration	MinD	Pin 1	0.7			μs
Maximum horizontal input signal duty cycle	Mduty	Pin 1			25	%
Vertical sync input voltage	VsVR	Pin 2	0		5	V
Minimum vertical sync pulse width	VSW	Pin 2	5			μs
Maximum vertical sync input duty cycle	VSmD	Pin 2			15	%
Maximum vertical sync width on TTL H/V composite	VextM	Pin 1			750	μs
Sink and source current	I _{HLOCKOUT}	Pin 3			250	μA

ELECTRICAL CHARACTERISTICS

(V_{DD} = 5V, Tamb = 25 °C)

Table 4. Sync Processor Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Horizontal and vertical input threshold voltage (pin 1, 2)	VINTH	Low level High level	2.2		0.8	V V
Horizontal and vertical pull-up resister	RIN	pins 1,2		200		KΩ
Falling and rising output CMOS buffer	TfrOut	pin 3, Cout = 20pF			200	ns
Horizontal 1st PLL lock output status (pin 3)	VHlock	Locked, I _{LOCKOUT} = -250μA Unlocked, I _{LOCKOUT} = +250μA		0 5	0.5	
Extracted vsync integration time (% of $TH^{(9)}$) on H/V composite	VoutT	C0 = 820pF	26	35		%

I²C READ/WRITE(See also I²C table control and I²C sub address control)

OPERATING CONDITIONS

Table 5. ² C Read/Write Operating Condition	² C Read/Write Operating	Conditions
--	-------------------------------------	-------------------

Parameter	Symbol	Min	Тур	Max	Unit
Input High Level Voltage	VinH	3.0	-	5.0	V
Input Low Level Voltage	VinL	0	-	1.5	V
SCL Clock frequency	fSCL	-	-	200	kHz
Hold time before a new transmission can start	tBUF	1.3	-	-	uS
Hold time for Start conditions	tHDS	0.6	-	-	uS
Set-Up time for Stop conditions	tSUP	0.6	-	-	uS
The Low Period of SCL	tLOW	1.3	-	-	uS
The High Period of SCL	tHIGH	0.6	-	-	uS
Hold time data	tHDAT	0.3	-	-	uS
Set-Up time data	tSUPDAT	0.25	-	-	uS
Rise time of SCL	tR	-	-	1.0	uS
Fall time of SCL	tF	-	-	3.0	uS

I²C BUS Timing Requirement

ELECTRICAL CHARACTERISTICS

(V_{DD} = 5V, Tamb = 25 °C)

Table 6. I²C Read/Write Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
I ² C PROCESSOR	•			1	1	
Maximum clock frequency	Fscl	Pin 30			400	kHz
Low period of the SCL clock	Tlow	Pin 30	1.3			μs
High period of the SCL clock	Thigh	Pin 30	0.6			μs
SDA and SCL input threshold	Vinth	Pin 30, 31		2.2		V
Acknowledge output voltage on SDA input with 3mA	VACK	Pin 31			0.4	V

HORIZONTAL SECTION

OPERATING CONDITIONS

Table 7. Horizontal Section Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VCO					•	•
Minimum oscillator resistor	R _{0(Min.)}	Pin 6	6			KΩ
Minimum oscillator capacitor	C _{0(Min.)}	Pin 5	390			pF
Maximum oscillator frequency	F _(Max.)				150	kHz
OUTPUT SECTION	·	·				
Maximum input peak current	l12m	Pin 12			5	mA
Horizontal drive output maximum current	HOI	Pin26, sunk current			30	mA

ELECTRICAL CHARACTERISTICS

(V_{DD} = 5V, Tamb = 25 °C)

Table 8. Horizontal Section Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
SUPPLY AND REFERENCE VOLTA	GE				I	
Supply voltage	Vcc	Pin 29	10.8	12	13.2	V
Supply voltage	V _{DD}	Pin 32	4.5	5	5.5	V
Supply current	I _{CC}	Pin 29		50		mA
Supply current	I _{DD}	Pin 32		5		mA
Horizontal reference voltage	V _{REF-H}	Pin 13, I=-2mA	7.4	8	8.6	V
Vertical reference voltage	V _{REF-V}	Pin 21, I=-2mA	7.4	8	8.6	V
Max. sourced current on V _{REF-H}	I _{REF-H}	Pin 13			5	mA
Max. sourced current on VREF-V	I _{REF-V}	Pin 21			5	mA
1st PLL SECTION						
Polarity integration delay	HpoIT	Pin 1	0.75			ms
VCO control voltage (pin 7)	V _{VCO}	V _{REF-H} =8V f0 fH (Max.)		1.3 6.2	I	V V
VCO gain (pin 7)	V _{COG}	R_0 =6.49KΩ, C_0 =820pF, dF/dV=1/11 R_0C_0		17		kHz/V
Horizontal phase adjustment ⁽¹¹⁾	Hph	% of horizontal period		± 10		%
Horizontal phase setting value(Pin 8) ⁽¹¹⁾ Minimum current value Typical value Maximum value	Hphmin Hphtyp Hphmax	Sub-address 01 Byte x 1111111 Byte x 1000000 Byte x 0000000		2.6 3.2 3.8		V V V
PLL1 filter current charge	IPII1U IPII1L	PLL1 is unlocked PLL1 is locked		±140 ±1		μA mA
Free running frequency	fo	R_0 =6.49KΩ, C_0 =820pF, f ₀ =0.97/8 R_0C_0		±140 ±1		μA mA
Free running frequency thermal drift (no drift on external components) ⁽⁷⁾	dF0/dT			-150		ppm/c
Free running frequency adjustment Minimum value Maximum value	f ₀ (Min.) f ₀ (Max.)	Sub-address 02 Byte x x x 11111 Byte x x x 00000		0.8 1.3		F0 F0
PLL1 capture range	CR	$R_0=6.49K\Omega, C_0=820$ pF, from f ₀ +0.5KHz to 4.5Fo fH(Min.) fH(Max.)	100		23.5	KHz KHz
Safe forced frequency SF1 Byte 11 x x x x x x	SFF	Sub-address 02		2F0		

	1	ectrical Characteristics	•	,	1	1
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Flyback input threshold voltage (pin12)	FBth		0.65	0.75		V
Horizontal jitter	Hjit			70		ppm
Horizontal drive output duty-cycle (pin 26) ^(1, 2) Low level High level	HDmin HDmax	Sub-address 00 Byte xxx11111 Byte xxx00000 ⁽²⁾		30 60		% %
X-RAY protection input threshold voltage	XRAYth	Pin 25 ⁽¹²⁾		8		V
Internal clamping levels on 2nd PLL loop filter (pin 4)	Vphi2	Low level High level		1.6 3.7		V V
Threshold voltage to stop H-out, V-out when V_{CC} < VSCinh	VSCinh	Pin 29		7.5		V
Horizontal drive output (low level)	HDvd	Pin 26 I _{OUT} =30mA			0.4	V
HORIZONTAL DYNAMIC FOCUS F	JNCTION					
Horizontal dynamic focus sawtooth Minimum level Maximum level	HDFst	Capacitor on HfocusCap and C0=820pF, TH=20µS, Pin 9		2 4.7		V V
Horizontal dynamic focus sawtooth Discharge width	HDFdis	Start by Hfly center		400		ns
Bottom DC output level	HDFDC	R_{LOAD} =10K Ω , pin 10		2		V
DC output voltage thermal drift	TDHDF			200		ppm/C
Horizontal dynamic focus amplitude Min Byte xxx11111 Typ Byte xxx10000 Max Byte xxx00000	HDFamp	Sub-address 03, pin 10, FH=50kHz, Keystone Typ		1 1.5 3		Vpp Vpp Vpp
Horizontal dynamic focus keystone Min A/B Byte xxx11111 Typ Byte xxx10000 Max Byte xxx00000	HDFkeyst	Sub-address 04, FH = 50kHz, Typ amp B/A A/B A/B	2.2 2.2	3.5 1.0 3.5		
VERTICAL DYNAMIC FOCUS FUNC	TION (POSITI	VE PARABOLA)				
Vertical dynamic focus parabola (added to horizontal one) amplitude with VOUT and VPOS typical Min. Byte 000000 Typ. Byte 100000 Max. Byte 111111	AMPVDF	Sub-address 0F		0 0.5 1		Урр Урр Урр
Parabola amplitude function of VAMP (tracking between VAMP and VDF) with VPOS typ. (see figure 1) ⁽³⁾	VDFAMP	Sub-address 05 Byte 10000000 Byte 11000000 Byte 11111111		0.6 1 1.5		Vpp Vpp Vpp
Parabola assymetry function of VPOS control (tracking between VPOS and VDF) with VAMP Max.	VHDFKeyt	Sub-address 06 Byte x0000000 Byte x1111111		0.52 0.52		Vpp Vpp

VERTICAL SECTION

OPERATING CONDITIONS

Table 9. Vertical Section Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
OUTPUTS SECTION						
Maximum EW output voltage	VEWM	Pin 24			6.5	V
Minimum EW output voltage	VEWm	Pin 24	1.8			V
Minimum load for less than 1% vertical amplitude drift	R _{LOAD}	Pin 20	65			MΩ

ELECTRICAL CHARACTERISTICS

(V_{CC} = 12V, Tamb = 25 °C)

Table 10. Vertical Section Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit		
VERTICAL RAMP SECTION								
Voltage at ramp bottom point	VRB	V _{REF-V} =8V, pin 22		2		V		
Voltage at ramp top point (with sync) $V_{\mbox{\scriptsize REF-V}}$	VRT	V _{REF-V} =8V, Pin 22		5		V		
Voltage at ramp top point (without sync)	VRTF	Pin 22		VRT-01		V		
Vertical sawtooth discharge time duration (pin 22)	VSTD	With 150nF cap		70		μs		
Vertical free running frequency see ^(4, 5)	VFRF	C _{OSC(pin22)} =150nF measured on pin 22		100		Hz		
AUTO -SYNC frequency ⁽¹³⁾	ASFR	C_{22} =150nF ±5% See ⁽⁶⁾	50		165	Hz		
Ramp amplitude drift versus frequency at Maximum vertical amplitude	RAFD	C ₂₂ =150nF 50Hz <f and="" f<165hz<="" td=""><td></td><td>200</td><td>TBD</td><td>ppm/ Hz</td></f>		200	TBD	ppm/ Hz		
Ramp linearity on pin 22 (∆I22/I22) see ^(4, 5)	Rlin	V ₂₀ =4.3v, 2.5 <v<sub>27 & V₂₇<4.5V</v<sub>		0.5		%		
Vertical position adjustment voltage (pin 23 - VOUT centering)	Vpos	Sub address 06 Byte x0000000 Byte x1000000 Byte x1111111	3.65	3.2 3.5 3.8	3.3	V V V		
Vertical output voltage (peak-to-peak on pin 23)	VOR	Sub address 05 Byte x0000000 Byte x1000000 Byte x1111111	3.5	2.25 3 3.75	2.5	V V V		
Vertical output Maximum current(Pin 23)	VOI			±5		mA		
Max vertical S-correction amplitude ⁽¹⁴⁾ XOXXXXXX inhibits S-CORR X1111111 gives max S-CORR	dVS	Sub address 07 $\Delta V/Vpp$ at TV/4 $\Delta V/Vpp$ at 3TV/4		-4 +4		% %		

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Vertical C-Corr amplitude XOXXXXXX inhibits C-corr	Ccorr	Sub address 08 ∆V/Vpp at TV/2 Byte X1000000 Byte X1100000 Byte X111111		-3 0 3		% % %
EAST/WEST FUNCTION	•					
DC output voltage with typ Vpos, keystone, corner and corner balance inhibited	EW _{DC}	pin 24, see figure 2		2.5		V
DC output voltage thermal drift	TDEW _{DC}	see note 7		100		ppm/ C
Parabola amplitude with Vamp Max. V-Pos typ, keystone ilhibited	EWpara	Sub address 0A Byte 1111111 Byte 1010000 Byte 1000000		2.5 1.25 0		V V V
Parabola amplitude function of V-AMP control (tracking between V-AMP and E/W) with typ Vpos ketstone, EW Typ amplitude ⁽⁸⁾	EWtrack	Sub address 05 Byte 1000000 Byte 1100000 Byte 1111111		0.45 0.8 1.25		V V V
Keystone adjustment capability with typ Vpos, EW typ amplitude and vertical amplitude max, ⁽⁸⁾ A/B Ratio(see figure 2) B/A Ratio	KeyAdj	Sub address 09 Byte 1x000000 Byte 1x111111		1 1		Vpp Vpp
Intrinsic keystone function of V-POS control (tracking between V-pos and EW) Max amplitude and vertical amplitude max. ⁽¹⁰⁾ A/B Ratio B/A Ratio	Key- Track	Sub address 09 Byte x0000000 Byte x1111111		0.52 0.52		
INTERNAL HORIZONTAL DYNAMIC PHAS		L FUNCTION				1
Side pin balance parabola amplitude (figure3) with Vamp max, V-POS typ and parallelogram inhibited (8,9)	SPBpara	Sub address 0D Byte x1111111 Byte x0000000		+1.4 -1.4		%TH %TH
Side pin balance parabola amplitude function of Vamp control (tracking between Vamp and SPB) with SPB max, V-POS typ and parallelogram inhibited ^(8,9)	SPBtrack	Sub address 05 Byte 10000000 Byte 11000000 Byte 11111111		0.5 0.9 1.4		%TH %TH %TH
Parallelogram adjustment capability with Vamp max, V-POS typ and SPB max ^(8,9) A/B Ratio B/A Ratio	ParAdj	Sub address 0E Byte x1111111 Byte x1000000		+1.4 -1.4		%TH %TH
Intrinsic parallelogram function of Vpos control (tracking between V-pos and DHPC) with Vamp max, SPB max and parallelogram inhibited ^(8, 9) A/B Ratio B/A Ratio	Partrack	Sub address 06 Byte x0000000 Byte x1111111		0.52 0.52		

 Table 10. Vertical Section Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VERTICAL MOIRE	•					1
Vertical moire (measured on VOUTDC) pin 23	VMOIRE	Sub address 0C Byte 01x11111		6		mV
BREATHING COMPENSATION						
DC breathing control range ⁽¹⁵⁾	BRRANG	V18	1		12	V
Vertical output variation versus DC breathing con- trol (Pin 23)	BRADj	V18≥V _{REF-V} V18=4V		0 -10		% %

B+ SECTION

OPERATING CONDITIONS

Table 11. B+ SectionOperating Conditions

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Minimum feedback resistor	FeedRes	Resistor between pins 15 and 14	5			KΩ

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 12V, Tamp = 25 \ ^{\circ}C)$

Table 12. B+ Section Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Error amplifier open loop gain	OLG	At low frequency (10)		85		dB
Unity gain band width	UGBW	see ⁽⁷⁾		6		MHz
Regulation input bias current	IRI	Current sourced by pin 15 (PNP base)		0.2		μΑ
Maximum guaranted error amplifier output current	EAOI	Current sourced by pin 14 Current sunk by pin 14			0.5 2	mA mA
Current sense input voltage gain	CSG	Pin 16		3		
Max current sense input thres hold voltage	MCEth	Pin 16		1.2		V
Current sense input bias current	ISI	Current sunk by pin 16 (NPN base)		1		μΑ
Maxmum external power transistor on time	Tonmax	% of H-period @ f0=27kHz ⁽¹⁶⁾		100		%
B+ output low level saturation voltage	B+OSV	V ₂₈ with I ₂₈ =10mA		0.25		V
Internal reference voltage	IV _{REF}	On error amp (+) input for subaddress 0B byte 1000000		4.8		V

Internal reference voltage adjustment range	V _{REFADJ}	Byte 111111 Byte 000000	+20 -20	% %
Threshold for step-up/step-down selec- tion	DWMSEL	Pin 16	6	V
Falling time	t _{FB+}	Pin 28	100	ns

Table 12. B+ Section Electrical Characteristics

NOTES;

- 1.Duty cycle is the ratio of power transistor OFF time period. Power transistor is OFF when output transistor is OFF.
- 2.Initial condition for safe operation start up.
- 3.S and C correction are inhibited so the output sawtooth has a linear shape.
- 4.With register 07 at byte x0xxxxxx (s-correction control is inhibited) then the S correction is inhibited, consequently the sawtooth has a linear shape.
- 5. With register 08 at byte x0xxxxxx (C-Correction control is inhibited) then the C correction is inhibited, consequently the sawtooth has a linear shape.
- 6.It is frequency range for which the vertical oscillator will automatically synchronize, using a single capacitor value on pin 22, and with a constant ramp amplitude.
- 7. These parameters are not tested on each unit. They are measured during out internal qualification.
- 8.Refers to notes 4 & 5 from last section.
- 9.TH is the Horizontal period.
- 10. These parameters are not tested on each unit. They are measured during our internal qualification procedure which incudes characterization on batches comming from corners of our processes and also temperature char acterization.
- 11. See Figure 11 for explanation of reference phase.
- 12. See Figure 15.
- 13. This is the frequency range for which the vertical oscillator will automatically synchronize, using a single capacitor value on Pin 22 and with a constant ramp amplitude.
- 14. TV is the vertical period.
- 15. When not used the DC breathing control pin must be connected to 12V.
- 16. The external power transistor is OFF during 400ns of the HFOCUSCAP discharge.

Figure 1. Vertical Dynamic Focus Function

Figure 2. E/W Output

Figure 3. Dynamic Horizontal Phase Control Output

Function	Sub address	Pin	Byte	Specification	Picture Image
Vertical Cine	05	22	10000000	V _{OUTDC} 2.25V	
Vertical Size	05	23	11111111	<u>V_{OUTDC}</u> 3.75V	↓
Vertical Position DC Control	06	23	x0000000 x1000000 x1111111	3.2V 3.5V 3.8V	<u> </u>
Vertical S Linearity	07	23	x0xxxxxx Inhibited		
Linearity			x1111111	Vpp $\frac{\Delta V}{Vpp} = 4\%$	· ·
Vertical C	08	23	x1000000	Vpp ΔV	+
Linearity			x1111111	Vpp ΔV ΔP = 3%	↓ ↓

Figure 4. Typical Vertical Output Waveforms

Function	Sub address	Pin	Byte	Byte Specification	
Key Stone (Trapezoid) Control	09	24	EWamp Typ. 10000000 1111111	1.0V 1.0V 2.5V 1.0V 2.5V	
E/W (Pin Cushion) Control	0A	24	Keystone Inhibited 1x000000 1x111111	2. <u>5∨</u> ↓0∨ ↓2.5∨	
Parallelogram Control	0E	Internal	SPB Inhibited x1000000 x111111	3.7V ↓ 1.4% TH 3.7V ↓ 1.4% TH	
Side Pin Balance Control	0D	Internal	Parallelogram Inhibited x0000000 x1111111	3.7V ↓1.4% TH 3.7V ↓1.4% TH	
Vertical Dynamic Focus with Horizontal		32		2V	

Figure 5. Geometry Output Waveforms

I²C BUS ADDRESS TABLE

Slave Address (8C): Write Mode

Sub Address Definition

	D8	D7	D6	D5	D4	D3	D2	D1	
0	0	0	0	0	0	0	0	0	Horizontal drive selection/horizontal duty cycle
1	0	0	0	0	0	0	0	1	Horizontal position
2	0	0	0	0	0	0	1	0	Forced frequcny /free running frequency
3	0	0	0	0	0	0	1	1	Synchro priority / horizontal focus amplitude
4	0	0	0	0	0	1	0	0	Refresh /horizontal focus keystone
5	0	0	0	0	0	1	0	1	Vertical ramp amplitude
6	0	0	0	0	0	1	1	0	Vertical position adjustment
7	0	0	0	0	0	1	1	1	S Correction
8	0	0	0	0	1	0	0	0	C Correction
9	0	0	0	0	1	0	0	1	E/W keystone
А	0	0	0	0	1	0	1	0	E/W amplitude
В	0	0	0	0	1	0	1	1	B+ reference adjustment
С	0	0	0	0	1	1	0	0	Vertical moire
D	0	0	0	0	1	1	0	1	Side pin balance
Е	0	0	0	0	1	1	1	0	Parallelogram
F	0	0	0	0	1	1	1	1	Vertical dynamic focus amplitude

Slave Address (8D): Read Mode

No Sub Address needed

I²C BUS ADDRESS TABLE (continued)

	D8	D7	D6	D5	D4	D3	D2	D1		
			W	RITE MODE						
		HDrive			Horizontal duty cycle					
00		0, off [1],on		[0]	[0]	[0]	[0]	[0]		
	Xray	Horizontal phase adjustment								
01	1,reset [0]	[1]	[0]	[0]	[0]	[0]	[0]	[0]		
	Forced fr	requency	quency		Free running frequency					
02	1,on, [0],off	1,F0x2 [0],F0x3		[0]	[0]	[0]	[0]	[0]		
	Sync				Horizontal	focus ampl	itude			
03	0, comp [1], sep			[1]	[0]	[0]	[0]	[0]		
	Detect				Horizonta	l focus keys	tone			
04	refresh [0], off			[1]	[0]	[0]	[0]	[0]		
	Vramp			Vertical ramp	amplitude adju	stment				
05	0, off [1], on	[1]	[0]	[0]	[0]	[0]	[0]	[0]		
06			Vertical position adjustment							
06		[1]	[0]	[0]	[0]	[0]	[0]	[0]		
	S Select		S Correction							
07	07 1, on [0]		[1]	[0]	[0]	[0]	[0]	[0]		
	C Select		C Correction							
08	1, on [0]		[1]	[0]	[0]	[0]	[0]	[0]		
	EW key				East/West ke	eystone				
09	0, off [1]		[1]	[0]	[0]	[0]	[0]	[0]		
	EW sel			East/V	Vest amplitude	1				
0A	0, off [1]	[1]	[0]	[0]	[0]	[0]	[0]	[0]		
	Test H	B+ reference adjustment								
0B	1, on [0], off	[1]	[0]	[0]	[0]	[0]	[0]	[0]		
Т	Test V	Moire 1, on	Vertical Moire							
0C	1, on [0], off	[0]		[0]	[0]	[0]	[0]	[0]		
	SPB sel		Side pin balance							
0D	0, off [1]		[1]	[0]	[0]	[0]	[0]	[0]		
_	Parallelo		Parallelogrm							
0E	0, off [1]		[1]	[0]	[0]	[0]	[0]	[0]		
05		1	Vertical dynamic focus amplitude							
0F		ļ Ē	[1]	[0]	[0]	[0]	[0]	[0]		

READ MODE									
	Hlock	Vlock	Xray	Polarity	detection	Sy	nchro detect	ion	
00	0, on [1], no	0, on [1], no	1,on [0],off	H/V pol [1],negative	V pol [1], negative	Vext det [0],no det	H/V det [0],no det	V det [0], nodet	

[] initlal value

OPERATING DESCRIPTION

GENERAL CONSIDERATIONS

Power Supply

The typical values of the power supply voltages Vcc and V_{DD} are respectively 12V and 5V. Perfect operation is obtained if Vcc and V_{DD} are maintened in the limits: 10.8 to 13.2V and 4.5 to 5.5V.

In order to avoid erratic operation of the circuit during transient phase of Vcc switching on, or switching off, the value of Vcc is monitored and the outputs of the circuit are inhibited if Vcc is less than 7.5V typically.

In the same manner, V_{DD} is monitored and internal set-up is made until V_{DD} reaches 4V (see I²C control table for power on reset).

In order to have a very good power supply rejection, the circuit is internally powered by several internal voltage references (the unigue typical value of which is 8V). Two of these voltage references are externally accessible, one for the vertical part and on one for the horizontal one. If needed, these voltage references can be used (until lload is less than 5mA). Furthermore it is necessary to filter the a.m. voltage references by the use of external capacitor connected to ground, in order to minimize the noise and consequently the "jitter" on vertical and horizontal output signals.

I²C Control

KB2511 belongs to the I²C controlled device family, instead of being controlled by DC voltage on dedicated control pins, each adjustment can be realized through the I²C interface. The I²C bus is a serial bus with a clock and a data input. The general function and the bus protocol are specified in the philips-bus data sheets.

The interface (data and clock) is TTL-level compatible. The internal threshold level of the input comparator is 2.2V (when V_{DD} is 5V). Spikes of up to 500ns are filtered by an integrator and maximum clock speed is limited to 400kHz.

The data line (SDA) can be used in a bidirectional way that means in read-mode the IC clocks out a reply information (1byte) to the micro-processor.

The bus protocol prescribes always a full-byte transmission. The first byte after the start condition is used to transmit the IC-address (hexa 8C for write, 8D for read).

Write Mode

In write mode the second byte sent contains the subaddress of the selected function to adjust (or controls to affect) and the third byte the corresponding data byte. It is possible to send more than one data byte to the IC. If after the third byte no stop or start condition is detected, the circuit increments automatically the momentary subaddress in the subaddress counter by one (auto-increment mode). So it is possible to transmit immediately the next data bytes without sending the IC address or subaddress. It can be useful so as to reinitialize the whole controls very quickly (flash manner). This procedure can be finished by a stop condition.

The circuit has 16 adjustment capabilities: 3 for horizontal part, 4 for vertical one, 2 for E/W correction, 2 for the dynamic horizontal phase control, 1 for moire option, 3 for horizontal and vertical dynamic focus and 1 for B+ reference adjustment.

17 bits are also dedicated to several controls (ON/OFF, horizontal forced frequency, sync priority, detection refresh and Xray reset).

Read Mode

During read mode the second byte transmits the reply information.

The reply byte contains horizontal and vertical lock/unlock status, Xray activated or not, the horizontal and vertical polarity detection. It also contains synchro detection status that is useful for µP to assign sync priority.

A stop condition always stops all activities of the bus decoder and switches the data and the clock line (SDA and SCL) to high impedance.

See I²C subaddress and control tables.

Sync processor

The internal sync processor allows the KB2511B to accept any kind of input synchro signals:

- separated horizontal & vertical TTL-compatible sync signals,
- composite horizontal & vertical TTL-compatible sync signals.

Sync identification Status

The MCU can read (address read mode : 8D) the status register via the I²C bus, and then select the sync priority depending on this status.

Among other data this register indicates the presence of sync pulses on H/HVIN, VSYNCIN and(when 12V is supplied) whether a Vext has been extracted from H/HVIN. Both horizontal and vertical sync are detected even if only 5V is supplied.

In order to choose the right sync priority the MCU may proceed as follows(see I²C Address Table):

- refresh the status register,
- wait at least for 20ms(MAX. vertical period),
- read this status register,

Vext det	H/V det	V det	Sync priority subaddress 03 (D8)	Comment sync type	
No	Yes	Yes	1	Separated H & V	
Yes	Yes	No	0	Composite TTL H & V	

Sync priotity choice should be:

Of course, when choice is made, one can refresh the sync detections and verify that extracted Vsync is present and that no sync change occured.

Sync processor is also giving sync polarity information.

IC status

The IC can inform the MCU about the 1st horizontal PLL and vertical section status, and about the Xary protection (activated or not). Resetting the XRAY internal latch can be done either by decreasing the Vcc supply or directly resetting it via the I²C interface.

Sync Inputs

Both H/HVin and Vsyncin inputs are TTL compatible trigger with hysterisis to avoid erratic detection. Both inputs include a pull up register connected to V_{DD}.

Sync Processor Output

The sync processr indicates on the HLOCKOUT Pin whether 1st PLL is locked to an incoming horizontal sync. HLOCKOUT is a TTL compatible CMOS output. Its level goes to high when locked. In the same time the D8 bit of the status regiser is set to 0. This information is mainly used to trigger safety procedures(like reducing B+ value) as soon as a change is detected on the incoming sync. Further to this, it may be used in an automatic procedure for

free running frequency(fo) adjustment.

Sending the desired fo on the sync input and progressively decreasing the free running frequently I²C register value(address 02), the HLOCKOUT Pin will go high as soon as the proper setting is reached. Setting the free running frequency this way allows to fully exploit the KB2511B horizontal frequency range.

HORIZONTAL PART

Internal input conditions

Horizontal part is internally fed by synchro processor with a digital signal corresponding to horizontal synchro pulses or to TTL composite input.

concerning the duty cycle of the input signal, the following signals (positive or negative)may be applied to the circuit.

Using internal integration, both signals are recognized on condition that Z/T < 25%, synchronisation occurs on the leading edge of the internal sync signal. The minimum value of Z is 0.7μ s.

An other integration is able to extract vertical pulse of composite synchro if duty cycle is more than 25% (typically d = 35%)⁽⁷⁾

Figure 7.

The last feature performed is the equalizing pulses removing to avoid parasitic pulse on phase comparator input which is intolerent to wrong or missing pulse.

PLL1

The PLL1 is composed of a phase comparator, an external filter and a voltage control oscillator (VCO).

The phase comparator is a phase frequency type designed in CMOS technology. This kind of phase detector avoids locking on false frequencies. It is followed by a charge pump, composed of two current sources sunk and sourced (I = 1mA typ. when locked, I = 140mA when unlocked). This difference between lock/unlock permits a smooth catching of horizontal frequency by PLL1. This effect is reinforced by an internal original slow down system when PLL1 is locked avoiding horizontal too fast frequency change.

The dynamic bahaviour of the PLL is fixed by an external filter which integrates the current of the charge pump. A CRC filter is generally used (see figure 8)

Figure 8.

PLL1 is internally inhibited during extracted vertical sync (if any) to avoid taking in account missing pulses or wrong pulse on phase comparator. The inhibition results from the opening of a switch located between the charge pump and the filter (see figure 9).

The VCO uses an external RC network. It delivers a linear sawtooth obtained by charge and discharge of the capacitor, by a current proportionnal to the current in the resistor. Typical thresholds of sawtooth are 1.6V and 6.4V.

Figure 9. Block Diagram

Figure 10. Details of VCO

The control voltage of the VCO is typically comprised between 1.33V and 6V (see figure 10). The theorical frequency range of this VCO is in the ratio 1 to 4.5, the effective frequency range has to be smaller 1 to 4.2 due to clamp intervention on filter lowest value. To avoid spread of external components and the circuit itself, it is possible to adjust free running frequency through I²C. This adjustment can be made automatically on the manufacturing line without manual operation by using hlock/unlodk information. The adjustment range is 0.8 to 1.3 F0 (where 1.3 F0 is the free running frequency at power on reset).

The sync frequency has to be always higher than the free running frequency. As an example for a synchro range from 24kHz to 100kHz, the suggested free running frequency is 23kHz.

An other feature is the capability for MCU to force horizontal frequency throw I^2C to 2xF0 or 3xF0 (for burn in mode or safety requirement). In this case, inhibition switch is opened leaving PLL1 free but voltage on PLL1 filter is forced to 2.66V for 2xF0 or 4.0V for 3xF0.

The PLL1 ensures the coincidence between the leading edge of the synchro signal and a phase reference obtained by comparism between the sawtooth of the VCO and an internal DC voltage I^2C adjustable between 2.65V and 3.75V (corresponding to ±10%) (see figure 11)

Phase REF1 is obtained by comparision between the sawtooth and a DC voltage adjustable between 2.6V and 3.8V. The PLL1 ensures the exact coindidence between the signals phase REF and HSYNS. A $\pm T_H/10$ phase adjustment is possible

The KB2511B also includes a lock/unlock identification block which senses in real time whether PLL1 is locked or not on the incoming horizontal sync signal. The resulting information is available on Hlockout (see sync processor). The block function is described in figure 12.

When PLL1 is unlocked, It forces Hlockout to leave high.

The lock/unlock information is also available throw I²C read.

PLL2

The PLL2 ensures a constant position of the shaped flyback signal in comparism with the sawtooth of the VCO (figure 12).

The phase comparator of PLL2 (phase type comparator) is followed by a charge pump(typical output current:0.5mA).

The flyback input is composed of an NPN transistor. This input must be current driven. The maximum recommanded input current is 5mA (see figure 13).

The dury cycle is adjustable through I²C from 30% to 60%. For startup safe operation, initial duty cycle (after power on reset) is 60% in order to avoid having a too long conduction period of the horizontal scanning transistor. The maximum storage time(Ts MAX.) is ($0.38T_H$ - $T_{FLY}/2$). Typically, T_{FLY}/TH is around 20% which means that Ts max is around 28% of T_H .

Figure 12. PLL2 Timing Diagram

Output Section

The H-drive signal is transmitted to the output through a shaping block ensuring TS and I^2C adjustable duty cycle. In order to secure scanning power part operation, the output is inhibited in the following circumstances:

- Vcc too low
- Xray protection activated
- During horizontal flyback
- H Drive I²C bit control is off.

The output stage is composed of a NPN bipolar transistor. Only the collector is accessible (see figure 14).

Figure 14.

The output NPN is in off-state when the power scanning transistor is also in off-state.

The maximum output current is 30mA, and the corresponding voltage drop of the output V_{CEsat} is 0.4V typically. It is evident that the power scanning transistor cannot be directly driven by the integrated circuit. An interface has to be designed between the circuit and the power transistor which can be of bipolar or MOS type.

X-RAY protection

The activation of the X-ray protection is obtained by application of a high level on the X-ray input (8V on pin 25). It inhibits the H-Drive and B+ outputs.

This protection is latched; It may be reset either by Vcc switch off or by I²C(see figure 15).

Horizontal and vertical dynamic focus

The KB2511B delivers and horizontal parabola added on a vertical parabola wavefrom on pin 10. This horizontal parabola is performed from a sawtooth in phase with flyback pulse middle. This sawtooth is present on pin 9 where the horizontal focus capacitor is the same as C0 to obtain a controlled amplitude (from 2 to 4.7V typically). Symmetry (keystone) and amplitude are I²C adjustable (see figure 16). Vertical dynamic focus is tracked with VPOS and VAMP. Its amplitude can be adjusted. It is also affected by S and C corrections. This positive signal has to be connected to the CRT focusing grids.

Figure 16.

VERTICAL PART

Geometric Corrections

The principle is represented in figure 17.

Figure 17. Geometric Correcitions Principle

Starting from the vertical ramp, a parabola shaped current is generated for E/W correction, dynamic horizontal phase control correction, and vertical dynamic focus correction.

The base of the parabola generator is an analog multiplier, the output current of which is equal to:

 $\Delta I = k \bullet (V_{OUT} - V_{DCMID})^2$

Where Vout is the vertical output ramp(typically between 2 and 5V) and V_{DCMID} is 3.5V(for $V_{REF-V}=8V$). The VOUT sawtooth is typically centered on 3.5V. By changing the vertical position, the sawtooth shifts by ±0.3V. In order to keep a good screen geometry for any end user preference adjustment we implemented the geometry

tracking. Due to large output stages voltage range (E/W, FOCUS), the combination of tracking function with maximum verti-

cal amplitude max or min vertical position and maximum gain on the DAC control may lead to the output stages saturation. This must be avoided by limiting the output voltage by appropriate I²C registers values.

For E/W part and Dynamic Horizontal phase control part, a sawtooth shaped differential current in the following form is generated:

 $\Delta I' = k' \bullet (V_{OUT} - V_{DCMID})^2$

Then ΔI and ΔI 'are added together and converted into voltage for the E/W part.

Each of the two E/W components or the two Dynamic horizontal phase control ones may be inhibited by their own I²C select bit.

The E/W parabola is available on pin 24 by the way of an emitter follower which has to be biased by an external resistor ($10K\Omega$). It can be DC coupled with external circuitry.

Vertical dynamic focus is combined with horizontal one on output pin 10. Dynamic horizontal phase control current drives internally the H-position, moving the Hfly position on the horizontal sawtooth in the \pm 1.4% Th both on side pin balance and parallelogrm.

EW

$$\begin{split} & \mathsf{EWOUT} = 2.5\mathsf{V} + \mathsf{K1} \; (\; \mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{DCMID}} \;)^2 + \mathsf{K2} \; (\; \mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{DCMID}} \;) \\ & \mathsf{K1} \; \text{is adjustable by EW amplitude I}^2\mathsf{C} \; \text{register} \\ & \mathsf{K2} \; \text{is adjustable by keystone I}^2\mathsf{C} \; \text{register} \end{split}$$

Dynamic horizontal phase control

IOUT = K3 ($V_{OUT} - V_{DCMID}$)² + K4 ($V_{OUT} - V_{DCMID}$) K4 is adjustable by side pin balance I²C register K3 is adjustable by parallelogram I²C register.

Function

When the synchronisation pulse is not present, an internal current source sets the free running frequency. For an external capacitor, $C_{OSC} = 150$ nF, the typical free running frequency is 100Hz. Typical free running frequency can be calculated by:

$$f_0 (Hz) = 1.5 \cdot 10^{-5} \cdot \frac{1}{C_{OSC}}$$

A negative or positive TTL level pulse applied on pin 2 (VSYNC) as well as a TTL composite sync on pin 1 can synchronise the ramp in the range [fmin, fmax]. This frequency range depends on the external capacitor connected on pin 22. A capacitor in the range [150nF, 220nF] \pm 5% is recommanded for application in the following range: 50Hz to 165Hz.

Typical maximum and minimum frequency, at 25°C and without any correction (S correction or C correction), can be calculated by:

 $f_{(Max.)} = 2.5 \text{ x } f_0 \text{ and } f_{(Min.)} = 0.33 \text{ x } f_0$

If S or C corrections are applied, these values are slighty affected.

If a synchronisation pulse is applied, the internal oscillator is automaticaly caught but the amplitude is no more constant. An internal correction is activated to adjust it in less than a half a second : the highest voltage of the ramp pin 22 is sampled on the sampling capacitor connected on pin 20 at each clock pulse and a transconductance amplifier generates the charge current of the capacitor. The ramp amplitude becomes again constant. The read status register enables to have the vertical lock-unlock and the vertical sync polarity informations. It is recommanded to use a AGC capacitor with low leakage current. A value lower than 100nA is mandatory. Good stability of the internal closed loop is reached by a 470nF \pm 5% capacitor value on pin 20 (VAGC)

Figure 18. AGC Loop Block Diagram

I²C Control Adjustments

Then, S and C correction shapes can be added to this ramp. This frequency independent S and C corrections are generated internally. Their amplitude are adjustable by their respective I^2C register. They can also be inhibited by their select bit. Endly, the amplitude of this S and C corrected ramp can be adjusted by the vertical ramp amplitude control register. The adjusted ramp is available on pin 23 (VOUT) to drive an external power stage. The gain of this stage is typically 25% depending on its register value. The mean value of this ramp is driven by its own I^2C register (vertical position). Its value is VPOS = 7/16 • V_{REF} ± 300mV.

Usually VOUT is sent through a resistive divider to the inverting input of the booster. Since VPOS derives from V_{REF-V} , the bias voltage sent to the non-inverting input of booster should also derive from V_{REF-V} to optimize the accuracy(see Application Diagram).

Basic Equations

In first approximation, the amplitude of the ramp on pin 23 (Vout) is:

 $V_{OUT} - VPOS = (V_{OSC} - V_{DCMID}) \bullet (1 + 0.25 (V_{AMP}))$ with:

- $V_{\text{DCMID}} = 7/16 \cdot V_{\text{REF}}$ (typically 3.5V, the middle value of the ramp on pin 22)
- $V_{OSC} = V22$ (ramp with fixed amplitude)
- VAMP = 1 for minimum vertical amplitude register value and +1 for maximum
- VPOS is calculated by : VPOS = V_{DCMID} + 0.3Vp with Vp equals -1 for minimum vertical position register value and +1 for maximum

The current available on Pin 22 is :

$$I_{OSC} = \frac{3}{8} \bullet V_{REF} \bullet C_{OSC} \bullet f$$

with COSC: capacitor connected on pin 22

f: synchronisation frequency.

Vertical Moire

By using the vertical moire, VPOS can be modulated from to frame. This function is intended to cancel the fringes which appear when line to line interval is very close to the CRT vertical pitch. The amplitude pf the modulation is controlled by register VMOIRE on sub-off via the control bit D7.

DC/DC CONVERTER PART

This unit controls the switch-mode DC/DC con-verter. It converts a DC constant voltage into the B+ voltage (roughly proportional to the horizontal frequency)necessary for the horizontal scanning. This DC/DC converter can be configured either in step-up or step-down mode. In both cases it oper-ates very similarly to the well known UC3842.

Step-up Mode

Operating Description

- The powerMOSisswitched-onduring the flyback (at the beginning of the positive slope of the horizontal focus sawtooth).
- The power MOS is switched-off when its current reachesa predeterminedvalue. Forthispurpose, a sense resistor is inserted in its source. The voltage on this resistor is sent to Pin16 (ISENSE).
- The feedback(coming either from the EHV or from the flyback) is divided to a voltage close to 4.8V and compared pared to the internal 4.8V reference(IVREF). The difference is amplified by an error amplifier, the output of which controls the power MOS switch-off current.

Main Features

- Switching synchronized on the horizontal fre-quency,
- B+ voltage always higher than the DC source, Current limited on a pulse-by-pulse basis.

Step-down Mode

In step-down mode, the Isense information is not used any more and therefore not sent to the Pin16. This mode is selected by connecting this Pin16 to a DC voltage higher than 6V (for example VREF-V).

Operating Description

- The powerMOSis switched-onas for thestep-up mode.
- The feedbackto the error amplifier is done as for the step-up mode.
- The power MOS is switched-off when the HFOCUSCAP voltage get higher than the error amplifier output voltage

Main Features

- Switching synchronized on the horizontal fre-quency,
- B+ voltage always lower than the DC source,
- No current limitation.

APPLICATION CIRCUIT

