
HT99C410/HT99C411
Cordless Phone Controller

Selection Table

Features
• Provide mask type or OTP type version
• Operating voltage: 2.4V~5.2V (mask type),

3.0V~5.2V (OTP type)
• 24 bidirectional I/O lines
• One interrupt input
• One 8-bit and one 16-bit programmable

timer/event counters with overflow inter-
rupt

• On-chip crystal and RC oscillator
• Watchdog timer
• 4K × 15 program memory ROM

• 160 × 8 data memory RAM
• Halt function and wake-up feature reduce

power consumption
• 63 powerful instructions
• Up to 1µs instruction cycle with 4MHz sys-

tem clock at VDD=5V
• All instructions in 1 or 2 machine cycles
• 15-bit table read instructions
• Four-level subroutine nesting
• Bit manipulation instructions
• Built-in 8-bit D/A converter

General Description

The HT99C410 is an 8-bit high performance
RISC-like microcontroller which combines
HT48500 8-bit microcontroller and 8-bit D/A
converter in one chip. It is specifically designed
for multiple I/O product applications. It also
provides OTP type version HT99C411 which
supports designers in making fast evaluation of
private products during the development
stages.

The device is particularly suitable for use in
products such as cordless phone controllers, µC
dialers, feature phone controllers, remote con-
trollers, fan/light controllers, washing machine
controllers, scales, toys and various subsystem
controllers. A halt feature is included to reduce
power consumption.

Applications
• Remote controllers
• Fan/light controllers
• Washing machine controllers

• Cordless phone controllers
• Scales
• Toys

Function

√

Part No.
Type

HT99C210
2K×14

ROM
(bits)

RAM
(bits)

I/O
(lines) WDT Timer/Counter DAC

(bits)

HT99C211

HT99C410

HT99C411

HT99C810

HT99C811

mask

OTP

mask

OTP

mask

OTP

4K×15

8K×16

√

√

96×8

160×8

224×8

16

24

48

1

2

2

6

8

8

1 15th Apr ’98

Block Diagram

HT99C410/HT99C411

2 15th Apr ’98

Pin Assignment

HT99C410/HT99C411

3 15th Apr ’98

Pad Assignment

HT99C410

Chip size: 2750 × 3750 (µm)2

* The IC substrate should be connected to VSS in the PCB layout artwork.

Unit: µm

Pad No. X Y Pad No. X Y
1 –1173.40 1494.90 19 1121.20 –646.90
2 –1173.40 1263.00 20 1121.20 –462.10
3 –1173.40 903.60 21 1130.40 177.40
4 –1173.40 712.60 22 1178.00 332.40
5 –1173.40 352.60 23 1204.90 493.30
6 –1173.40 135.90 24 1173.50 1104.00
7 –1173.40 –113.90 25 1134.60 1436.80
8 –1173.40 –356.90 26 814.60 1606.80
9 –1173.40 –606.70 27 627.20 1606.80

10 –1205.30 –1141.10 28 435.30 1606.80
11 –1164.30 –1302.10 29 245.80 1572.90
12 –1139.70 –1589.00 30 58.10 1572.90
13 –957.20 –1589.00 31 –133.50 1572.90
14 551.30 –1540.00 32 –321.20 1572.90
15 783.10 –1563.50 33 –510.70 1606.80
16 1118.70 –1608.40 34 –702.60 1606.80
17 1121.20 –1018.20 35 –890.00 1606.80
18 1121.20 –835.70

HT99C410/HT99C411

4 15th Apr ’98

HT99C411

Chip size: 2810 × 3480 (µm)2

* The IC substrate should be connected to VSS in the PCB layout artwork.

Unit: µm

Pad No. X Y Pad No. X Y
1 –1212.30 1124.95 19 1148.75 –696.90
2 –1163.60 933.35 20 1162.85 –30.45
3 –1163.60 752.40 21 1186.35 221.50
4 –1163.60 551.90 22 1215.00 376.50
5 –1163.60 370.95 23 1184.30 610.40
6 –1163.60 170.15 24 1216.00 1119.60
7 –1163.60 –765.40 25 899.70 1300.70
8 –1163.60 –965.90 26 709.55 1432.25
9 –1163.60 –1146.85 27 547.10 1432.25

10 –1176.50 –1464.95 28 360.00 1432.25
11 –1021.50 –1465.00 29 127.45 1469.55
12 –866.50 –1464.85 30 –53.45 1469.55
13 –696.50 –1465.00 31 –254.85 1469.55
14 747.55 –1459.80 32 –435.75 1469.55
15 968.65 –1460.00 33 –668.30 1437.25
16 1171.80 –1460.00 34 –855.40 1437.25
17 1175.00 –1023.15 35 –1017.85 1437.25
18 1175.00 –868.15

HT99C410/HT99C411

5 15th Apr ’98

Pad Description

Pad No. Pin Name I/O Mask
Option Function

1
35~33
28~25

PA0~PA7 I/O
Wake-Up
Pull-High
or None

Bidirectional 8-bit Input/Output port. Each bit
can be configured as a wake-up input by mask
option. Software instructions determine the
CMOS output or schmitt trigger input with or
without pull high resistor (mask option).

5~2
32~29

PB0~PB7 I/O —
Bidirectional 8-bit Input/Output port
Software instructions determine the NMOS open
drain output or schmitt trigger input.

10
11

VSS
AVSS

— —
Negative power supply, GND
Analog negative power supply, AGND

12 INT I —
External interrupt schmitt trigger input with pull
high resistor. Edge triggered activated during
high to low transition.

13 TMR0 I — Schmitt trigger input for timer/event counter 0

19 TMR1 I — Schmitt trigger input for timer/event counter 1

14 AOUT O —

The D/A converter output can be programmed by
D/A controlled register. The register has a total of
eight digits from MSB to LSB, and it offers 8-bit
resolution for the D/A converter and one LSB is
1/256 VDD.

20 RES I — Schmitt trigger reset input, active low

22
21

VDD
AVDD

— —
Positive power supply, VDD
Analog negative power supply, AVDD

9~6
15~18

PD7~PD4
PD0~PD3

I/O
Pull-High
or None

(mask type only)

Bidirectional 8-bit Input/Output port.
Software instructions determine the CMOS
output or schmitt trigger input with or without
pull high resistor (mask option).

23
24

OSC1
OSC2

I
O

Crystal
or RC

OSC1, OSC2 are connected to an RC network or a
crystal (determined by mask option) for the
internal system clock. In the case of RC operation,
OSC2 is the output terminal for 1/4 system clock.

HT99C410/HT99C411

6 15th Apr ’98

Absolute Maximum Ratings*

Supply Voltage–0.3V to 5.5V Storage Temperature................. –50°C to 125°C

Input Voltage..................VSS–0.3V to VDD+0.3V Operating Temperature............... –25°C to 70°C

*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent
damage to the device. These are stress ratings only. Functional operation of this device at
these or any other conditions above those indicated in the operational sections of this
specification is not implied and exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. Characteristics Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD(mask)
Operating Voltage

— — 2.4 — 5.2 V

VDD(OTP) — — 3.0 — 5.2 V

IDD1
Operating Current
(Crystal OSC)

3V No load,
fSYS=4MHz

— 0.7 1.5 mA

5V — 2 5 mA

IDD2
Operating Current
(RC OSC)

3V No load,
fSYS=2MHz

— 0.6 1 mA

5V — 1.6 5 mA

ISTB1
Standby Current
(WDT Enabled)

3V No load,
System HALT

— — 5 µA

5V — — 20 µA

ISTB2
Standby Current
(WDT Disabled)

3V No load,
System HALT

— — 1 µA

5V — — 2 µA

VIL
Input Low Voltage for I/O
Ports

3V — 0 — 0.9 V

5V — 0 — 1.5 V

VIH
Input High Voltage for I/O
Ports

3V — 2.1 — 3 V

5V — 3.5 — 5 V

VIL1
Input Low Voltage
(RES, TMR0, TMR1, INT)

3V — 0 — 0.7 V

5V — 0 — 1.3 V

VIH1
Input High Voltage
(RES, TMR0, TMR1, INT)

3V — 2.3 — 3 V

5V — 3.8 — 5 V

IOL I/O Port Sink Current
3V VOL=0.3V 1.5 2.5 — mA

5V VOL=0.5V 4 6 — mA

IOH I/O Port Source Current
3V VOH=2.7V –1 –1.5 — mA

5V VOH=4.5V –2 –3 — mA

HT99C410/HT99C411

7 15th Apr ’98

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

RPH
Pull-High Resistance of
I/O Ports and INT

3V — — 18 — kΩ

5V — — 18 — kΩ

Vdac DAC Output Level — — AVSS — AVDD V

Idac DAC Drive Current 5V VOH=0.9VDD — 50 — µA

Rdac DAC Output Resistance — VOL=0.1VDD — 10 — kΩ

A.C. Characteristics Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS1
System Clock
(Crystal OSC)

3V — 400 — 4000 kHz

5V — 400 — 4000 kHz

fSYS2
System Clock
(RC OSC)

3V — 400 — 2000 kHz

5V — 400 — 3000 kHz

fTIMER
Timer I/P Frequency
(TMR)

3V — 0 — 4000 kHz

5V — 0 — 4000 kHz

tWDTOSC Watchdog Oscillator
3V — 45 90 180 µs

5V — 35 65 130 µs

tWDT1
Watchdog Time-Out Period
(RC)

3V Without WDT
Prescaler

12 23 45 ms

5V 9 17 35 ms

tWDT2
Watchdog Time-Out Period
(System Clock)

—
Without WDT
Prescaler

— 1024 — tSYS

tRES
External Reset Low Pulse
Width

— — 1 — — µs

tXST
System Start-Up Timer
Period

—
Power-Up or
Wake-Up from
Halt

— 1024 — tSYS

tINT Interrupt Pulse Width — — 1 — — µs

Note: tSYS=1/fSYS

For other important system architecture and function description, refer to HT48500 data sheet.

HT99C410/HT99C411

8 15th Apr ’98

D/A Converter Description

The HT99C410/HT99C411 built-in 8-bit D/A converter is one of the simple designed methods of the
D/A converter. The R/2R lattice method is used in HT99C410/HT99C411 which offers 8-bit resolution.

The HT99C410/HT99C411 general I/O PROTC is replaced by D/A converter register to control the
D/A output value and shows in below:

PORTC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

(MSB) (LSB)

Determine
D/A values

1/2
AVDD

1/4
AVDD

1/8
AVDD

1/16
AVDD

1/32
AVDD

1/64
AVDD

1/128
AVDD

1/256
AVDD

* D/A converter has isolated power line layout itself, in addition, AVDD and AVSS pads are included.

D/A Converter Circuit

HT99C410/HT99C411

9 15th Apr ’98

Application Circuit

Cordless phone controller arrangement

• Base unit: HT99C410/HT99C411

PA0 PO PB0 INUSE PD0 MODE AOUT DTMF

PA1
PA2
PA3

DATI
DATO
TXEN

PB1
PB2
PB3

KT
RING
HKS

PD1
PD2
PD3

M/BR
CARRY
LED

PA4
PA5
PA6
PA7

PWDN
FTS
FCD
INT/PAGE

PB4
PB5
PB6
PB7

HDO
HLEN
BLEN
SPKEN

PD4
PD5
PD6
PD7

D0
D1
D2
D3

• Hand set: HT48500

PA0 C1 PB0 R1 PC0 XMUTE PD0 NC

PA1 C2 PB1 R2 PC1 LOBAT PD1 NC

PA2 C3 PB2 R3 PC2 BATIN PD2 RXEN

PA3 C4 PB3 R4 PC3 KT PD3 TXEN

PA4 C5 PB4 R5 PC4 CARRY PD4 D0

PA5 C6 PB5 R6 PC5 CHG PD5 D1

PA6 C7 PB6 DATI PC6 LED PD6 D2

PA7 INT/PAGE PB7 DATO PC7 FCD PD7 D3

∗

HT99C410/HT99C411

10 15th Apr ’98

HT99C410/HT99C411

11 15th Apr ’98

HT99C410/HT99C411

12 15th Apr ’98

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Fetch INST (PC)

Execute INST (PC-1) Fetch INST (PC+1)

Execute INST (PC) Fetch INST (PC+2)

Execute INST (PC+1)

PC PC+1 PC+2

System Clock

OSC2 (RC only)

PC

(NMOS open drain output)

Execution flow

System Architecture

Execution flow

The system clock for the HT99C410/HT99C411
is derived from either a crystal or an RC oscilla-
tor. The system clock is internally divided into
four non-overlapping clocks. One instruction cy-
cle consists of four system clock cycles.

Instruction fetching and execution are pipe-
lined in such a way that a fetch takes one in-
struction cycle while decoding and execution
takes the next instruction cycle. However, the
pipelining scheme causes each instruction to
effectively execute in one cycle. If an instruction
changes the program counter, two cycles are
required to complete the instruction.

Program counter – PC

The 12-bit program counter (PC) controls the
sequence in which the instructions stored in
program ROM are executed and its contents
specify a maximum of 4096 addresses.

After accessing a program memory word to
fetch an instruction code, the contents of the
program counter are incremented by one. The
program counter then points to the memory
word containing the next instruction code.

When executing a jump instruction, conditional
skip execution, loading PCL register, subrou-
tine call, initial reset, internal interrupt, exter-
nal interrupt or return from subroutine, the PC
manipulates the program transfer by loading
the address corresponding to each instruction.

The conditional skip is activated by instruction.
Once the condition is met, the next instruction,
fetched during the current instruction execu-
tion, is discarded and a dummy cycle replaces it
to get the proper instruction. Otherwise pro-
ceed with the next instruction.

The lower byte of the program counter (PCL) is
a readable and writeable register (06H). Mov-
ing data into the PCL performs a short jump.
The destination will be within 256 locations.

When a control transfer takes place, an additional
dummy cycle is required.

Program memory – ROM

The program memory is used to store the pro-
gram instructions which are to be executed. It
also contains data, table, and interrupt entries,
and is organized into 4096 × 15 bits, addressed
by the program counter and table pointer.

Certain locations in the program memory are
reserved for special usage:
• Location 000H

This area is reserved for the initialization
program. After chip reset, the program al-
ways begins execution at location 000H.

• Location 004H
This area is reserved for the external inter-
rupt service program. If the INT input pin is
activated, and the interrupt is enabled and
the stack is not full, the program begins exe-
cution at location 004H.

HT99C410/HT99C411

13 15th Apr ’98

• Location 008H
This area is reserved for the timer/event
counter 0 interrupt service program. If timer
interrupt results from a timer/event counter 0
overflow, and if the interrupt is enabled and
the stack is not full, the program begins exe-
cution at location 008H.

• Location 00CH
This area is reserved for the timer/event
counter 1 interrupt service program. If timer
interrupt results from a timer/event counter 1
overflow, and if the interrupt is enabled and
the stack is not full, the program begins exe-
cution at location 00CH.

• Table location
Any location in the ROM space can be used as
look-up tables. The instructions TABRDC [m]
(the current page, 1 page=256 words) and
TABRDL [m] (the last page) transfer the con-
tents of the lower-order byte to the specified
data memory, and the higher-order byte to
TBLH (08H). Only the destination of the
lower-order byte in the table is well-defined,
the other bits of the table word are trans-
ferred to the lower portion of TBLH, the re-
maining one bit is read as 0. The Table
Higher-order byte register (TBLH) is read
only. The TBLH is read only and cannot be

restored. If the main routine and the ISR
(Interrupt Service Routine) both employ the
table read instruction, the contents of the
TBLH in the main routine are likely to be
changed by the table read instruction used in
the ISR. Errors can occur. In other words,
simultaneously using the table read instruc-
tion in the main routine and the ISR should
be avoided. However, if the table read instruc-
tion has to be applied in both the main routine

Mode
Program Counter

∗11 ∗10 ∗9 ∗8 ∗7 ∗6 ∗5 ∗4 ∗3 ∗2 ∗1 ∗0

Initial reset 0 0 0 0 0 0 0 0 0 0 0 0

External interrupt 0 0 0 0 0 0 0 0 0 1 0 0

Timer/event counter 0 overflow 0 0 0 0 0 0 0 0 1 0 0 0

Timer/event counter 1 overflow 0 0 0 0 0 0 0 0 1 1 0 0

Skip PC+2

Loading PCL ∗11 ∗10 ∗9 ∗8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, call branch #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from subroutine S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program counter

Notes: ∗11~∗0: Program counter bits S11~S0: Stack register bits

 #11~#0: Instruction code bits @7~@0: PCL bits

Program memory

HT99C410/HT99C411

14 15th Apr ’98

Instruction(s)
Table Location

∗11 ∗10 ∗9 ∗8 ∗7 ∗6 ∗5 ∗4 ∗3 ∗2 ∗1 ∗0

TABRDC [m] P11 P10 P9 P8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table location

Notes: ∗11~∗0: Table location bits P11~P8: Current program counter bits

 @7~@0: Table pointer bits

and the ISR, the interrupt(s) is supposed to be
disabled prior to the table read instruction,
and will not be enabled until the TBLH has
been backed-up. The table pointer (TBLP) is a
read/write register (07H), which indicates the
table location. Before accessing the table, the
location must be placed in TBLP. All table re-
lated instructions need two cycles to complete
the operation. These areas may function as nor-
mal program memory depending upon the re-
quirements.

Stack register – STACK

This is a special part of the memory which is
used to save the contents of the program
counter (PC) only. The stack is organized into 4
levels and is neither part of the data nor part of
the program space, and is neither readable nor
writeable. The activated level of the stack reg-
ister is indexed by the stack pointer (SP) and is
neither readable nor writeable. At a subroutine
call or interrupt acknowledgment, the contents
of the program counter are pushed onto the
stack. At the end of a subroutine or an interrupt
routine, as signaled by a return instruction
(RET or RETI), the program counter is restored
to its previous value from the stack. After a chip
reset, the SP will point to the top of the stack.

If the stack is full and a non-masked interrupt
takes place, the interrupt request flag will be
recorded but acknowledging will be inhibited.
When the stack pointer is decremented (by RET
or RETI), the interrupt will be serviced. This fea-
ture prevents stack overflow allowing the pro-
grammer to use the structure more easily. In a
similar case, if the stack is full and a “CALL” is
subsequently executed, stack overflow occurs and
the first entry will be lost (only the most recent

four return addresses are stored).

Data memory – RAM

The data memory is designed with 184 × 8 bits.
The data memory is divided into two functional
groups: special function registers and general
purpose data memory (160×8). Most of them are
read/write, but some are read only.

The special function registers include the indirect
addressing register 0 (00H), the memory pointer
register 0 (MP0;01H), the indirect addressing reg-
ister 1 (02H), the memory pointer register 1
(MP1;03H), the accumulator (ACC;05H), the pro-
gram counter lower-byte register (PCL;06H), the
table pointer (TBLP;07H), the table higher-order
byte register (TBLH;08H), the watchdog timer
option setting register (WDTS;09H), the status
register (STATUS;0AH), the interrupt control
register (INTC;0BH), the timer/event counter 0
higher-order byte register (TMR0H;0CH), the
timer/event counter 0 lower-order byte register
(TMR0L;0DH), the timer/event counter 0 control
register (TMR0C;0EH), the timer/event counter 1
(TMR1;10H), the timer/event counter 1 control
register (TMR1C;11H), the I/O registers (PA;12H,
PB;14H, PD;18H) and the I/O control registers
(PAC;13H, PBC;15H, PDC;19H). The remaining
space before the 60H is reserved for future expan-
sion usage and reading these locations will get a
"00H" value. The general purpose data memory,
addressed from 60H to FFH, is used for data
and control information under instruction com-
mand.

All data memory areas can handle arithmetic,
logic, increment, decrement and rotate opera-
tions directly. Except for some dedicated bits,
each bit in the data memory can be set and reset
by the SET [m].i and CLR [m].i instructions,

HT99C410/HT99C411

15 15th Apr ’98

respectively. They are also indirectly accessible
through Memory pointer registers (MP0;01H,
MP1;03H).

Indirect addressing register

Location 00H and 02H are indirect addressing
registers that are not physically implemented.
Any read/write operation of [00H] and [02H]
access data memory pointed to by MP0 (01H)
and MP1 (03H) respectively. Reading location
00H or 02H indirectly will return the result
00H. Writing indirectly results in no operation.

The function of data movement between two

indirect addressing registers, is not supported.
The memory pointer registers, MP0 and MP1,
are 8-bit registers which can be used to access
the data memory by combining corresponding
indirect addressing registers.

Accumulator

The accumulator closely relates to the ALU op-
erations. It is also mapped to location 05H of the
data memory and is capable of carrying out
immediate data operations. The data move-
ment between these two data memories has to
pass through the accumulator.

Arithmetic and logic unit – ALU

This circuit performs 8-bit arithmetic and logic op-
erations. The ALU provides the following functions:
• Arithmetic operations (ADD, ADC, SUB,

SBC, DAA)
• Logic operations (AND, OR, XOR, CPL)
• Rotation (RL, RR, RLC, RRC)
• Increment and Decrement (INC, DEC)
• Branch decision (SZ, SNZ, SIZ, SDZ)

The ALU not only saves the results of a data
operation but also changes the contents of the
status register.

Status register – STATUS

This 8-bit status register (0AH) contains the
zero flag (Z), carry flag (C), auxiliary carry flag
(AC), overflow flag (OV), power down flag (PD)
and watchdog time-out flag (TO). The status
register not only records the status information
but also controls the operation sequence.

With the exception of the TO and PD flags, bits
in the status register can be altered by instruc-
tions like most other registers. Any data written
into the status register will not change the TO
or PD flags. It should be noted that operations
related to the status register may give different
results from those intended. The TO and PD
flags can only be changed by system power up,
watchdog timer overflow, executing the HALT
instruction and clearing the Watch dog Timer.

The Z, OV, AC and C flags generally reflect the
status of the latest operations.

RAM mapping

HT99C410/HT99C411

16 15th Apr ’98

Labels Bits Function

C 0
C is set if the operation results in a carry during an addition operation or if a
borrow does not take place during a subtraction operation; otherwise C is
cleared. C is also affected by a rotate through carry instruction.

AC 1
AC is set if the operation results in a carry out of the low nibbles in addition or
a borrow does not take place from the high nibble into the low nibble in a
subtraction; otherwise AC is cleared.

Z 2
Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is
cleared.

OV 3
OV is set if the operation results in a carry into the highest-order bit but not a
carry out of the highest-order bit, or vice versa; otherwise OV is cleared.

PD 4
PD is cleared when either a system power-up or executing the CLR WDT
instruction. PD is set by executing the HALT instruction.

TO 5
TO is cleared by a system power-up or executing the CLR WDT or HALT
instruction. TO is set by a WDT time-out.

− 6 Undefined, read as "0"

STATUS register

On entering the interrupt sequence or execut-
ing a subroutine call, the status register will not
be automatically pushed onto the stack. If the
contents of the status are important and the
subroutine can corrupt the status register, pre-
cautions must be taken to save it properly.

Interrupt

The HT99C410/HT99C411 provides an exter-
nal interrupt and internal timer/event counter
interrupts. The Interrupt Control register
(INTC;0BH) contains the interrupt control bits
to set the enable/disable and the interrupt re-
quest flags.

Once an interrupt subroutine is serviced, all
other interrupts will be blocked (by clearing the
EMI bit). This scheme may prevent any further
interrupt nesting. Other interrupt requests may
occur during this interval but only the interrupt
request flag is recorded. If a certain interrupt
needs servicing within the service routine, the
EMI bit and the corresponding bit of the INTC
may be set to permit interrupt nesting. If the
stack is full, the interrupt request will not be
acknowledged, even if the related interrupt is
enabled, until the SP is decremented. If immedi-

ate service is desired, the stack must be pre-
vented from becoming full.

All these kinds of interrupt have a wake-up
capability. As an interrupt is serviced, a control
transfer occurs by pushing the program counter
onto the stack, followed by a branch to a subrou-
tine at the specified location in the program
memory. Only the contents of the program
counter is pushed onto the stack. If the contents
of the register and Status register (STATUS)
are altered by the interrupt service program
which corrupt the desired control sequence, the
contents should be saved in advance.

External interrupt is triggered by a high to low
transition of INT and the related interrupt re-
quest flag (EIF; bit 4 of INTC) will be set. When
the interrupt is enabled, and the stack is not
full and the external interrupt is active, a sub-
routine call to location 04H will occur. The in-
terrupt request flag (EIF) and EMI bits will be
cleared to disable other interrupts.

The internal timer/event counter 0 interrupt is
initialized by setting the timer/event counter 0
interrupt request flag (T0F; bit 5 of INTC), which
is normally caused by a timer/event counter 0

HT99C410/HT99C411

17 15th Apr ’98

Register Bit No. Label Function

INTC
(0BH)

0 EMI
Controls the master (global) interrupt
(1=enabled; 0=disabled)

1 EEI
Controls the external interrupt
(1=enabled; 0=disabled)

2 ET0I
Controls the timer/event counter 0 interrupt
(1=enabled; 0=disabled)

3 ET1I
Controls the timer/event counter 1 interrupt
(1=enabled; 0=disabled)

4 EIF
External interrupt request flag
(1=active; 0=inactive)

5 T0F
Internal timer/event counter 0 request flag
(1=active; 0=inactive)

6 T1F
Internal timer/event counter 1 request flag
(1=active; 0=inactive)

7 − Unused bit, is read as 0

INTC register

overflow. When the interrupt is enabled, and
the stack is not full and the T0F bit is set, a
subroutine call to location 08H will occur. The
related interrupt request flag (T0F) will be re-
set and the EMI bit cleared to disable further
interrupts.

The timer/event counter 1 interrupt is operated
in the same manner as the timer/event counter
0. The related interrupt control bits ET1I and
T1F of timer/event counter 1 are bit 3 and bit 6
of the INTC respectively.

During the execution of an interrupt subroutine,
other interrupt acknowledgments are held until
the RETI instruction is executed or the EMI bit
and the related interrupt control bit are set to 1
(if the stack is not full). To return from the
interrupt subroutine, the RET or RETI instruc-
tion may be invoked. RETI will set the EMI bit
to enable an interrupt service, but RET will not.

Interrupts occurring in the interval between
the rising edges of two consecutive T2 pulses,
will be serviced on the latter of the two T2
pulses, if the corresponding interrupts are en-
abled. In case of simultaneous requests the fol-
lowing table shows the priority that is applied.
These can be masked by resetting the EMI bit.

No. Interrupt Source Priority Vector

a External interrupt 1 04H

b
Timer/Event
Counter 0 overflow

2 08H

c
Timer/Event
Counter 1 overflow

3 0CH

The timer/event counter 0/1 interrupt request
flag (T0F/T1F), External interrupt request flag
(EIF), Enable timer/event counter 0/1 bit
(ET0I/ET1I), Enable external interrupt bit
(EEI) and Enable master interrupt bit (EMI)
constitute an interrupt control register (INTC)
which is located at 0BH in the data memory.
EMI, EEI, ET0I, ET1I are used to control the
enabling/disabling of interrupts. These bits pre-
vent the requested interrupt from being serv-
iced. Once the interrupt request flags (T0F, T1F,
EIF) are set, they will remain in the INTC
register until the interrupts are serviced or
cleared by a software instruction.

HT99C410/HT99C411

18 15th Apr ’98

It is suggested that a program does not use the
“CALL subroutine” within the interrupt sub-
routine. Because interrupts often occur in an
unpredictable manner or need to be serviced im-
mediately in some applications, if only one stack
is left and enabling the interrupt is not well con-
trolled, once the “CALL subroutine” operates in the
interrupt subroutine, it will damage the original
control sequence.

Oscillator configuration

There are two oscillator circuits in the
HT99C410/HT99C411. Both are designed for
system clocks: the RC oscillator and the crystal
oscillator, which are determined by mask op-
tions. No matter what oscillator type is se-
lected, the signal provides the system clock. The
HALT mode stops the system oscillator and
ignores the external signal to conserve power.

If an RC oscillator is used, an external resistor
between OSC1 and VDD is needed and the
resistance must range from 51kΩ to 1MΩ. The
system clock, divided by four, is available on
OSC2, which can be used to synchronize exter-
nal logic. The RC oscillator provides the most
cost effective solution. However, the frequency
of the oscillation may vary with VDD, tempera-
ture and the chip itself due to process vari-
ations. It is, therefore, not suitable for timing
sensitive operations where accurate oscillator
frequency is desired.

If a crystal oscillator is used, a crystal across
OSC1 and OSC2 is needed to provide the feed-
back and phase shift needed for oscillator. No
other external components are needed. Instead
of a crystal, a resonator can also be connected

between OSC1 and OSC2 to get a frequency
reference, but two external capacitors in OSC1
and OSC2 are required.

The WDT oscillator is a free running on-chip RC
oscillator, and no external components are re-
quired. Even if the system enters the power
down mode, the system clock is stopped, but the
WDT oscillator still works with a period of ap-
proximately 78 µs. The WDT oscillator can be
disabled by mask option to conserve power.

Watchdog timer – WDT

The WDT clock source is implemented by a
dedicated RC oscillator (WDT oscillator) or in-
struction clock (system clock divided by 4), de-
cided by mask option. This timer is designed to
prevent a software malfunction or the program
sequence from jumping to an unknown location
with unpredictable results. The watchdog timer
can be disabled by mask option. If the watchdog
timer is disabled, all the executions related to
the WDT result in no operation.

Once the internal WDT oscillator (RC oscillator
with period 78µs normally) is selected, it is first
divided by 256 (8-stages) to get the nominal
time-out period of approximately 20 ms. This
time-out period may vary with temperature,
VDD and process variations. By invoking the
WDT prescaler, longer time-out periods can be
realized. Writing data to WS2, WS1, WS0 (bit
2,1,0 of the WDTS) can give different time-out
periods. If WS2, WS1, WS0 are all equal to 1,
the division ratio is up to 1:128, and the maxi-
mum time-out period is 2.6 seconds.

If the WDT oscillator is disabled, the WDT clock
may still come from the instruction clock and
operate in the same manner except that in the
HALT state the WDT may stop counting and
lose its protection purpose. In this situation the
WDT logic can only be restarted by external
logic. The high nibble and bit 3 of the WDTS are
reserved for user defined flags, which can be
used to indicate some specified status.

If the device operates in a noisy environment,
using the on-chip RC oscillator (WDT OSC) is
strongly recommended, since the HALT will
stop the system clock.System oscillator

HT99C410/HT99C411

19 15th Apr ’98

Watchdog timer

WS2 WS1 WS0 Division Ratio

0 0 0 1:1

0 0 1 1:2

0 1 0 1:4

0 1 1 1:8

1 0 0 1:16

1 0 1 1:32

1 1 0 1:64

1 1 1 1:128

WDTS register

The overflow of the WDT under normal opera-
tion will initialize “chip reset” and set the status
bit "TO". An overflow in the HALT mode initial-
izes a “warm reset” only when the PC and SP
are reset to zero. To clear the contents of the
WDT (including the WDT prescaler), there are
three methods to be adopted; external reset (a
low level to RES), software instruction, and a
HALT instruction. There are two types of soft-
ware instruction, CLR WDT and CLR WDT1/
CLR WDT2. But only one of these two types of
instruction can be active depending on the
mask option − “CLR WDT times selection op-
tion”. If the “CLR WDT” is selected (i.e. CLR
WDT times equal one), any execution of the
CLR WDT instruction will clear the WDT. In
case “CLR WDT1” and “CLR WDT2” are chosen

(i.e. CLRWDT times equal two), these two in-
structions must be executed to clear the WDT;
otherwise, the WDT may reset the chip due to a
time-out.

Power down operation – HALT

The HALT mode is initialized by the HALT
instruction and results in the following...
• The system oscillator will turn off but the

WDT oscillator keeps running (if the WDT
oscillator is selected).

• The contents of the on–chip RAM and regis-
ters remain unchanged.

• WDT and WDT prescaler will be cleared and
counted again (if the WDT clock is from the
WDT oscillator).

• All I/O ports remain in their original status.
• The PD flag is set and the TO flag is cleared.

The system can quit the HALT mode by means
of an external reset, an interrupt, an external
falling edge signal on port A or a WDT overflow.
An external reset causes a device initialization
and the WDT overflow performs a “warm reset”.
Examining the TO and PD flags, the reason for
the chip reset can be determined. The PD flag is
cleared when system power-up or executing the
CLR WDT instruction and is set when the HALT
instruction is executed. The TO flag is set if the
WDT time-out occurs, which causes a wake-up
that only resets the PC and SP, and leaves the
others in their original status.

HT99C410/HT99C411

20 15th Apr ’98

The port A wake-up and interrupt methods can
be considered as a continuation of normal exe-
cution. Each bit in port A can be independently
selected to wake up the device by mask option.
Awakening from an I/O port stimulus, the pro-
gram will resume execution of the next instruc-
tion. However, if the program awakens from an
interrupt, two sequences may occur. The pro-
gram will resume execution at the next instruc-
tion if the related interrupt(s) is (are) disabled
or the interrupt(s) is enabled but the stack is
full. A regular interrupt response takes place if
the interrupt is enabled and the stack is not
full.

Once the wake-up event(s) occurs, and the sys-
tem clock comes from a crystal, it takes 1024
tSYS (system clock period) to resume normal
operation. In other words, a dummy period will
be inserted after the wake-up. If the system
clock comes from an RC oscillator, it continues
operating immediately. If the wake-up results
from an interrupt acknowledgment, the actual
interrupt subroutine execution will delay by
one more cycle. If the wake-up results in the
next instruction execution, this will be executed
immediately after the dummy period is com-
pleted.

To minimize power consumption, all I/O pins
should be carefully managed before entering
the HALT status.

Reset

There are three ways in which a reset can occur:
• RES reset during normal operation
• RES reset during HALT
• WDT time-out reset during normal operation

The WDT time-out during HALT is different
from other chip reset conditions, since it can

perform a warm reset that just resets the PC
and SP, leaving the other circuits in their origi-
nal state. Some registers remain unchanged
during other reset conditions. Most registers
are reset to the “initial condition” when the
reset conditions are met. By examining the PD
and TO flags, the program can distinguish be-
tween different “chip resets”.

TO PD RESET Conditions

0 0 RES reset during power-up

u u
RES reset during normal
operation

0 1 RES wake-up HALT

1 u
WDT time-out during normal
operation

1 1 WDT wake-up HALT

Note: “u” means “unchanged”

To guarantee that the system oscillator has
started and stabilized, the SST (System Start-
up Timer) provides an extra-delay, to delay
1024 system clock pulses when the system pow-
ers up or awakes from the HALT state.

tSST
RES

VDD

SST Time-out

Chip Reset

Reset timing chart

Reset circuit

Reset configuration

HT99C410/HT99C411

21 15th Apr ’98

Label Bits Function

− 0-2 Unused bits, read as “0”

TE 3
To define the TMR0/TMR1 active edge of the timer/event counter
(0=active on low to high; 1=active on high to low)

TON 4
To enable/disable timer counting
(0=disabled; 1=enabled)

− 5 Unused bits, read as “0”

TM0
TM1

6
7

To define the operating mode
01=Event count mode (external clock)
10=Timer mode (internal clock)
11=Pulse width measurement mode
00=Unused

TMR0C/TMR1C register

When the system power up occurs, the SST
delay is added during the reset period. But
when the reset comes from the RES pin, the
SST delay is disabled. Any wake-up from HALT
will enable the SST delay.

The functional unit chip reset status is shown
below.

PC 000H

Interrupt Disabled

Prescaler Cleared

WDT
Cleared. After master
reset, WDT starts
counting

Timer/event
Counter (0/1)

Off

Input/output Ports Input mode

SP
Points to the top of
the stack

Timer/Event Counter

Two timer/event counters are implemented in
the HT99C410/HT99C411. The timer/event
counter 0 and timer/event counter 1 contain 16-
bit and 8-bit programmable count-up counters
respectively and the clock may come from an
external source or the system clock divided by 4.

Using the internal instruction clock, there is
only one reference time-base. The external
clock input allows the user to count external
events, measure time intervals or pulse width,
or generate an accurate time base.

There are three registers related to the
timer/event counter 0; TMR0H (0CH), TMR0L
(0DH), TMR0C (0EH). Writing TMR0L only
writes the data into a low byte buffer, and writing
TMR0H will write the data and the contents of the
low byte buffer into the timer/event counter 0
preload register (16-bit) simultaneously. The
timer/event counter 0 Preload register is changed
by writing TMR0H operations and writing
TMR0L will keep the timer/event counter 0 Pre-
load register unchanged.

Reading TMR0H will also latch the TMR0L into
the low byte buffer to avoid the false timing
problem. Reading TMR0L returns the contents
of the low byte buffer. In other words, the low
byte of timer/event counter 0 can not be read
directly. It must read the TMR0H first to make
the low byte content of timer/event counter 0
latched into the buffer.

There are two sets of registers related to the
timer/event counter 1; TMR1 (10H), TMR1C
(11H). Writing TMR1 puts the starting value in
the timer/event counter 1 Preload register and
reading TMR1 gets the contents of the
timer/event counter 1.

HT99C410/HT99C411

22 15th Apr ’98

The states of the registers are summarized in the following table:

Register Reset
(power on)

WDT time-
out (normal
operation)

RES reset
(normal

operation)

RES reset
(HALT)

WDT time-
out (HALT)

TMR1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u---

TMR0H xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0L xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u---

PC 000H 000H 000H 000H 000H∗

MP0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

MP1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLH -xxx xxxx -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu

STATUS --00 xxxx --1u uuuu --uu uuuu --01 uuuu --11 uuuu

INTC -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu

WDTS 0000 0111 0000 0111 0000 0111 0000 0111 uuuu uuuu

PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PB 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PBC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

D/A Output Register 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

D/A Control Register 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PD 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PDC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

Note: “∗” means “warm reset”
 “u” means “unchanged”
 “x” means “unknown”

HT99C410/HT99C411

23 15th Apr ’98

Timer/Event Counter 1

Timer/Event Counter 0

The TMR0C is the timer/event counter 0 control
register, which defines the timer/event counter 0
options. The timer/event counter 1 has the same
options as the timer/event counter 0 and is de-
fined by TMR1C.

The timer/event counter control registers define
the operating mode, counting enable or disable
and active edge.

The TM0, TM1 bits define the operating mode.
The event count mode is used to count external
events, which means the clock source comes
from an external (TMR0/TMR1) pin. The Timer
mode functions as a normal timer with the clock
source coming from the instruction clock. The
pulse width measurement mode can be used to
count the high or low level duration of the exter-
nal signal (TMR0/TMR1). The counting is based
on the instruction clock.

In the event count or timer mode, once the
timer/event counter starts counting, it will
count from the current contents in the

timer/event counter to FFFFH (TMR0)/FFH
(TMR1). Once an overflow occurs, the counter is
reloaded from the Timer/event Counter Preload
register and generates the corresponding inter-
rupt request flag (T0F/T1F; bit 5/6 of INTC) at
the same time.

In the pulse width measurement mode with the
TON and TE bits equal to one, when the
TMR0/TMR1 receives a transient from low to
high (or high to low; if the TE bit is 0) it will start
counting until the TMR0/TMR1 returns to the
original level and resets the TON as well. The
measured result will remain in the timer/event
counter even if the activated transient occurs
again. In other words, only one cycle measure-
ments can be made until the TON is set. The
cycle measurement will function again as long
as it receives further transient pulse. Note that,
in this operation mode, the timer/event counter
starts counting not according to the logic level but
according to the transient edges. In the case of
counter overflows, the counter is reloaded from

HT99C410/HT99C411

24 15th Apr ’98

Input/output ports

the timer/event counter preload register and
issues an interrupt request similar to the other
two modes.

To enable the counting operation, the Timer ON
bit (TON; bit 4 of TMR0C/TMR1C) should be set
to 1. In the pulse width measurement mode, the
TON will be cleared automatically after the
measurement cycle is completed. But in the
other two modes the TON can only be reset by
instruction. The overflow of the timer/event
counter is one of the wake-up sources. No mat-
ter what the operation mode is, writing a 0 to
ET0I/ET1I can disable the corresponding inter-
rupt service.

In the case of timer/event counter OFF condi-
tion, writing data to the timer/event counter
Preload register will also reload that data to
timer/event counter. But if the Timer/event
counter is turned on, data written to the
timer/event counter will only be kept in the
Timer/event counter Preload register. The
Timer/event counter will still operate until
an overflow occurs.

When the timer/event counter (reading
TMR0H/TMR1) is read, the clock will be
blocked to avoid errors. As this may result in a
counting error, this must be taken into consid-
eration by the programmer.

Input/output ports

There are 24 bidirectional input/output lines in
the HT99C410/HT99C411, labeled PA, PB and
PD, which are mapped to the data memory of
[12H], [14H], and [18H] respectively. All these
I/O ports can be used for input and output opera-
tions. For input operation, these ports are non-
latching, that is, the inputs must be ready at the
T2 rising edge of instruction MOV A,[m]
(m=12H, 14H, or 18H). For output operation, all
data is latched and remains unchanged until the
output latch is rewritten.

Each I/O line has its own control register (PAC,
PBC, PDC) to control the input/output configura-
tion. With this control register, CMOS output or
schmitt trigger input with or without pull-high
resistor (mask option) structures can be reconfig-
ured dynamically (i.e., on-the-fly) under software
control. To function as an input, the corresponding
latch of the control register must write a “1”. The
pull-high resistance will exhibit automatically if
the pull-high option is selected. The input
source(s) also depend(s) on the control register. If
the control register bit is “1”, the input will read
the pad state. If the control register bit is “0”, the
contents of the latches will move to the internal
bus. The latter is possible in “read-modify-write”
instruction. For output function, CMOS is the
only configuration. These control registers are
mapped to locations 13H, 15H, and 19H.

HT99C410/HT99C411

25 15th Apr ’98

No. Mask Option

1
OSC type selection. This option is to decide whether an RC or Crystal oscillator is
chosen as system clock.

2
WDT source selection. There are three types of selection: on-chip RC oscillator,
instruction clock or disable the WDT.

3

CLRWDT times selection. This option defines how to clear the WDT by instruction.
“One time” means that the CLR WDT instruction can clear the WDT. “Two times”
means that only if both of the CLR WDT1 and CLR WDT2 instructions have been
executed, then the WDT can be cleared.

4
Wake-up selection. This option defines the activity of the wake-up function. External
I/O pins (PA only) all have the capability to wake-up the chip from a HALT.

5
Pull-high selection. This option is to determine whether the pull-high resistance is
visible or not in the input mode of the I/O ports. Each bit of an I/O port can be
independently selected. (See Note)

Note:

 There are no pull-high selections in port B of HT99C210/HT99C211.

 There are pull-high selections in port A and port D of HT99C410 but they are always
 pulled-high in port A and port D of HT99C411.

 There are no mask option in port C of HT99C410/HT99C411

After a chip reset, these input/output lines stay
at high levels or floating (mask option). Each bit
of these input/output latches can be set or
cleared by the SET [m].i or CLR [m].i (m=12H,
14H or 18H) instruction.

Some instructions first input data and then
follow the output operations. For example, the
SET [m].i, CLR [m].i, CPL [m] and CPLA [m]
instructions read the entire port states into the
CPU, execute the defined operations (bit-opera-
tion), and then write the results back to the
latches or the accumulator.

Each line of port A has the capability to wake-up
the device.

The 8-bit D/A output register is mapped to the
data memory of [16H] and its corresponding
control register is mapped to location [17H]
which must be set to “0” after initialization,
when using the D/A function.

Mask option

The following table shows five kinds of mask op-
tions in the HT99C410/HT99C411. All the mask
options must be defined to ensure proper system
functioning.

HT99C410/HT99C411

26 15th Apr ’98

HT99C411 PROM programming and verification

The program memory used in the HT99C411 is
arranged into a 4K×15 bits program PROM and
a 1×14 bits option PROM. The program code
and option code are stored in the program
PROM and option PROM. The programming of
PROM can be summarized in nine steps as
described below:
• Power on
• Set VPP (RES) to 12.5V
• Set CS (PA5) to low

Let PA3~PA0 (AD3~AD0) be the address and
data bus and the PA4 (CLK) be the clock input.
The data on the AD3~AD0 pins will be clocked
into or out of the HT99C411 on the falling edge
of PA4 (CLK) for PROM programming and veri-
fication.

The address data contains the code address (11
bits) and two option bits. A complete write cycle
will contain 4 CLK cycles. The first cycle, bits
0~3 of the address are latched into the
HT99C411. The second and third cycles, bits
4~7 and bits 8~10 are latched respectively. The
fourth cycle, bit 2 is the TSEL option bit and bit
3 is the OSEL option bit. Bit 3 in the third cycle
and bits 0~1 in the fourth cycle are undefined.
If the TSEL is “1” and the OSEL is “0”, the
TEST memory will be read. If the TSEL is “0”
and the OSEL is “1”, the option PROM will be
accessed. If both the TSEL and OSEL are “0”,
the program PROM will be managed.

The code data is 14 bits wide. A complete
read/write cycle contains 4 CLK cycles. In the
first cycle, bits 0~3 of the code data are ac-
cessed. In the second and third, bits 4~7 and
bits 8~11 are accessed respectively. In the
fourth cycle, bits 12~13 are accessed. Bits
14~15 are undefined. During code verification,
reading will return the result “00”.

Select the TSEL and OSEL to program and
verify the program PROM and the option
PROM. Use the R/W(PA6) to select either pro-
gramming or verification

The address is incremented by one automat-
ically after a code verification cycle. If the dis-
continued address programming or verification
is carried out, the automatic addressing incre-
ment is disabled. For the discontinued address
programming and verification, the CS pin must
return to a high level for a programming or
verification cycle, i.e. if a discontinued address
is implemented, the programming or verifica-
tion cycle must be interrupted and restarted as
well.

The related pins of PROM programming and
verification are listed in the following table.

Pin
Name Function Description

PA0 AD0 Bit 0 of address/data bus

PA1 AD1 Bit 1 of address/data bus

PA2 AD2 Bit 2 of address/data bus

PA3 AD3 Bit 3 of address/data bus

PA4 CLK
Serial clock input for
address and data

PA5 CS Chip select, active low

PA6 R/W Read/write control input

RES VPP
Programming power
supply

The timing charts of programming and verifica-
tion are as shown. There is a LOCK signal for
code protection. If the LOCK is “1”, reading the
code will return the result “1”. However, if the
LOCK is “0”, the code protection is disabled and
the code always can be read until the LOCK is
programmed as “1”.

HT99C410/HT99C411

27 15th Apr ’98

Instruction Set Summary

Mnemonic Description Flag Affected

Arithmetic

ADD A,[m]
ADDM A,[m]
ADD A,x
ADC A,[m]
ADCM A,[m]
SUB A,x
SUB A,[m]
SUBM A,[m]
SBC A,[m]
SBCM A,[m]

DAA [m]

Add data memory to ACC
Add ACC to data memory
Add immediate data to ACC
Add data memory to ACC with carry
Add ACC to register with carry
Subtract immediate data from ACC
Subtract data memory from ACC
Subtract data memory from ACC with result in data memory
Subtract data memory from ACC with carry
Subtract data memory from ACC with carry, result in data
memory
Decimal adjust ACC for addition with result in data memory

Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV

C

Logic Operation

AND A,[m]
OR A,[m]
XOR A,[m]
ANDM A,[m]
ORM A,[m]
XORM A,[m]
AND A,x
OR A,x
XOR A,x
CPL [m]
CPLA [m]

AND data memory to ACC
OR data memory to ACC
Exclusive-OR data memory to ACC
AND ACC to data memory
OR ACC to data memory
Exclusive-OR ACC to data memory
AND immediate data to ACC
OR immediate data to ACC
Exclusive-OR immediate data to ACC
Complement data memory
Complement data memory with result in ACC

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

Increment and
Decrement

INCA [m]
INC [m]
DECA [m]
DEC [m]

Increment data memory with result in ACC
Increment data memory
Decrement data memory with result in ACC
Decrement data memory

Z
Z
Z
Z

Rotate

RRA [m]
RR [m]
RRCA [m]
RRC [m]
RLA [m]
RL [m]
RLCA [m]
RLC [m]

Rotate data memory right with result in ACC
Rotate data memory right
Rotate data memory right through carry with result in ACC
Rotate data memory right through carry
Rotate data memory left with result in ACC
Rotate data memory left
Rotate data memory left through carry with result in ACC
Rotate data memory left through carry

None
None

C
C

None
None

C
C

HT99C410/HT99C411

28 15th Apr ’98

Mnemonic Description Flag Affected

Data Move

MOV A,[m]
MOV [m],A
MOV A,x

Move data memory to ACC
Move ACC to data memory
Move immediate data to ACC

None
None
None

Bit Operation

CLR [m].i
SET [m].i

Clear bit of data memory
Set bit of data memory

None
None

Branch

JMP addr
SZ [m]
SZA [m]
SZ [m].i
SNZ [m].i
SIZ [m]
SDZ [m]
SIZA [m]
SDZA [m]
CALL addr
RET
RET A,x
RETI

Jump unconditional
Skip if data memory is zero
Skip if data memory is zero with data movement to ACC
Skip if bit i of data memory is zero
Skip if bit i of data memory is not zero
Skip if increment data memory is zero
Skip if decrement data memory is zero
Skip if increment data memory is zero with result in ACC
Skip if decrement data memory is zero with result in ACC
Subroutine call
Return from subroutine
Return from subroutine and load immediate data to ACC
Return from interrupt

None
None
None
None
None
None
None
None
None
None
None
None
None

Table Read

TABRDC [m]
TABRDL [m]

Read ROM code (current page) to data memory and TBLH
Read ROM code (last page) to data memory and TBLH

None
None

Miscellaneous

NOP
CLR [m]
SET [m]
CLR WDT
CLR WDT1
CLR WDT2
SWAP [m]
SWAPA [m]
HALT

No operation
Clear data memory
Set data memory
Clear the watchdog timer
Pre-clear the watchdog timer
Pre-clear the watchdog timer
Swap nibbles of data memory
Swap nibbles of data memory with result in ACC
Enter power down mode

None
None
None

TO,PD
TO*,PD*
TO*,PD*

None
None

TO,PD

Notes:

x = 8 bits immediate data
m = 8 bits data memory address
A = accumulator
i = 0...7 number of bits
addr = 12 bits program memory address
√ = Flag(s) is affected
– = Flag(s) is not affected
* = Flag(s) may be affected by the execution status

HT99C410/HT99C411

29 15th Apr ’98

Instruction Definition

ADC A,[m] Add data memory and carry to accumulator

Description The contents of the specified data memory, accumulator and the carry flag
are added simultaneously, leaving the result in the accumulator.

Operation ACC ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

ADCM A,[m] Add accumulator and carry to data memory

Description The contents of the specified data memory, accumulator and the carry flag
are added simultaneously, leaving the result in the specified data memory.

Operation [m] ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

ADD A,[m] Add data memory to accumulator

Description The contents of the specified data memory and the accumulator are added.
The result is stored in the accumulator.

Operation ACC ← ACC+[m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

ADD A,x Add immediate data to accumulator

Description The contents of the accumulator and the specified data are added, leaving
the result in the accumulator.

Operation ACC ← ACC+x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

HT99C410/HT99C411

30 15th Apr ’98

ADDM A,[m] Add accumulator to data memory

Description The contents of the specified data memory and the accumulator are added.
The result is stored in the data memory.

Operation [m] ← ACC+[m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

AND A,[m] Logical AND accumulator with data memory

Description Data in the accumulator and the specified data memory performs a bitwise
logical_AND operation. The result is stored in the accumulator.

Operation ACC ← ACC “AND” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

AND A,x Logical AND immediate data to accumulator

Description Data in the accumulator and the specified data performs a bitwise logi-
cal_AND operation. The result is stored in the accumulator.

Operation ACC ← ACC “AND” x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

ANDM A,[m] Logical AND data memory with accumulator

Description Data in the specified data memory and the accumulator performs a bitwise
logical_AND operation. The result is stored in the data memory.

Operation [m] ← ACC “AND” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT99C410/HT99C411

31 15th Apr ’98

CALL addr Subroutine call

Description The instruction unconditionally calls a subroutine located at the indicated
address. The program counter increments once to obtain the address of the
next instruction, and pushes this onto the stack. The indicated address is
then loaded. Program execution continues with the instruction at this ad-
dress.

Operation Stack ← PC+1
PC ← addr

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

CLR [m] Clear data memory

Description The contents of the specified data memory are cleared to zero.

Operation [m] ← 00H

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

CLR [m].i Clear bit of data memory

Description The bit i of the specified data memory is cleared to zero.

Operation [m].i ← 0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

CLR WDT Clear the watchdog timer

Description The WDT and the WDT Prescaler are cleared (re-counting from zero). The
power down bit (PD) and time-out bit (TO) are cleared.

Operation WDT and WDT Prescaler ← 00H
PD and TO ← 0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0 0 – – – –

HT99C410/HT99C411

32 15th Apr ’98

CLR WDT1 Preclear the watchdog timer

Description The PD, TO flags, WDT and the WDT Prescaler are cleared (re-counting
from zero), if the other preclear WDT instruction had been executed. Only
execution of this instruction without the other preclear instruction just
sets the indicating flag which implies that this instruction was executed
and the PD and TO flags remain unchanged.

Operation WDT and WDT Prescaler ← 00H*
PD and TO ← 0*

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0* 0* – – – –

CLR WDT2 Preclear the watchdog timer

Description The PD and TO flags, WDT and the WDT Prescaler are cleared (re-count-
ing from zero), if the other preclear WDT instruction had been executed.
Only execution of this instruction without the other preclear instruction,
sets the indicating flag which implies that this instruction was executed
and the PD and TO flags remain unchanged.

Operation WDT and WDT Prescaler ← 00H*
PD and TO ← 0*

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0* 0* – – – –

CPL [m] Complement data memory

Description Each bit of the specified data memory is logically complemented (1’s com-
plement). Bits which previously contain a one are changed to zero and vice-
versa.

Operation [m] ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT99C410/HT99C411

33 15th Apr ’98

CPLA [m] Complement data memory and place result in accumulator

Description Each bit of the specified data memory is logically complemented (1’s com-
plement). Bits which previously contained a one are changed to zero and
vice-versa. The complemented result is stored in the accumulator and the
contents of the data memory remain unchanged.

Operation ACC ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

DAA [m] Decimal-Adjust the accumulator for addition

Description The accumulator value is adjusted to the BCD (Binary Code Decimal) code.
The accumulator is divided into two nibbles. Each nibble is adjusted to the
BCD code and an internal carry (AC1) will be done if the low nibble of the
accumulator is greater than 9. The BCD adjustment is done by adding 6 to
the original value if the original value is greater than 9 or a carry (AC or
C) is set; otherwise the original value remains unchanged. The result is
stored in the data memory and only the carry flag (C) may be affected.

Operation If (ACC.3~ACC.0) >9 or AC=1
then ([m].3~[m].0) ← (ACC.3~ACC.0)+6, AC1=AC
else ([m].3~[m].0) ← (ACC.3~ACC.0), AC1=0
If (ACC.7~ACC.4)+AC1 >9 or C=1
then ([m].7~[m].4) ← (ACC.7~ACC.4)+6+AC1, C=1
else ([m].7~[m].4) ← (ACC.7~ACC.4)+AC1, C=C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

DEC [m] Decrement data memory

Description Data in the specified data memory is decremented by one.

Operation [m] ← [m]–1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT99C410/HT99C411

34 15th Apr ’98

DECA [m] Decrement data memory and place result in accumulator

Description Data in the specified data memory is decremented by one, leaving the re-
sult in the accumulator. The contents of the data memory remain un-
changed.

Operation ACC ← [m]–1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system
clock. The contents of the RAM and registers are retained. The WDT and
prescaler are cleared. The power down bit (PD) is set and the WDT time-
out bit (TO) is cleared.

Operation PC ← PC+1
PD ← 1
TO ← 0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0 1 – – – –

INC [m] Increment data memory

Description Data in the specified data memory is incremented by one.

Operation [m] ← [m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

INCA [m] Increment data memory and place result in accumulator

Description Data in the specified data memory is incremented by one, leaving the re-
sult in the accumulator. The contents of the data memory remain un-
changed.

Operation ACC ← [m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT99C410/HT99C411

35 15th Apr ’98

JMP addr Direct Jump

Description Bits 0~11 of the program counter are replaced with the directly–specified
address unconditionally, and control passed to this destination.

Operation PC ← addr

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

MOV A,[m] Move data memory to accumulator

Description The contents of the specified data memory is copied to the accumulator.

Operation ACC ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

MOV A,x Move immediate data to accumulator

Description The 8–bit data specified by the code is loaded into the accumulator.

Operation ACC ← x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

MOV [m],A Move accumulator to data memory

Description The contents of the accumulator is copied to the specified data memory
(one of the data memory).

Operation [m] ← ACC

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation PC ← PC+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

36 15th Apr ’98

OR A,[m] Logical OR accumulator with data memory

Description Data in the accumulator and the specified data memory (one of the data
memory) performs a bitwise logical_OR operation. The result is stored in
the accumulator.

Operation ACC ← ACC “OR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

OR A,x Logical OR immediate data to accumulator

Description Data in the accumulator and the specified data performs a bitwise logi-
cal_OR operation. The result is stored in the accumulator.

Operation ACC ← ACC “OR” x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

ORM A,[m] Logical OR data memory with accumulator

Description Data in the data memory (one of the data memory) and the accumulator
performs a bitwise logical_OR operation. The result is stored in the data
memory.

Operation [m] ← ACC “OR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

RET Return from subroutine

Description The program counter is restored from the stack. This is a two cycle instruc-
tion.

Operation PC ← Stack

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

37 15th Apr ’98

RET A,x Return and place immediate data in accumulator

Description The program counter is restored from the stack and the accumulator
loaded with the specified 8-bit immediate data.

Operation PC ← Stack
ACC ← x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RETI Return from interrupt

Description The program counter is restored from the stack, and the interrupts are en-
abled by setting the EMI bit. EMI is the enable master (global) interrupt
bit (bit 0; register INTC).

Operation PC ← Stack
EMI ← 1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RL [m] Rotate data memory left

Description The contents of the specified data memory is rotated left, one bit with bit 7
rotated into bit 0.

Operation [m].(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
[m].0 ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RLA [m] Rotate data memory left and place result in accumulator

Description Data in the specified data memory is rotated left, one bit with bit 7 rotated
into bit 0, leaving the rotated result in the accumulator. The contents of
the data memory remain unchanged.

Operation ACC.(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
ACC.0 ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

38 15th Apr ’98

RLC [m] Rotate data memory left through carry

Description The contents of the specified data memory and the carry flag are together
rotated left one bit. Bit 7 replaces the carry bit; the original carry flag is ro-
tated into the bit 0 position.

Operation [m].(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
[m].0 ← C
C ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

RLCA [m] Rotate left through carry and place result in accumulator

Description Data in the specified data memory and the carry flag are together rotated
left one bit. Bit 7 replaces the carry bit and the original carry flag is ro-
tated into bit 0 position. The rotated result is stored in the accumulator
but the contents of the data memory remain unchanged.

Operation ACC.(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
ACC.0 ← C
C ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

RR [m] Rotate data memory right

Description The contents of the specified data memory are rotated right one bit with
bit 0 rotated to bit 7.

Operation [m].i ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
[m].7 ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

39 15th Apr ’98

RRA [m] Rotate right and place result in accumulator

Description Data in the specified data memory is rotated right one bit with bit 0 ro-
tated into bit 7, leaving the rotated result in the accumulator. The contents
of the data memory remain unchanged.

Operation ACC.(i) ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
ACC.7 ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RRC [m] Rotate data memory right through carry

Description The contents of the specified data memory and the carry flag are together
rotated right one bit. Bit 0 replaces the carry bit; the original carry flag is
rotated into the bit 7 position.

Operation [m].i ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
[m].7 ← C
C ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

RRCA [m] Rotate right through carry and place result in accumulator

Description Data of the specified data memory and the carry flag are together rotated
right one bit. Bit 0 replaces the carry bit and the original carry flag is ro-
tated into the bit 7 position. The rotated result is stored in the accumula-
tor. The contents of the data memory remain unchanged.

Operation ACC.i ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
ACC.7 ← C
C ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

HT99C410/HT99C411

40 15th Apr ’98

SBC A,[m] Subtract data memory and carry from accumulator

Description The contents of the specified data memory and the complement of the
carry flag are together subtracted from the accumulator, leaving the result
in the accumulator.

Operation ACC ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SBCM A,[m] Subtract data memory and carry from accumulator

Description The contents of the specified data memory and the complement of the
carry flag are together subtracted from the accumulator, leaving the result
in the data memory.

Operation [m] ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SDZ [m] Skip if decrement data memory is zero

Description The contents of the specified data memory are decremented by one. If the
result is zero, the next instruction is skipped. If the result is zero, the fol-
lowing instruction, fetched during the current instruction execution, is dis-
carded and a dummy cycle replaced to get the proper instruction. This
makes a 2 cycle instruction. Otherwise proceed with the next instruction.

Operation Skip if ([m]–1)=0, [m] ← ([m]–1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

41 15th Apr ’98

SDZA [m] Decrement data memory and place result in ACC, skip if zero

Description The contents of the specified data memory are decremented by one. If the
result is zero, the next instruction is skipped. The result is stored in the ac-
cumulator but the data memory remains unchanged. If the result is zero,
the following instruction, fetched during the current instruction execution,
is discarded and a dummy cycle is replaced to get the proper instruction,
that makes a 2 cycle instruction. Otherwise proceed to the next instruction.

Operation Skip if ([m]–1)=0, ACC ← ([m]–1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SET [m] Set data memory

Description Each bit of the specified data memory is set to one.

Operation [m] ← FFH

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SET [m].i Set bit of data memory

Description Bit i of the specified data memory is set to one.

Operation [m].i ← 1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SIZ [m] Skip if increment data memory is zero

Description The contents of the specified data memory is incremented by one. If the re-
sult is zero, the following instruction, fetched during the current instruc-
tion execution, is discarded and a dummy cycle is replaced to get the
proper instruction. This is a 2-cycle instruction. Otherwise proceed to the
next instruction.

Operation Skip if ([m]+1)=0, [m] ← ([m]+1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

42 15th Apr ’98

SIZA [m] Increment data memory and place result in ACC, skip if zero

Description The contents of the specified data memory is incremented by one. If the re-
sult is zero, the next instruction is skipped and the result stored in the ac-
cumulator. The data memory remains unchanged. If the result is zero, the
following instruction, fetched during the current instruction execution, is
discarded and a dummy cycle replaced to get the proper instruction. This
is a 2-cycle instruction. Otherwise proceed to the next instruction.

Operation Skip if ([m]+1)=0, ACC ← ([m]+1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SNZ [m].i Skip if bit i of the data memory is not zero

Description If bit i of the specified data memory is not zero, the next instruction is
skipped. If bit i of the data memory is not zero, the following instruction,
fetched during the current instruction execution, is discarded and a
dummy cycle is replaced to get the proper instruction. This is a 2-cycle in-
struction. Otherwise proceed to the next instruction.

Operation Skip if [m].i≠0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SUB A,[m] Subtract data memory from accumulator

Description The specified data memory is subtracted from the contents of the accumu-
lator, leaving the result in the accumulator.

Operation ACC ← ACC+[m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SUBM A,[m] Subtract data memory from accumulator

Description The specified data memory is subtracted from the contents of the accumu-
lator, leaving the result in the data memory.

Operation [m] ← ACC [m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

HT99C410/HT99C411

43 15th Apr ’98

SUB A,x Subtract immediate data from accumulator

Description The immediate data specified by the code is subtracted from the contents
of the accumulator, leaving the result in the accumulator.

Operation ACC ← ACC+x+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SWAP [m] Swap nibbles within the data memory

Description The low-order and high-order nibbles of the specified data memory (one of
the data memory) are interchanged.

Operation [m].3~[m].0 ↔ [m].7~[m].4

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SWAPA [m] Swap data memory and place result in accumulator

Description The low-order and high-order nibbles of the specified data memory are in-
terchanged, writing the result to the accumulator. The contents of the data
memory remain unchanged.

Operation ACC.3~ACC.0 ← [m].7~[m].4
ACC.7~ACC.4 ← [m].3~[m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SZ [m] Skip if data memory is zero

Description If the contents of the specified data memory is zero, the following instruc-
tion, fetched during the current instruction execution, is discarded and a
dummy cycle is replaced to get the proper instruction. This is a 2-cycle in-
struction. Otherwise proceed to the next instruction.

Operation Skip if [m]=0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

44 15th Apr ’98

SZA [m] Move data memory to ACC, skip if zero

Description The contents of the specified data memory is copied to accumulator. If the
contents is zero, the following instruction, fetched during the current in-
struction execution, is discarded and a dummy cycle is replaced to get the
proper instruction. This is a 2-cycle instruction. Otherwise proceed to the
next instruction.

Operation Skip if [m]=0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SZ [m].i Skip if bit i of the data memory is zero

Description If bit i of the specified data memory is zero, the following instruction,
fetched during the current instruction execution, is discarded and a
dummy cycle is replaced to get the proper instruction. This is a 2-cycle in-
struction. Otherwise proceed to the next instruction.

Operation Skip if [m].i=0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

TABRDC [m] Move ROM code (current page) to TBLH and data memory

Description The low byte of ROM code (current page) addressed by the table pointer
(TBLP) is moved to the specified data memory and the high byte trans-
ferred to TBLH directly.

Operation [m] ← ROM code (low byte)
TBLH ← ROM code (high byte)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

TABRDL [m] Move ROM code (last page) to TBLH and data memory

Description The low byte of ROM code (last page) addressed by the table pointer
(TBLP) is moved to the data memory and the high byte transferred to
TBLH directly.

Operation [m] ← ROM code (low byte)
TBLH ← ROM code (high byte)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT99C410/HT99C411

45 15th Apr ’98

XOR A,[m] Logical XOR accumulator with data memory

Description Data in the accumulator and the indicated data memory performs a bit-
wise logical Exclusive_OR operation and the result is stored in the accumu-
lator.

Operation ACC ← ACC “XOR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

XORM A,[m] Logical XOR data memory with accumulator

Description Data in the indicated data memory and the accumulator perform a bitwise
logical Exclusive_OR operation. The result is stored in the data memory.
The zero flag is affected.

Operation [m] ← ACC “XOR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

XOR A,x Logical XOR immediate data to accumulator

Description Data in the the accumulator and the specified data perform a bitwise logi-
cal Exclusive_OR operation. The result is stored in the accumulator. The
zero flag is affected.

Operation ACC ← ACC “XOR” x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT99C410/HT99C411

46 15th Apr ’98

	Features
	Applications
	General Description
	Selection Table
	Block Diagram
	Pin Assignment
	Pad Assignment
	Pad Description
	Absolute Maximum Ratings*
	D.C. Characteristics
	A.C. Characteristics
	D/A Converter Description
	D/A Converter Circuit
	Application Circuit
	System Architecture
	Instruction Set Summary
	Instruction Definition

