

HARRIS HGTG34N100E2

April 1995

34A, 1000V N-Channel IGBT

Features

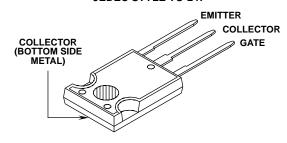
- 34A, 1000V
- Latch Free Operation
- Typical Fall Time 710ns
- · High Input Impedance
- Low Conduction Loss

Description

The HGTG34N100E2 is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOS-FET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.

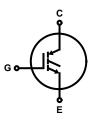
The IGBTs are ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY


PART NUMBER	PACKAGE	BRAND
HGTG34N100E2	TO-247	G34N100E2

NOTE: When ordering, use the entire part number.

Formerly Developmental Type TA9895.


Package

JEDEC STYLE TO-247

Terminal Diagram

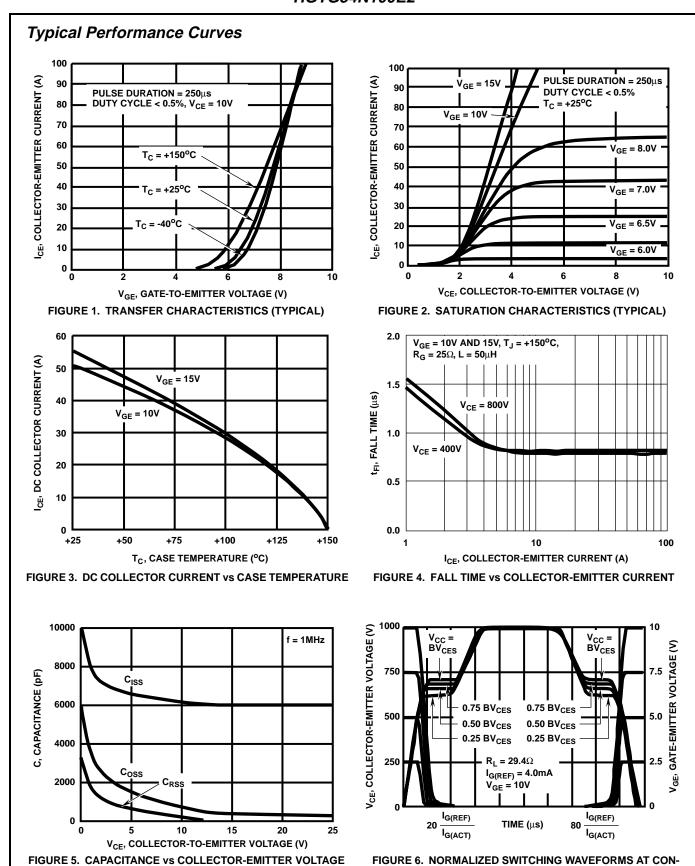
N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings $T_C = +25^{\circ}C$, Unless Otherwise Specified

	HGTG34N100E2	UNITS
Collector-Emitter Voltage	1000	V
Collector-Gate Voltage, $R_{GE} = 1M\Omega \dots V_{CGR}$	1000	V
Collector Current Continuous at T _C = +25°C	55	Α
at $V_{GE} = 15V$, at $T_{C} = +90^{\circ}C$ I_{C90}	34	Α
Collector Current Pulsed (Note 1)	200	Α
Gate-Emitter Voltage ContinuousV _{GES}	±20	V
Gate-Emitter Voltage Pulsed	±30	V
Switching Safe Operating Area at T _J = +150°C	200A at 0.8 BV _{CES}	-
Power Dissipation Total at $T_C = +25^{\circ}C$ P_D	208	W
Power Dissipation Derating T _C > +25°C	1.67	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C
Short Circuit Withstand Time (Note 2) at V _{GE} = 15Vt _{SC}	3	μs
at V _{GE} = 10V	10	μs

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. $V_{CE(PEAK)} = 600V$, $T_C = +125^{\circ}C$, $R_{GE} = 25\Omega$.

HARRIS SEMICOND	UCTOR IGBT PRODUCT IS C	COVERED BY ONE	OR MORE OF THE FO	LLOWING U.S. PATENTS:


4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641	
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762	
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690	
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606	
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951	
4,969,027								

Specifications HGTG34N100E2

Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

PARAMETERS	SYMBOL	TEST CON	MIN	TYP	MAX	UNITS	
Collector-Emitter Breakdown Voltage	BV _{CES}	$I_C = 250 \mu A, V_{GE} = 0 V$		1000	-	-	V
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	$T_{C} = +25^{\circ}C$	-	-	1.0	mA
		V _{CE} = 0.8 BV _{CES}	$T_C = +125^{\circ}C$	-	-	4.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	$I_{C} = I_{C90},$ $V_{GE} = 15V$	$T_{C} = +25^{\circ}C$	-	2.8	3.2	V
		v _{GE} = 13v	$T_C = +125^{\circ}C$	-	2.8	3.1	V
		$I_{C} = I_{C90},$	$T_{C} = +25^{\circ}C$	-	2.9	3.3	V
		V _{GE} = 10V	$T_{\rm C} = +125^{\rm o}{\rm C}$	-	3.0	3.4	V
Gate-Emitter Threshold Voltage	V _{GE(TH)}	$I_C = 1mA,$ $V_{CE} = V_{GE}$	$T_{C} = +25^{\circ}C$	3.0	4.5	6.0	V
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±500	nA
Gate-Emitter Plateau Voltage	V_{GEP}	$I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$		-	7.3	-	V
On-State Gate Charge	Q _{G(ON)}	$I_{C} = I_{C90},$ $V_{CE} = 0.5 \text{ BV}_{CES}$	V _{GE} = 15V	-	185	240	nC
			V _{GE} = 20V	-	240	315	nC
Current Turn-On Delay Time	t _{D(ON)I}	$L = 50 \mu H, I_C = I_{C90}, R_G = 25 \Omega,$ $V_{GE} = 15 V, T_J = +125 ^{\circ} C,$ $V_{CE} = 0.8 \; BV_{CES}$		-	100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}			-	610	795	ns
Current Fall Time	t _{FI}			-	710	925	ns
Turn-Off Energy (Note 1)	W _{OFF}			-	7.1	-	mJ
Current Turn-On Delay Time	t _{D(ON)I}	$\begin{split} L &= 50 \mu \text{H, I}_{\text{C}} = \text{I}_{\text{C90}}, \text{R}_{\text{G}} = 25 \Omega, \\ \text{V}_{\text{GE}} &= 10 \text{V, T}_{\text{J}} = +125 ^{\text{o}} \text{C,} \\ \text{V}_{\text{CE}} &= 0.8 \text{BV}_{\text{CES}} \end{split}$		-	100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off	t _{D(OFF)I}			-	460	600	ns
Current Fall Time	t _{FI}		-	670	870	ns	
Turn-Off Energy (Note 1)	W _{OFF}		_	6.5	-	mJ	
Thermal Resistance	$R_{ heta JC}$			-	0.5	0.6	°C/W

NOTE: 1. Turn-Off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG34N100E2 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

STANT GATE CURRENT (REFER TO APPLICATION

NOTES AN7254 AND AN7260)

Typical Performance Curves (Continued)

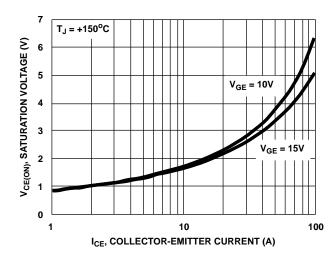


FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER CURRENT

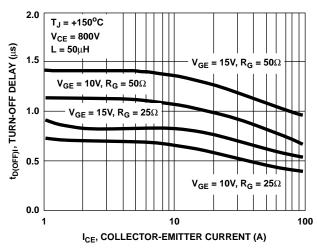


FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

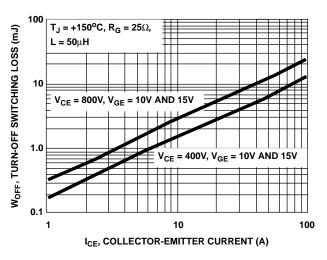


FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOR-EMITTER CURRENT

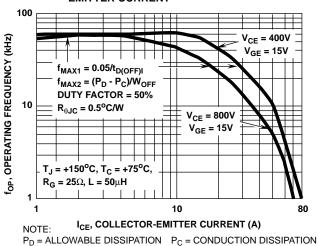


FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-EMITTER CURRENT AND VOLTAGE



FIGURE 11. COLLECTOR-EMITTER SATURATION VOLTAGE

Test Circuit

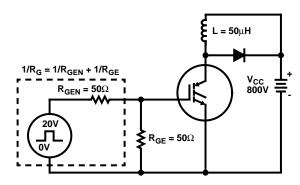


FIGURE 12. INDUCTION SWITCHING TEST CIRCUIT

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1}=0.05/t_{D(OFF)I}.\ t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2}=(P_D-P_C)/W_{OFF}.$ The allowable dissipation (P_D) is defined by $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed $P_D.$ A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C=(V_{CE}\bullet I_{CE})/2.$ W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE}=0A).$

The switching power loss (Figure 10) is defined as $f_{MAX2} \bullet W_{OFF}$. Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.