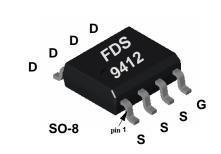
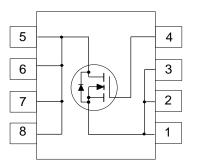
November 1997

FDS9412 Single N-Channel Enhancement Mode Field Effect Transistor

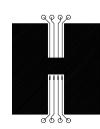

GeneralDescription


SO-8 N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer DC-DC converter where fast switching, low conduction loss, and high efficiency are needed.

Features

- 7.9 A, 30 V. $R_{DS(ON)} = 0.022 \ \Omega \ @ V_{GS} = 10 \ V$ $R_{DS(ON)} = 0.036 \ \Omega \ @ V_{GS} = 4.5 \ V.$
- Very low Gate charge.
- High switching speed.
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.

		88.80. 7090			
SOT-23	SuperSOT [™] -6	SuperSOT [™] -8	SO-8	SOT-223	SOIC-16



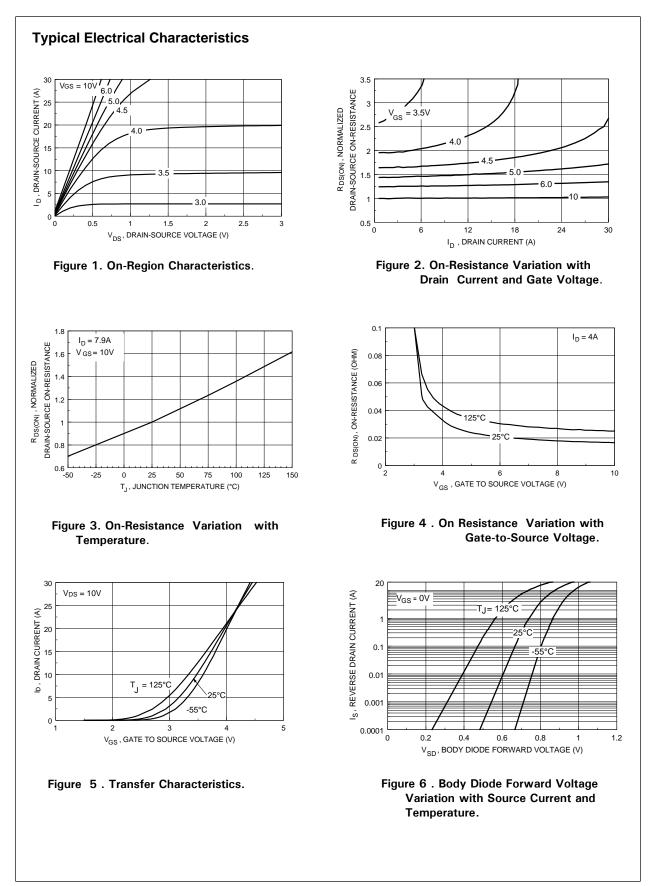
Symbol	Parameter		FDS9412	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	7.9	A
	- Pulsed		24	
P _D Power Dissipation for Single Op	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	
		(Note 1c)	1	
T_,T _{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			
R _{eja}	Thermal Resistance, Junction-to-Ambier	nt (Note 1a)	50	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	25	°C/W

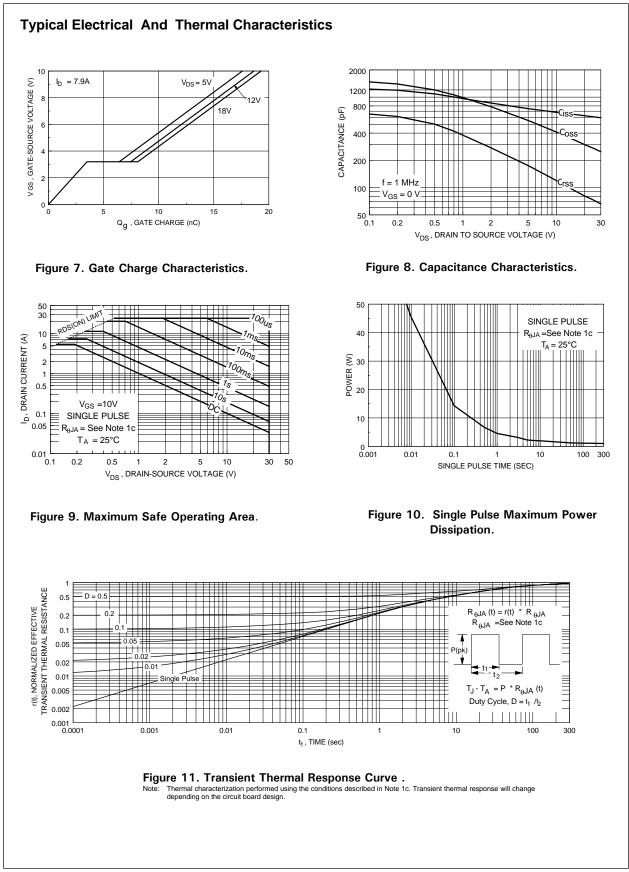
© 1997 Fairchild Semiconductor Corporation

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS						-
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_{\rm D}$ = 250 µA, Referenced	to 25 °C		31		mV / °C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$				1	μA
			$T_J = 55^{\circ}C$			10	μA
	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHARA	CTERISTICS (Note 2)						-
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient $I_D = 250 \ \mu$ A, Referenced to 25 °C		to 25 °C		-4.4		mV /°C
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1	1.7	2	V
			T _J =125°C	0.8	1.3	1.6	
R _{ds(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.9 \text{ A}$			0.0195	0.022	Ω
			T _J =125°C		0.025	0.035	
		$V_{GS} = 4.5 \text{ V}, \ I_{D} = 6.2 \text{ A}$			0.031	0.036	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		16			А
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 7.9 \text{ A}$			18		S
DYNAMIC (CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$ f = 1.0 MHz			650		pF
C _{oss}	Output Capacitance				345		pF
C _{rss}	Reverse Transfer Capacitance				95		pF
SWITCHING	CHARACTERISTICS (Note 2)			-			
t _{D(on)}	Tum - On Delay Time	V_{DS} = 10 V, I _D = 1 A	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ A}$		8	16	ns
t,	Turn - On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DS} = 12 \text{ V}, \text{ I}_{D} = 7.9 \text{ A},$ $V_{GS} = 10 \text{ V}$			14	25	ns
t _{D(off)}	Turn - Off Delay Time				23	37	ns
t _r	Turn - Off Fall Time				9	18	ns
Qg	Total Gate Charge				19	25	nC
Q _{gs}	Gate-Source Charge				3.2		nC
Q _{gd}	Gate-Drain Charge				4.3		nC
DRAIN-SOU	RCE DIODE CHARACTERISTICS AND MAXIM	MUM RATINGS					
I _s	Maximum Continuous Drain-Source Diode F	Maximum Continuous Drain-Source Diode Forward Current				2	А
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 2 A$ (Note 2)			0.7	1.2	V

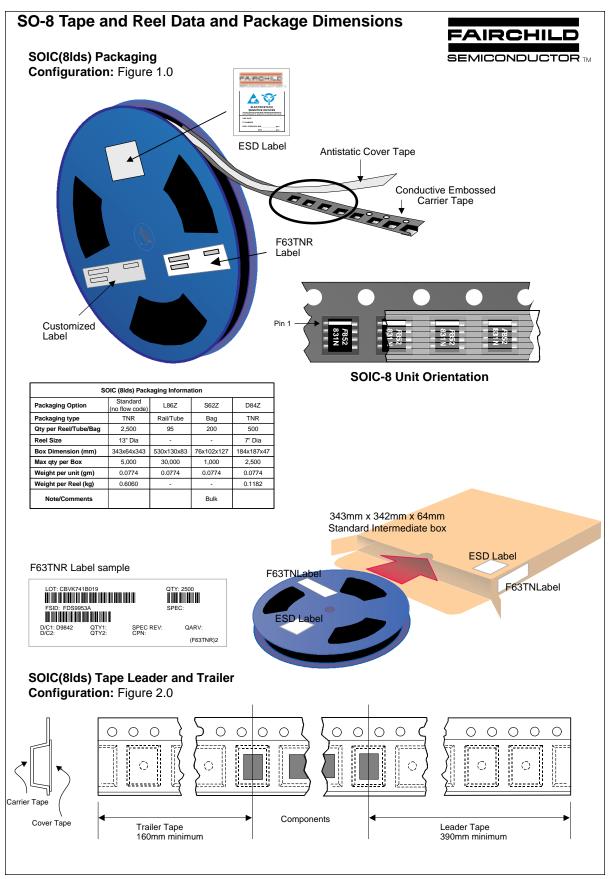
1. R_{a.M} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{a.c} is guaranteed by design while $\mathrm{R}_{_{\mathrm{\theta CA}}}$ is determined by the user's board design.

a. 50°C/W on a 1 in² pad of 2oz copper.

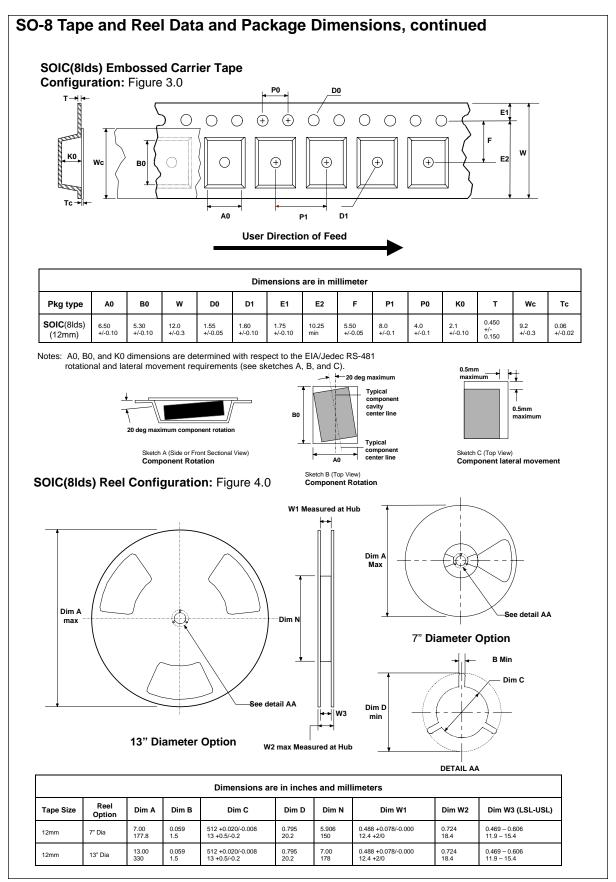


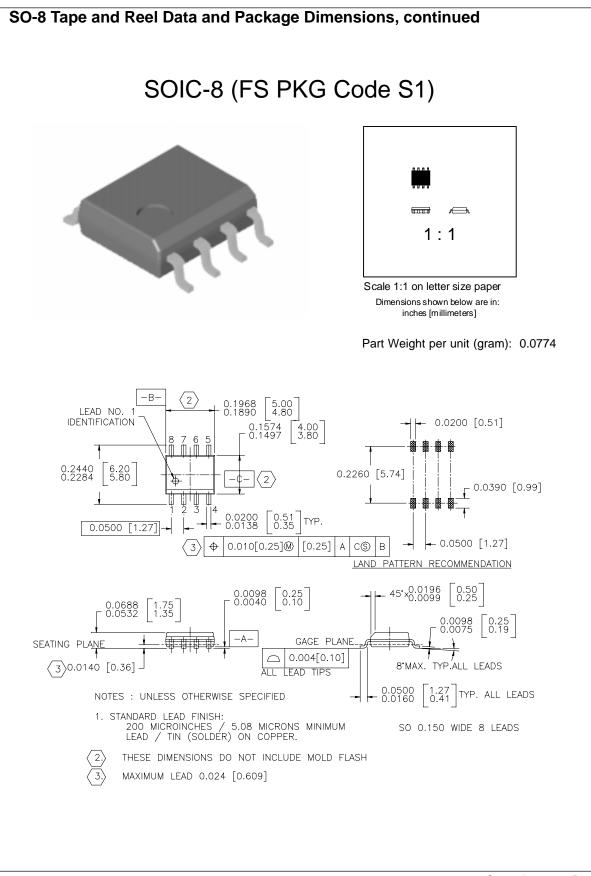

b. 105^oC/W on a 0.04 in² pad of 2oz copper.

 $\begin{array}{c} & & & \\ & &$


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.




FDS9412 Rev.C1

November 1998, Rev. A

November 1998, Rev. A

September 1998, Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.