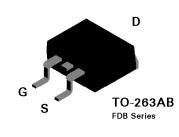
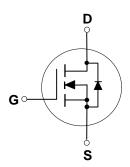

FDP7030L / FDB7030L N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description


These N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as DC/DC converters and high efficiency switching circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- High density cell design for extremely low R_{DS(ON)}.
- 175°C maximum junction temperature rating.

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FDP7030L	FDB7030L	Units	
V _{DSS}	Drain-Source Voltage		30		V	
V_{GSS}	Gate-Source Voltage - Continuous		±20		V	
l _D	Drain Current - Continuous	(Note 1)	1	100	А	
				75		
	- Pulsed	(Note 1)	3	300		
P_{D}	Total Power Dissipation @ T _C = 25°C		125		W	
	Derate above 25°C		0.83		W/°C	
T_J , T_{STG}	Operating and Storage Temperature Range		-65	-65 to 175		
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		275		°C	
THERMA	L CHARACTERISTICS					
R _{euc}	Thermal Resistance, Junction-to-Case		1.2		°C/W	
R _{eJA}	Thermal Resistance, Junction-to-Ambient		6	62.5		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DRAIN-SOU	RCE AVALANCHE RATINGS (Note 1)		•		,	
$N_{\scriptscriptstyle \mathrm{DSS}}$	Single Pulse Drain-Source Avalanche Energy	V _{DD} = 15 V, I _D = 38 A			200	mJ
AR	Maximum Drain-Source Avalanche Current				38	Α
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25 °C		36		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			10	μA
		T _J =125 °C			1	mA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \ V, V_{DS} = 0 \ V$			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.5	2	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp.Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25 °C		-5		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$ $T_J = 125^{\circ}\text{C}$		0.006	0.007	Ω
				0.009	0.011	
		$V_{GS} = 5 \text{ V}, I_{D} = 40 \text{ A}$		0.009	0.01	
D(on)	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$	60			Α
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 50 \text{ A}$		50		S
DYNAMIC C	HARACTERISTICS			,		
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, \ V_{GS} = 0 \text{ V}, $ f = 1.0 MHz		2150		pF
Coss	Output Capacitance	f = 1.0 MHZ		1290		pF
C _{rss}	Reverse Transfer Capacitance			420		pF
SWITCHING	CHARACTERISTICS (Note 2)					
D(on)	Turn - On Delay Time	$V_{DD} = 15 \text{ V}, I_{D} = 75 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $R_{GS} = 10 \Omega$		10	20	nS
r	Turn - On Rise Time			160	225	nS
D(off)	Turn - Off Delay Time			70	95	nS
f	Turn - Off Fall Time			140	195	nS
Qg	Total Gate Charge	V _{DS} = 12 V		35	50	nC
Q_{as}	Gate-Source Charge	$I_D = 50 \text{ A}, V_{GS} = 4.5 \text{ V}$		12		nC
Q_{qd}	Gate-Drain Charge			18		nC
	RCE DIODE CHARACTERISTICS		•	•		•
S	Maximum Continuos Drain-Source Diode Forward Current (Note 1)				100	Α
SM	Maximum Pulsed Drain-Source Diode Forward Current (Note 2)				300	Α
V _{SD}	Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 50 \text{ A} \text{ (Note 2)}$			1	1.3	V
		T _J = 125°C	1	0.85	1.1	1

Notes
1. Calculated continuous current based on maximum allowable junction temperature. Actual maximum continuous current limited by package constraints to 75A.
2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.