

FAN2518, **FAN2519** 50 mA CMOS LDO Regulators with Fast Start Enable

Features

- Ultra Low Power Consumption
- Enable optimized for CDMA time phases
- 50 mV dropout voltage at 50 mA
- 25 µA ground current at 50 mA
- Enable/Shutdown Control
- SOT23-5 package
- Thermal limiting
- 300 mA peak current

Applications

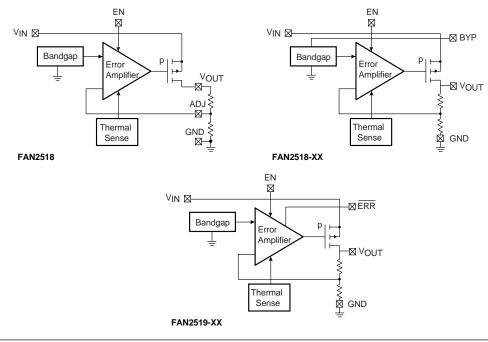
- · Cellular Phones and accessories
- PDAs
- · Portable cameras and video recorders
- Laptop, notebook and palmtop computers

Description

The FAN2518/19 family of micropower low-dropout voltage regulators utilize CMOS technology to offer a new level of cost-effective performance in GSM, TDMA, and CDMA cellular handsets, Laptop and Notebook portable computers, and other portable devices. Features include extremely low power consumption and low shutdown current, low dropout voltage, exceptional loop stability able to accommodate a

Block Diagrams

wide variety of external capacitors, and the compact SOT23-5 surface-mount package. In addition, the FAN2518/19 family offer the fast power-cycle time required in CDMA handset applications. These products offer significant improvements over older BiCMOS designs and are pin-compatible with many popular devices. The output is thermally protected against overload.


The FAN2518 and FAN2519 devices are distinguished by the assignment of pin 4:

FAN2518: pin 4 – ADJ, allowing the user to adjust the output voltage over a wide range using an external voltage divider.

FAN2518-XX: pin 4 – BYP, to which a bypass capacitor may be connected for optimal noise performance. Output voltage is fixed, indicated by the suffix XX.

FAN2519-XX: pin $4 - \overline{\text{ERR}}$, a flag which indicates that the output voltage has dropped below the specified minimum due to a fault condition.

The standard fixed output voltages available are 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, and 3.3V. Custom output voltage are also available: please contact your local Fairchild Sales Office for information.

Pin Assignments

Pin No.	FAN2518	FAN2518-XX	FAN2519-XX
1.	V _{IN}	V _{IN}	V _{IN}
2.	GND	GND	GND
3.	EN	EN	EN
4.	ADJ	BYP	ERR
5.	V _{OUT}	V _{OUT}	V _{OUT}

Pin Descriptions

An Enable pin, available on all devices, allows the user to shut down the regulator output to conserve power, reducing supply current to less than $1\mu A$. The output can then be re-Enabled within 500µSec, fulfilling the fast power-cycling needs of CDMA applications. Depending on the model selected, other control and status functions are available at pin 4 to enhance the operation of the device. The adjustablevoltage versions utilize pin 4 to connect to an external voltage divider which feeds back to the regulator error amplifier, thereby setting the voltage as desired. Two other functions are available in the fixed-voltage versions: in noise-sensitive applications, an external Bypass capacitor connection is provided that allows the user to achieve optimal noise performance at the output, while the Error output functions as a diagnostic flag to indicate that the output voltage has dropped more than 5% below the nominal fixed voltage.

Applications Information

External Capacitors – Selection

The FAN2518/19 allows the user to utilize a wide variety of

Thermal Characteristics

The FAN2518/19 is designed to supply 50mA at the specified output voltage with an operating die (junction) temperature of up to 125°C. Once the power dissipation and thermal resistance is known, the maximum junction temperature of the device can be calculated. While the power dissipation is calculated from known electrical parameters, the thermal resistance is a result of the thermal characteristics of the compact SOT23-5 surface-mount package and the surround-

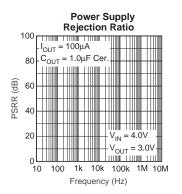
Absolute Maximum Ratings (beyond which the device may be damaged)¹

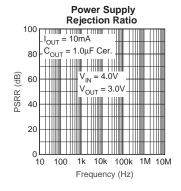
Parameter	Min	Тур	Max	Unit
Power Supply Voltages				
V _{IN} (Measured to GND)	0		7	V
Enable Input (EN)				
Applied voltage (Measured to GND) ²	0		7	V
ERR Output				
Applied voltage (Measured to GND) ²	0		7	V
Power				
Dissipation ³	Internally limited			
Temperature				
Junction	-65		150	°C
Lead Soldering (5 seconds)			260	°C
Storage	-65		150	°C
Electrostatic Discharge ⁴	4			kV

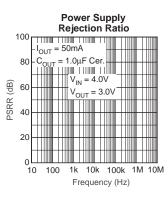
Notes:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

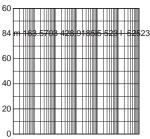
2. Applied voltage must be current limited to specified range.

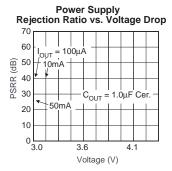

3. Based upon thermally limited junction temperature:

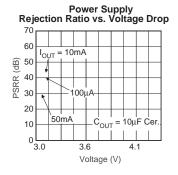

4. Human Body Model is 4kV minimum using Mil Std. 883E, method 3015.7. Machine Model is 400V minimum using JEDEC method A115-A.

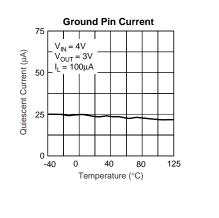

Recommended Operating Conditions

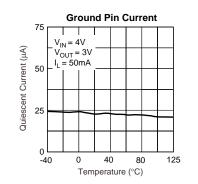
Paramete	r	Min	Nom	Max	Units
V _{IN}	Input Voltage Range	2.7		6.5	V

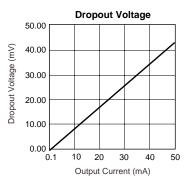

Typical Performance Characteristics

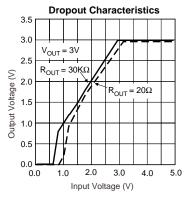


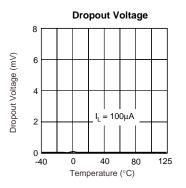

Power Supply

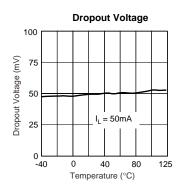

23.31 28.041 7 513.734 m 10M3 163.505 428323.31 28.041 783.734 m 10M3 163.505 428323.31 28.041 72341 783.734 m44 95.6745 427.52832

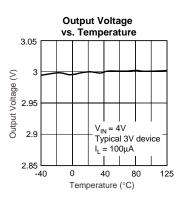

Frequency (Hz)

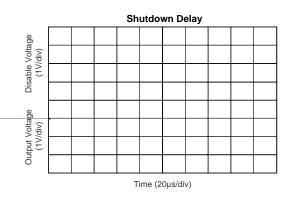





Typical Performance Characteristics (continued)







Functional Characteristics

Mechanical Dimensions

5-Lead SOT-23-5 (S) Package

Symbol	Inches		Millimeters		Notes
Symbol	Min.	Max.	Min.	Max.	Notes
А	.035	.057	.90	1.45	
A1	.000	.006	.00	.15	
В	.008	.020	.20	.50	
С	.003	.010	.08	.25	
D	.106	.122	2.70	3.10	
E	.059	.071	1.50	1.80	
е	.037 BSC		.95	BSC	
e1	.075 BSC		1.90	BSC	
Н	.087	.126	2.20	3.20	
L	.004	.024	.10	.60	
α	0°	10°	0°	10°	

A1

Notes:

- 1. Package outline exclusive of mold flash & metal burr.
- 2. Package outline exclusive of solder plating.
- 3. EIAJ Ref Number SC-74A.

Ordering Information

Product Number	V _{OUT}	Pin 4 Function	Package Marking
FAN2518SX	Adj.	Adjust	ALA
FAN2518S25X	2.5	Bypass	ALE
FAN2518S26X	2.6	Bypass	ALG
FAN2518S27X	2.7	Bypass	ALJ
FAN2518S28X	2.8	Bypass	ALM
FAN2518S285X	2.85	Bypass	ALN
FAN2518S30X	3.0	Bypass	ALW
FAN2518S33X	3.3	Bypass	AL3
FAN2519S25X	2.5	Error output	AME
FAN2519S26X	2.6	Error output	AMG
FAN2519S27X	2.7	Error output	AMJ
FAN2519S28X	2.8	Error output	AMM
FAN2519S285X	2.85	Error output	AMN
FAN2519S30X	3.0	Error output	AMW
FAN2519S33X	3.3	Error output	AM3

Tape and Reel Information

Quantity	Reel Size	Width
3000	7"	8mm

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com