

DS4175-1.2

DNB65

RECTIFIER DIODE

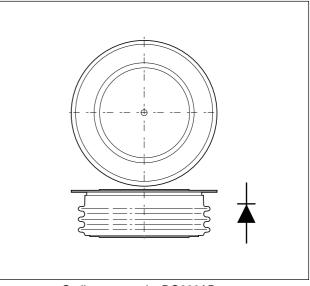
APPLICATIONS

- Rectification.
- Freewheel Diode.
- DC Motor Control.
- Power Supplies.
- Welding.
- Battery Chargers.

FEATURES

- Double Side Cooling.
- High Surge Capability.

VOLTAGE RATINGS


Type Number	Repetitive Peak Reverse Voltage V _{RRM} V	Conditions
DNB65 45	4500	$V_{RSM} = V_{RRM} + 100V$
DNB65 44	4400	
DNB65 42	4200	
DNB65 40	4000	
DNB65 38	3800	
DNB65 36	3600	

Lower voltage grades available.

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units			
Double Side Cooled							
I _{F(AV)}	Mean forward current	Half wave resistive load, $T_{case} = 100^{\circ}C$	2000	А			
I _{F(RMS)}	RMS value	T _{case} = 100°C	3140	А			
I _F	Continuous (direct) forward current	T _{case} = 100°C	2800	А			
Single Side	e Cooled (Anode side)	· ·					
l _{F(AV)}	Mean forward current	Half wave resistive load, T _{case} = 100°C	1284	А			
I _{F(RMS)}	RMS value	T _{case} = 100°C	2017	А			
I _F	Continuous (direct) forward current	T _{case} = 100°C	1715	A			

KEY PARA	METERS
$V_{_{ m RRM}}$	4500V
	2000A
I _{FSM}	31000A

Outline type code: DO200AD. See package outlines for further information.

1/6

DNB65

SURGE RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{FSM}	Surge (non-repetitive) forward current	10ms half sine; $T_{case} = 150^{\circ}C$	24.8	kA
l²t	I ² t for fusing	$V_{R} = 50\% V_{RRM} - 1/4 \text{ sine}$	3.075 x 10 ⁶	A²s
I _{FSM}	Surge (non-repetitive) forward current	10ms half sine; T _{case} = 150°C	31.0	kA
l²t	I ² t for fusing	V _R = 0	4.8 x 10 ⁶	A²s

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - junction to case Double side cooled dc Single side cooled Anode dc Cathode dc Clamping force 45.0kN Double side	Double side cooled	dc	-	0.013	°C/W
			Anode dc	-	0.025	°C/W
		-	0.027	°C/W		
R _{th(c-h)}	Thermal resistance - case to heatsink	Clamping force 45.0kN with mounting compound	Double side	-	0.003	°C/W
			Single side	-	0.006	°C/W
т	Virtual junction temperature	Forward (conducting)	,	-	150	°C
T _{vj}	Virtual junction temperature	Reverse (blocking)		-	150	°C
T _{stg}	Storage temperature range			-55	175	°C
-	Clamping force			40.0	48.0	kN

CHARACTERISTICS

Symbol	Parameter	Conditions	Тур.	Max.	Units
V _{FM}	Forward voltage	At 3000A peak, T _{case} = 25°C	-	1.45	V
I _{RRM}	Peak reverse current	At V_{RRM} , $T_{\text{case}} = 150^{\circ}\text{C}$	-	150	mA
Q _s	Total stored charge	$I_{F} = 1500A, dI_{RR}/dt = 25A/\mu s$ - $T_{case} = 25^{\circ}C, V_{R} = 100V$	6000	-	μC
I _{RM}	Peak recovery current		-	500	A
t _{rr}	Reverse recovery time		25	-	μs
V _{TO}	Threshold voltage	At T _{vj} = 150°C	-	0.84	V
r _T	Slope resistance	At T _{vj} = 150°C	-	0.19	mΩ

DNB65

CURVES

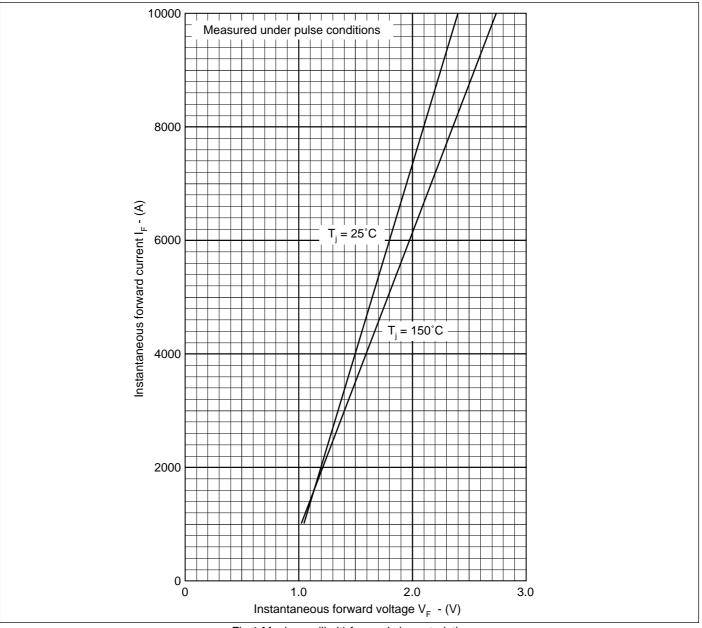


Fig.1 Maximum (limit) forward characteristics

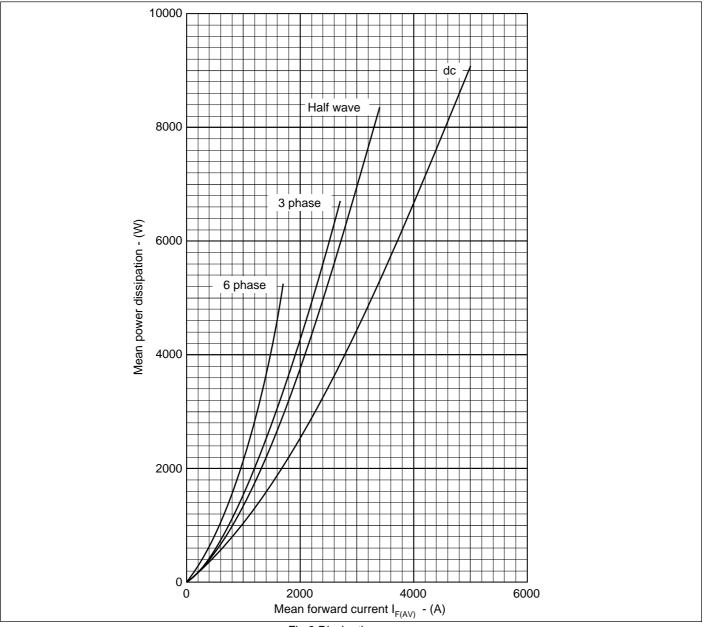
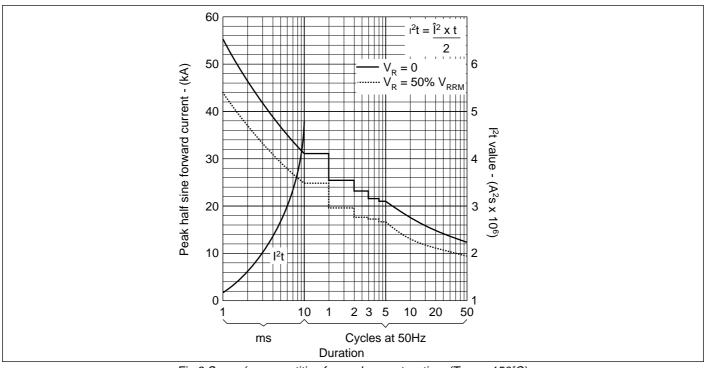
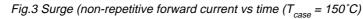




Fig.2 Dissipation curves

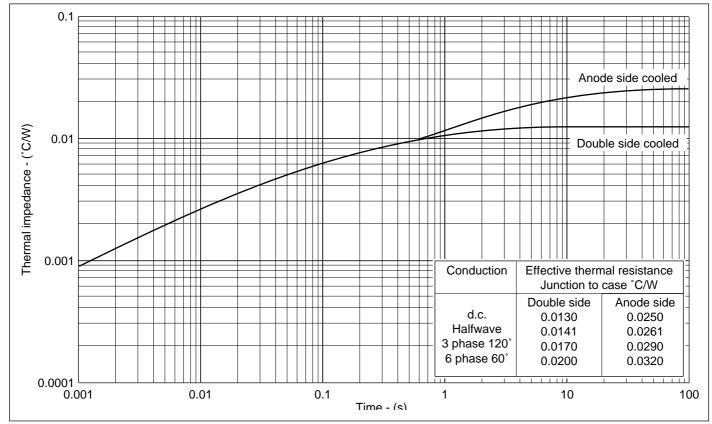
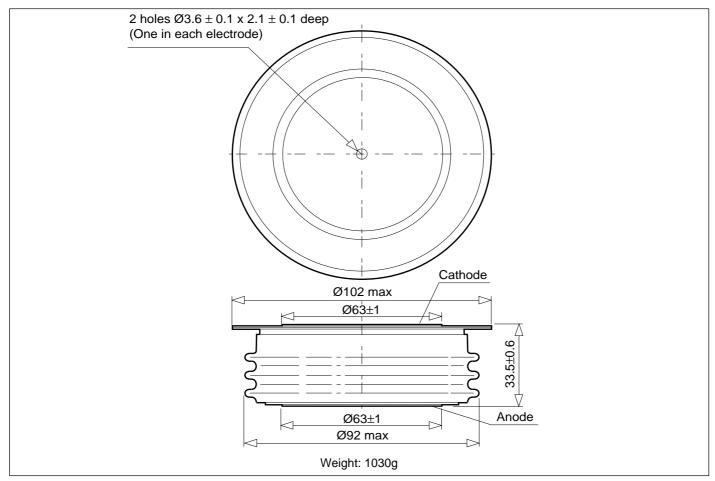



Fig.4 Maximum (limit) transient thermal impedance - junction to case - (°C/W)

DNB65

PACKAGE DETAILS - DO200AD

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire, SN2 2QW, United Kingdom. Tel: + 44 (0)1793 518000 Fax: + 44 (0)1793 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America. Tel: + 1 (408) 438 2900 Fax: +1 (408) 438 5576

POWER PRODUCT CUSTOMER SERVICE CENTRES

- FRANCE. 2 rue Henri-Bergson, 92665 Asnieres Cedex. Tel: + 33 1 40 80 54 00. Fax: + 33 1 40 80 55 87.
- GERMANY. Ungererstrasse 129, 80505 München.
- Tel: + 49 (0)89 36 09 060. Fax: + 49 (0)89 36 09 06 55.
- NORTH AMERICA. Two Dedham Place, Suite 125, 3 Allied Drive, Dedham. MA 02026. Tel: + 1 617 251 0126. Fax: + 1 617 251 0106.
- UNITED KINGDOM. Doddington Road, Lincoln. LN6 3LF. Tel: + 44 (0)1522 500500. Fax: + 44 (0)1522 510550.

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1996 Publication No. DS4175-1 Issue No. 1.2 September 1996 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.