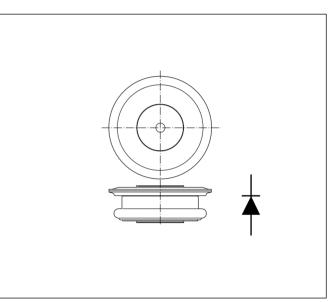


FAST RECOVERY DIODE

APPLICATIONS

- Induction Heating.
- A.C. Motor Drives.
- Inverters And Choppers.
- Welding.
- High Frequency Rectification.
- UPS.


FEATURES

- Double Side Cooling.
- High Surge Capability.
- Low Recovery Charge.

VOLTAGE RATINGS

Type Number	Repetitive Peak Reverse Voltage V _{RRM} V	Conditions
DFS454 25	2500	$V_{RSM} = V_{RRM} + 100V$
DFS454 24	2400	
DFS454 22	2200	
DFS454 20	2000	

KEY PARAMETERS V_{RRM} 2500V I_{F(AV)} 365A I_{FSM} 3500A Q_r 200µC t_{rr} 2.0µs

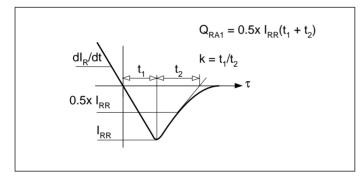
Outline type code: M771. Turn to page 8 for further information.

CURRENT RATINGS

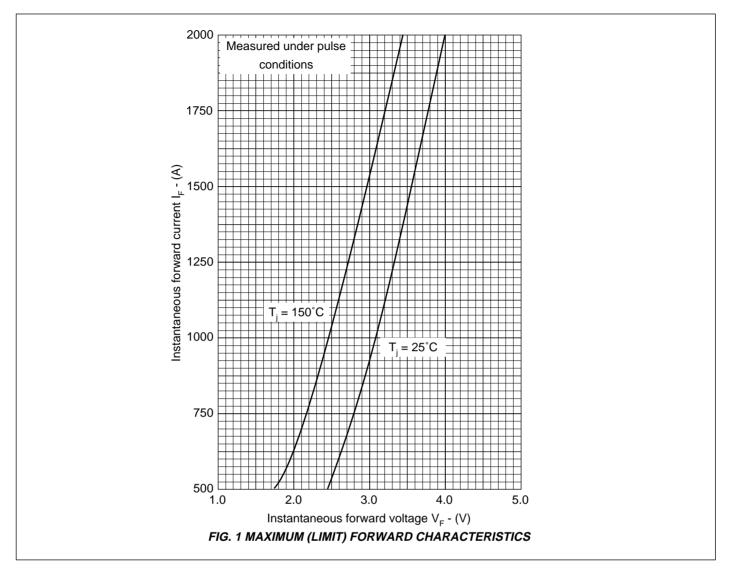
Symbol	Parameter	Conditions	Max.	Units			
Double Side Cooled							
I _{F(AV)}	Mean forward current	Half wave resistive load, $T_{case} = 65^{\circ}C$	365	A			
I _{F(RMS)}	RMS value	$T_{case} = 65^{\circ}C$	575	A			
I _F	Continuous (direct) forward current	$T_{case} = 65^{\circ}C$	525	A			
Single Side Cooled (Anode side)							
l _{F(AV)}	Mean forward current	Half wave resistive load, $T_{case} = 65^{\circ}C$	242	A			
I _{F(RMS)}	RMS value	$T_{case} = 65^{\circ}C$	380	A			
I _F	Continuous (direct) forward current	$T_{case} = 65^{\circ}C$	335	A			

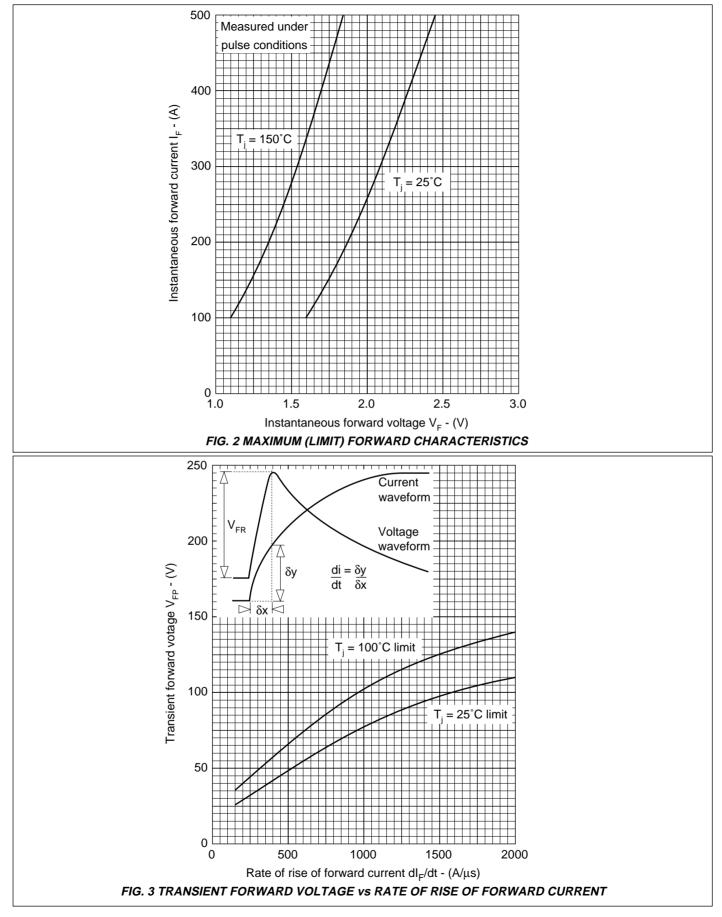
SURGE RATINGS

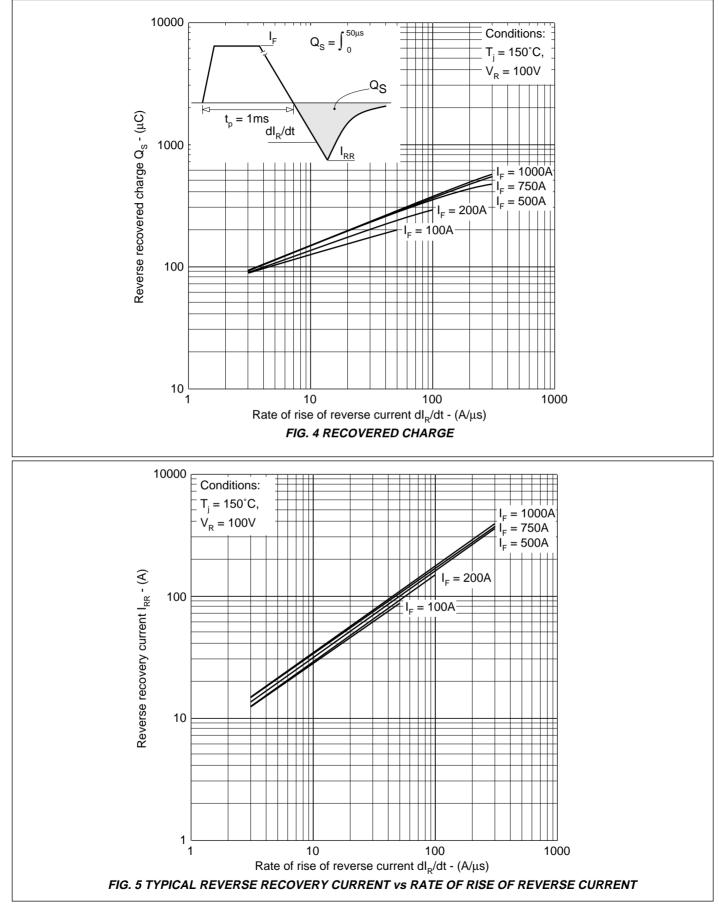
Symbol	Parameter	Conditions	Max.	Units
I _{FSM}	Surge (non-repetitive) forward current	10 ms half since with $0%$ V T = $150%$	3.5	kA
l ² t	I ² t for fusing	10ms half sine; with 0% V_{RRM} , $T_j = 150^{\circ}C$	61 x 10 ³	A²s
I _{FSM}	Surge (non-repetitive) forward current	$10mc$ holf since with 50% $V_{\rm cont} = 150\%$	2.8	kA
l²t	I ² t for fusing	10ms half sine; with 50% V_{RRM} , $T_j = 150^{\circ}C$	39.2 x 10 ³	A ² s
I _{FSM}	Surge (non-repetitive) forward current	10mc half since with $100%$ V T = $150%$	-	kA
l²t	I ² t for fusing	10ms half sine; with 100% V_{RRM} , $T_j = 150^{\circ}C$	-	A²s

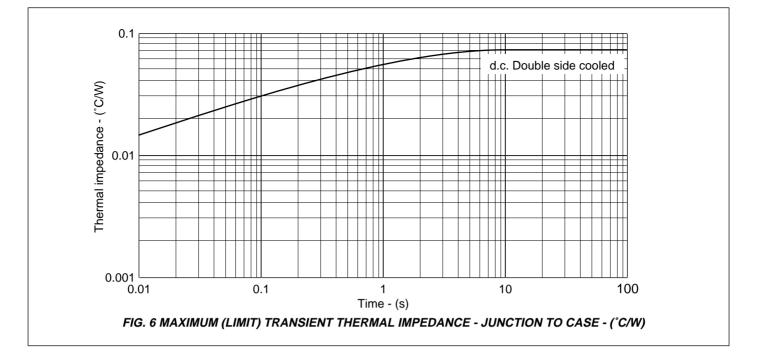

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
	Thermal resistance - junction to case	Double side cooled	dc	-	0.07	°C/W
R _{th(j-c)}		Single side cooled	Anode dc	-	0.133	°C/W
			Cathode dc	-	0.147	°C/W
R _{th(c-h)}	Thermal resistance - case to heatsink	Clamping force 3.5kN with mounting compound	Double side	-	0.02	°C/W
			Single side	-	0.04	°C/W
T _{vj}	Virtual junction temperature	On-state (conducting)		-	150	°C
T _{stg}	Storage temperature range			-55	175	°C
-	Clamping force			3.0	4.0	kN

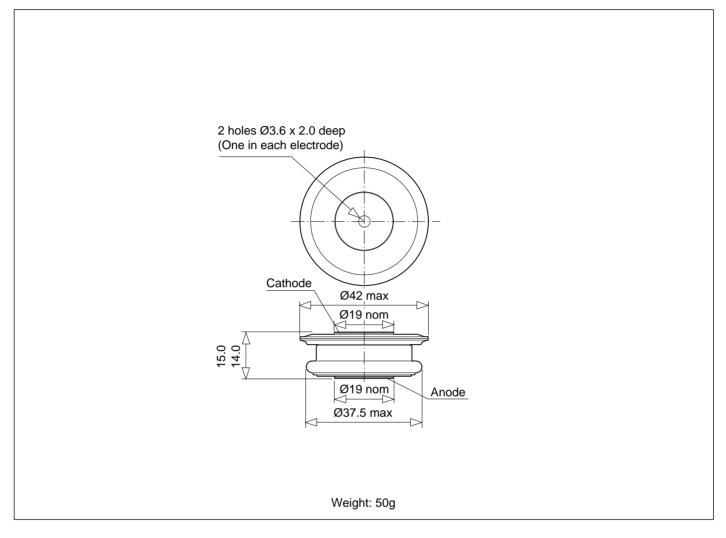

CHARACTERISTICS


Symbol	Parameter	Conditions	Тур.	Max.	Units
V _{FM}	Forward voltage	At 1000A peak, T _{case} = 25°C	-	3.1	V
I _{RRM}	Peak reverse current	At V_{RRM} , $T_{\text{case}} = 150^{\circ}\text{C}$	-	50	mA
t _{rr}	Reverse recovery time		2.0	-	μs
Q _{RA1}	Recovered charge (50% chord)	I _F = 750A, di _{RR} /dt = 100A/μs	-	200	μC
I _{RM}	Reverse recovery current	T _{case} = 125°C, V _R = 100V	150	-	A
к	Soft factor		1.3	-	-
V _{TO}	Threshold voltage	At $T_{vj} = 150^{\circ}C$	-	1.64	V
r _T	Slope resistance	At $T_{vj} = 150^{\circ}C$	-	1.54	mΩ
V _{FRM}	Forward recovery voltage	di/dt = 1000A/µs, T _j = 125°C	-	120	V


DEFINITION OF K FACTOR AND \mathbf{Q}_{RA1}



CURVES



PACKAGE DETAILS - M771

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

GEC PLESSEY **SEMICONDUCTORS**

HEADQUARTERS OPERATIONS

GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire, SN2 2QW, United Kingdom. Tel: + 44 (0)1793 518000 Fax: + 44 (0)1793 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America. Tel: + 1 (408) 438 2900 Fax: +1 (408) 438 5576

POWER PRODUCT CUSTOMER SERVICE CENTRES

- FRANCE. 2 rue Henri-Bergson, 92665 Asnieres Cedex. Tel: + 33 1 40 80 54 00. Fax: + 33 1 40 80 55 87.
- GERMANY. Ungererstrasse 129, 80505 München. Tel: + 49 (0)89 36 09 060. Fax: + 49 (0)89 36 09 06 55.
- NORTH AMERICA. Two Dedham Place, Suite 125, 3 Allied Drive, Dedham. MA 02026. Tel: + 1 617 251 0126. Fax: + 1 617 251 0106.
- UNITED KINGDOM. Doddington Road, Lincoln. LN6 3LF. Tel: + 44 (0)1522 500500. Fax: + 44 (0)1522 500550.

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1995 Publication No. DS4143-3.3 September 1995

TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.