
# **Complementary Silicon Power Transistor**

 $\ldots$  for general purpose driver or medium power output stages in CW or switching applications.

- Low Collector–Emitter Saturation Voltage 0.5 V (Max)
- High ft for Good Frequency Response
- Low Leakage Current

# PNP D45C

4.0 AMPERE
COMPLEMENTARY
SILICON
POWER TRANSISTORS
80 VOLTS



#### **MAXIMUM RATINGS**

| Rating                                                                     | Symbol               | Value      | Unit          |
|----------------------------------------------------------------------------|----------------------|------------|---------------|
| Collector–Emitter Voltage                                                  | VCEO                 | 80         | Vdc           |
| Collector–Emitter Voltage                                                  | VCES                 | 90         | Vdc           |
| Emitter Base Voltage                                                       | VEB                  | 5.0        | Vdc           |
| Collector Current — Continuous<br>Peak (1)                                 | lC                   | 4.0<br>6.0 | Adc           |
| Total Power Dissipation @ T <sub>C</sub> = 25°C<br>@ T <sub>A</sub> = 25°C | PD                   | 30<br>1.67 | Watts<br>W/°C |
| Operating and Storage Junction Temperature Range                           | TJ, T <sub>stg</sub> | -55 to 150 | °C            |

#### THERMAL CHARACTERISTICS

| Characteristic                                                                | Symbol         | Max | Unit |
|-------------------------------------------------------------------------------|----------------|-----|------|
| Thermal Resistance, Junction to Case                                          | $R_{	heta JC}$ | 4.2 | °C/W |
| Thermal Resistance, Junction to Ambient                                       | $R_{	heta JA}$ | 75  | °C/W |
| Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds | TL             | 275 | °C   |

<sup>(1)</sup> Pulse Width  $\leq$  6.0 ms, Duty Cycle  $\leq$  50%.

### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Characteristic                                        | Symbol          | Min | Max | Unit |
|-------------------------------------------------------|-----------------|-----|-----|------|
| DC Current Gain                                       | h <sub>FE</sub> |     |     | _    |
| $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 0.2 \text{ Adc})$ |                 | 40  | 120 |      |
| $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 1.0 \text{ Adc})$ |                 | 20  | _   |      |
| (V <sub>CE</sub> = 1.0 Vdc, I <sub>C</sub> = 2.0 Adc) |                 | 20  | _   |      |

### (REPLACES D44C)



# **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise noted)

| Characteristic                                                                            | Symbol                          | Min | Тур   | Max | Unit |  |
|-------------------------------------------------------------------------------------------|---------------------------------|-----|-------|-----|------|--|
| OFF CHARACTERISTICS                                                                       |                                 |     |       |     |      |  |
| Collector Cutoff Current (V <sub>CE</sub> = Rated V <sub>CES</sub> , V <sub>BE</sub> = 0) | ICES                            | _   | _     | 0.1 | μА   |  |
| Emitter Cutoff Current (VEB = 5.0 Vdc)                                                    | I <sub>EBO</sub>                | _   | _     | 10  | μΑ   |  |
| ON CHARACTERISTICS                                                                        |                                 |     |       |     |      |  |
| Collector–Emitter Saturation Voltage (I <sub>C</sub> = 1.0 Adc, I <sub>B</sub> = 50 mAdc) | VCE(sat)                        | _   | 0.135 | 0.5 | Vdc  |  |
| Base–Emitter Saturation Voltage (I <sub>C</sub> = 1.0 Adc, I <sub>B</sub> = 100 mAdc)     | V <sub>BE</sub> (sat)           | _   | 0.85  | 1.3 | Vdc  |  |
| DYNAMIC CHARACTERISTICS                                                                   |                                 |     |       |     |      |  |
| Collector Capacitance<br>(V <sub>CB</sub> = 10 Vdc, f = 1.0 MHz)                          | C <sub>cb</sub>                 | _   | 125   | _   | pF   |  |
| Gain Bandwidth Product<br>(I <sub>C</sub> = 20 mA, V <sub>CE</sub> = 4.0 Vdc, f = 20 MHz) | fŢ                              | _   | 40    | _   | MHz  |  |
| SWITCHING TIMES                                                                           | SWITCHING TIMES                 |     |       |     |      |  |
| Delay and Rise Times (I <sub>C</sub> = 1.0 Adc, I <sub>B1</sub> = 0.1 Adc)                | t <sub>d</sub> + t <sub>r</sub> | _   | 50    | 75  | ns   |  |
| Storage Time<br>(I <sub>C</sub> = 1.0 Adc, I <sub>B1</sub> = I <sub>B2</sub> = 0.1 Adc)   | t <sub>S</sub>                  | _   | 350   | 550 | ns   |  |
| Fall Time<br>(I <sub>C</sub> = 1.0 Adc, I <sub>B1</sub> = I <sub>B2</sub> = 0.1 Adc)      | t <sub>f</sub>                  | _   | 50    | 75  | ns   |  |

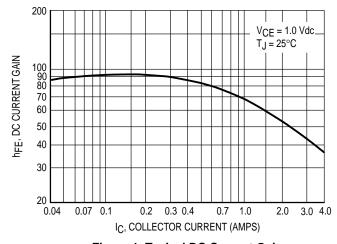
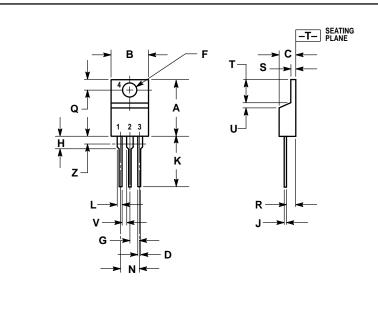




Figure 1. Typical DC Current Gain



Figure 2. Maximum Rated Forward Bias Safe Operating Area

## **PACKAGE DIMENSIONS**



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
  3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

|     | INCHES |       | MILLIN  | IETERS |
|-----|--------|-------|---------|--------|
| DIM | MIN    | MAX   | MIN MAX |        |
| Α   | 0.570  | 0.620 | 14.48   | 15.75  |
| В   | 0.380  | 0.405 | 9.66    | 10.28  |
| C   | 0.160  | 0.190 | 4.07    | 4.82   |
| ם   | 0.025  | 0.035 | 0.64    | 0.88   |
| F   | 0.142  | 0.147 | 3.61    | 3.73   |
| G   | 0.095  | 0.105 | 2.42    | 2.66   |
| Н   | 0.110  | 0.155 | 2.80    | 3.93   |
| 7   | 0.018  | 0.025 | 0.46    | 0.64   |
| K   | 0.500  | 0.562 | 12.70   | 14.27  |
| L   | 0.045  | 0.060 | 1.15    | 1.52   |
| N   | 0.190  | 0.210 | 4.83    | 5.33   |
| ø   | 0.100  | 0.120 | 2.54    | 3.04   |
| R   | 0.080  | 0.110 | 2.04    | 2.79   |
| S   | 0.045  | 0.055 | 1.15    | 1.39   |
| T   | 0.235  | 0.255 | 5.97    | 6.47   |
| J   | 0.000  | 0.050 | 0.00    | 1.27   |
| ٧   | 0.045  |       | 1.15    |        |
| Z   |        | 0.080 |         | 2.04   |

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

**CASE 221A-06** TO-220AB **ISSUE Y** 

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Application Employer.

How to reach us:

**USA/EUROPE**: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design\_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

**HONG KONG:** Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298



