DS4375-1.1

CLA90000 SERIES

HIGH DENSITY CMOS GATE ARRAYS

INTRODUCTION

The CLA90000 series is the latest family of gate arrays from GEC Plessey Semiconductors (GPS). It consists of 14 fixed-size arrays with the option of building larger optimized arrays up to 1.1 million gates for specific applications. This is primarily a high-density and low-power series, but also has low gate delays. As well as efficient silicon architecture, the CLA90000 series is easy to use with and without synthesis tools and comes with design utilities to provide customers with a faster time to market.

FEATURES

- Low power, 0.5µW/MHz/gate at 3V supply (NAND 2 loads)
- High density of 5,500 available gates/mm²
- 150ps gate delay for 2-input NAND with two loads (5V)
- Double- or triple-layer metal on a 0.6µ (drawn) process
- Operation from 2.7V to 5.5V
- 3V and 5V I/O capability on the same device
- Up to 512K available gates and 352 pads with fixed arrays
- Up to 1.1M available gates and 520 pads with optimized arrays
- Accurate delay modelling for gates and tracks with sign off quality CAE design libraries for QuickSim II and Verilog-XL
- Methodologies available for low clock skew
- Embedded RAM and ROM (check availability)
- Expanding range of GPS SytemBuilder[™] soft and hard cells for complex functions including 85C30, 8051, and 8251 devices
- Wide range of packaging options including Ball Grid Arrays
- Cells provided for efficient synthesis

BENEFITS

- Fast Customer Time To Market (TTM)
 - Ease of design with sign off quality CAE tools and utilities
 - SystemBuilder™ megacell libraries
 - Worldwide design centre support
 - Reliable prototype and production delivery
 - Two silicon sources
- Cost-effective solutions
 - Optimized silicon architecture for excellent silicon utilization
 - Statistical process control for optimum yield
 - High quality and reliability manufacture to MIL STD 883 methods and other industry recognised standards

OVERVIEW

The CLA90000 series product has a number of important elements to assist in meeting customer expectations.

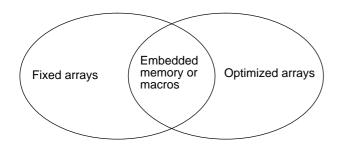
Silicon and process

This latest generation of gate arrays uses a 0.6μ process and meets its primary objectives of dense architecture and low power without compromising performance. Packing density is 5,500 available gates per mm², with utilization for three-layer metal typically exceeding 60% (random logic). Power consumption is low with both 5V and 3V supplies, reaching 0.5μ W/MHz/gate at 3V with two gate loads.

Ease of design

Ease of design is an important feature of this new product, as shown by the checking and verification utilities built into the GPS design kits. Accurate simulation is essential for good design, and the GPS pin to pin delay model algorithms help ensure first time success. Various design routes and industry-standard systems are available.

Cell Libraries


The third component of this series is the cell library, which is optimized for synthesis and includes an expanding range of soft and hard macros. Cells include basic logic, oscillators, JTAG controllers (check availability) and macros from the extensive SystemBuilder™ library such as microprocessors, memories, UARTs, and DSP elements, which improve time to market through a shorter design cycle. Embedded custom blocks can be inserted into a gate array to produce dense memory or other compact high performance components. Optimized arrays can offer gate array cycle times if a custom block is defined early in the design cycle.

Service

The important final element is the service GPS offers to customers. This complete service encompasses engineering expertise and advice through to fast delivery and world class quality and reliability standards.

ARRAY SIZES

CLA90000 consists of a series of fixed, embedded and optimized arrays that can be combined as shown below.

The fixed arrays are targeted at the majority of applications, and embedded cells and optimized arrays are available for applications that have a special technical or commercial requirement. Embedded cells and optimized arrays are as easy to design with as the fixed array bases, and have similar prototyping times provided custom cell definition or new array size is decided early in the design.

Usually, an embedded cell is the best option for a memory of 2k bits or more or a large hard macro like an ARM RISC microprocessor. An embedded cell uses the fixed array bases but with a section of the array removed to make space for the custom block. Optimized arrays are customized to the application and can be built with the required number of pads or gates, and can also include embedded cells.

Optimized arrays are most often used in medium- to high-volume applications where the larger engineering cost is balanced by lower production pricing. The GPS Semi-Custom Design Centres can advise on the best options for particular needs, from fixed gate arrays to standard cells. A wide range of packages is offered for both the fixed and optimized arrays, and all arrays offer the choice of commercial or military pad density. The lower pad density meets the need of MIL STD customers in terms of bond wire spacing specifications.

CLA90000 has a wide range of fixed array bases to offer a suitable array size for most applications, from low to high volume.

Fixed Gate Arrays

Array No.	No. of	Typical Utilization of Gates		Number of Pads	er of
Allay	Gates	2-layer metal	3-layer metal	High	Low#
CLA 901	21632	8700	13000	84	44
CLA 902	32768	13000	20000	100	52
CLA 903	57800	23000	35000	128	64
CLA 904	75272	30000	45000	144	72
CLA 905	95048	38000	57000	160	80
CLA 906	141512	57000	85000	192	96
CLA 907	168200	67000	101000	208	104
CLA 908	228488	91000	137000	240	120
CLA 909	262088	105000	157000	256	128
CLA 910	297992	119000	179000	272	136
CLA 911	336200	134000	202000	288	144
CLA 912	376712	151000	226000	304	152
CLA 913	419528	168000	252000	320	160
CLA 914	512072	205000	307000	352	176

Optimized Gate Arrays

Array	Max.	Typical Utilization of Gates		Max. Number of Pads	
Allay	Gates	2-layer metal	3-layer metal	High	Low#
*CLA9XX	1149128	460000	689000	520	264

^{*} optimized arrays available up to 1.1M gates.

MIL density pad spacing

Choosing an Array

To find the most suitable array for an application, refer to the array table on the left and find the smallest one that has enough pads, remembering to look at the correct pad density column and to include power and ground pads. If the array has enough gates, the design is 'pad limited', and will have spare gates. If the design needs more gates, and therefore a bigger array, it is 'gate limited' and will have spare pads.

If a special clock or power distribution scheme is required, three layer metal is often needed. Additional considerations are the number of I/O pins that can be tested by automatic test equipment. The locally based GPS Semi-Custom Design Centres will help resolve any testing issues.

If a design is pad limited, it requires the smallest array with sufficient pads. Two-layer metal (CLA prefix) is generally the most economical. If the selection process arrives at a gate limited design, it requires the smallest array with sufficient usable gates and three-layer metal (CLT prefix).

ARCHITECTURE

- Compact routable core cell
- Typical design/netlist reduced in silicon area by up to 50% over the previous gate array generation
- Utilization from 40% to 80% for triple-layer metal, depending on design topology
- Efficient register file RAM (using metal layers only) at 3 gates/bit
- Custom full layer (embedded) RAM option for larger memories

The gate array core cell was chosen after researching a number of different cell layouts. The core cell contains four transistors, two NMOS and two PMOS. These are built as one structure with a shared central source/drain region with the polysilicon gates independently available. This core cell layout gives efficient metal interconnections for a range of logic gates, flip-flops, and register file RAM, and also permits over-cell routing to increase gate utilization.

I/O ARRANGEMENT

- I/O cell options for 3V and 5V supply
- 3V and 5V I/O on the same device
- Slew rate control on outputs
- Excellent ESD protection to 4kV and good latch-up immunity to 200mA, meets STACK 0001 V12.1 and MIL STD 883
- PCI and PC CARD fully compatible I/Os (check availability)

A wide range of I/O cells is available, and each one has three forms to suit 3V, 5V, or mixed 3 and 5V operation. Also, each I/O cell can be individually configured as one of the following:

- Input
- Output
- Tristate output
- · Open drain output
- Open source output
- Bidirectional
- · Open drain bidirectional
- · Open source bidirectional

The I/O stage has a number of components used to construct the basic cells above, including pullup and pulldown resistor connections, TTL and CMOS compatible Schmitt input cells, level shifters, tristate drivers, and small transistors for oscillators. Cells can be chosen to configure various I/Os that work to industry-standard specifications.

The CLA90000 has four separate internal supply rails: one for the core, one for the buffer, and two for output areas of the chip. The buffer supply rail is completely isolated for very low noise. This offers the benefit of good noise immunity with multiple supply voltage capability to suit the application. The mixed 3 and 5V I/O capability can be used for power saving or interfacing with 3V and 5V systems.

Slew rate control is provided within the I/O output drive circuitry to minimize switching noise transients. This is a useful feature in larger designs, particularly where multiple high drive outputs switch simultaneously. It also reduces reflections from unterminated pc board tracks.

Electrostatic discharge (ESD) protection is built into the input and output cells, and has been designed to withstand in excess of 4kV (human body model). The structure and process is also highly resistant to latch-up and able to withstand forward bias currents in excess of 200mA.

CLOCK AND POWER DISTRIBUTION

- Low clock skew distribution strategies
- Power grid to minimise voltage drop

It is known in the industry that large, complex designs working at high speed are vulnerable to problems associated with poor clock and power distribution. The following sections indicate how GPS' design and layout methodology avoids these problems.

Clock Distribution

GPS has experience with a variety of layout methods to prevent clock skew problems. The preferred method is to use built-in clock grid generation and drive the clock grids with large buffers, which provides a reliable solution to clock distribution suitable for most designs. For all clock strategies, post-layout clock delays are extracted and fed back for resimulation. An example of one clock distribution method is illustrated below.

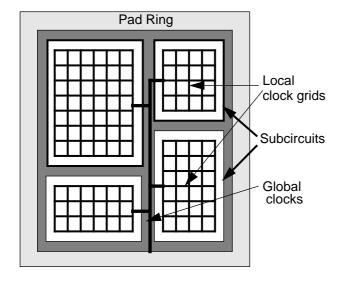


Figure 1 Example Clock Distribution

Power Distribution and Estimation

Software is available from GPS to construct grids for all array size options, including optimized arrays. This grid can use metal layers one and two for horizontal and vertical grids, and metal layer three may also be used on some larger arrays. Methods of implementation are available for use with flat layout, manual methods, or hierarchy. A simplified grid arrangement is shown below. In addition the CLA90000 series of arrays is supported by EPIC PowerMillTM power estimation software (check availability).

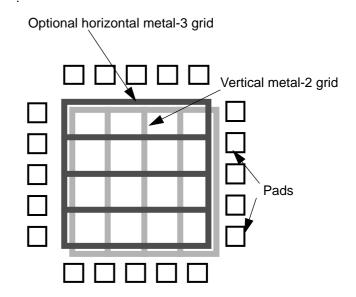


Figure 2 Power Grid

MANUFACTURING

- Class 10 clean room
- Advanced equipment including mini-environments and SMIF box transportation between processes
- SPC monitoring of all stages
- Vibration-free for reliable manufacture
- Two silicon sources

The CLA90000 product is manufactured near Plymouth, England in a purpose-built vibration-free factory for sub-micron process geometries. The factory uses the latest automated equipment for 8-inch wafers in class 10 clean room conditions and SMIF boxes are used for semi-automatic handling. Computer aided manufacture ensures production efficiency and the lowest possible defect level. In addition to the world class wafer fabrication facility, the probe and final test areas are equipped with the latest analog and digital testers. GEC Plessey Semiconductors is committed to continuous investment to provide state-of-the-art CMOS ASICs.

A qualified second source for this silicon process is available.

DESIGN SUPPORT

- Flexible design routes
- Proven right first time design
- Local design support

Design and layout support for the CLA90000 arrays is available from many local centres worldwide, each connected to our headquarters via high speed data links. A design centre engineer, as part of the GPS support team, is assigned to each customer circuit to give full assistance with all aspects of the design and to ensure a smooth and efficient design flow.

GPS offers two basic design routes, customer design and turnkey, to allow for varying types of customer interface while maintaining our responsibility to ensure first time working devices.

The design process incorporates a design audit procedure to verify compliance with customer specification and to ensure manufacturability. The procedure includes three review meetings with the customer held at key stages of the design. This is illustrated in the diagram on the next page.

Design review one: Held at the beginning of the design

cycle to check and agree on performance, packaging, specifications and

design timescales.

Design review two: Held after logic simulation but prior to

layout to ensure satisfactory functionality, timing performance, and ade-

quate fault coverage.

Design review three: Held after layout and post-layout sim-

ulation verification of satisfactory design performance after insertion of actual track loads. Final check of all device specifications before prototype

manufacture.

CAE Support

- Synthesis with Synopsys, Mentor or Cadence
- Sign-off simulation with Mentor or Cadence
- Full top-down design flow support
- Point tools supported, including Zycad
- Direct route to layout and test
- Advanced delay modelling and netlist checking

It is GPS policy to fully support industry-standard CAE systems that enable a customer to sign off their design without resimulation on a golden simulator. This has the benefit to the customer of not having to learn new tools, and to use the tools they prefer and are familiar with. There is no overhead in engineering effort or time taken rechecking simulation results.

GPS offers libraries for synthesis tools such as Mentor Autologic II, Cadence Synergy and Synopsys. This allows a full hierarchical or top-down approach to logic design. The GPS Universal Delay Compiler (UDC) is supplied with all design kits for advanced delay modelling and comprehensive netlist checking. The UDC matches Mentor native delay calculation.

The advanced features of the synthesis and simulation tools are used for nonlinear delay modelling for better simulation accuracy. This is implemented for optimum speed depending on the particular tool. Other advanced features are supported where they are available.

The information supplied by the customer in the approved CAE vendor format is used as a direct input to our internal tools that perform the layout and generate the test program.

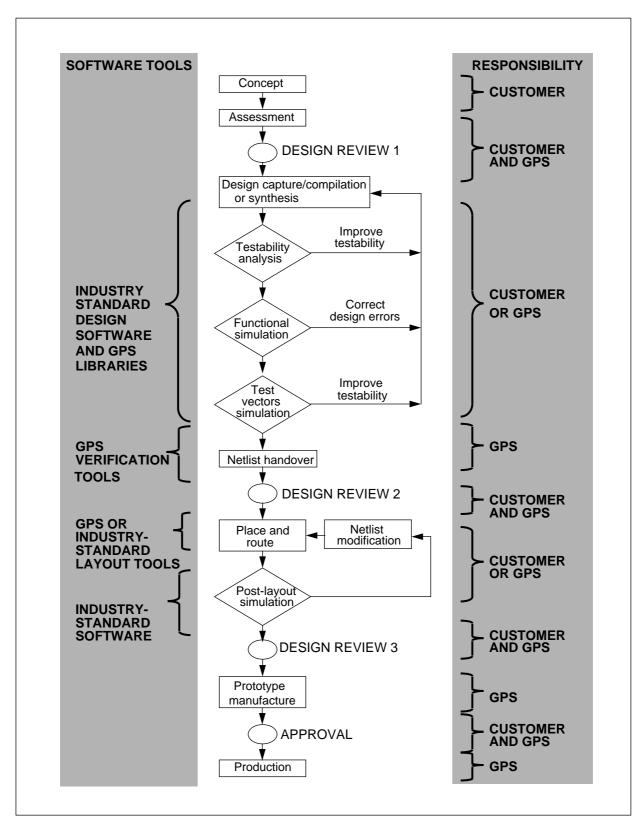


Figure 3 Design Flow

ADVANCED DELAY MODELLING

- Edge speed modelling
- Pin to pin timings
- Nonlinear delay modelling
- Accurate delay derating

Pin to Pin Delays

Delay models use times between individual input and output pins for both rising and falling delays, as illustrated below.

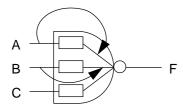


Figure 4 Delay Paths

The use of individual pin to pin delays, e.g. A to F and B to F, improves simulation accuracy as there can be considerable variation in delay between different input pins. For complex gates (e.g. AND-NOR gates or adders) the variation is up to 40%. For simple NAND and NOR logic gates the typical variation is 20%.

Nonlinear Curve Fitting

For fast input edges (0.5ns) delay time increases linearly with the output load, whereas for high output loads delay increases linearly with edge speed. Delays for slow input edges and light input loads do not follow the linear model, so a simple linear model cannot represent delays accurately. A more complex equation, which includes interaction between edge and load factors, is used to model delays for CLA90000.

THERMAL MANAGEMENT

- Lower power CMOS for improved thermal management
- 0.5µW/MHz/gate (3V supply 2-input NAND with 2 loads)
- Software constructed power grids for efficient power distribution
- Copper lead frame QFPs for lower thermal resistance
- High pinout power packages available

The increase in speed and density available through advanced CMOS processes results in a corresponding increase in power dissipation. Semicustom designers now have the ability to design circuits in excess of half a million usable gates, and chip power consumption is an important issue.

To meet the requirements of high speed, high gate count designs, GPS CLA90000 arrays offer low power factors and a selection of power packages for improved thermal management

QUALITY AND RELIABILITY

- Statistical process control used in manufacture
- Regular sample screening and reliability testing
- Screening to MIL and other recognized standards is available

At GPS, quality and reliability are built into the product by statistical control of all processing operations and by minimizing random uncontrolled effects in all manufacturing operations. Process management involves full documentation of procedures with recording of batch by batch data using computerized WIP tracking systems.

A common information management system is used to monitor the manufacturing of GPS CMOS processes and operations. All products benefit from the use of this integrated monitoring system resulting in the highest quality standards for all technologies.

Further information and reliability results are contained in the Quality MOS Brochure, available from GPS Sales Offices.

DERATING FOR VOLTAGE PROCESS AND TEMPERATURE

The following figures show how gate delay increases as supply voltage is reduced.

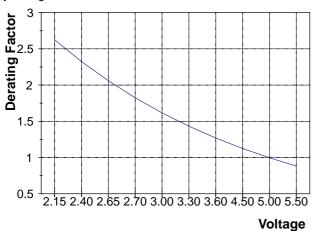


Figure 5 Derating for a 5V supply (5V normalised to 1)

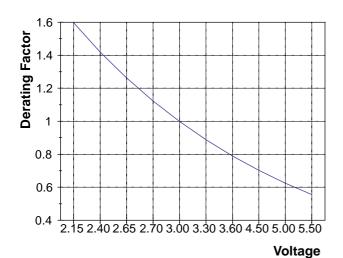


Figure 6 Derating for a 3V supply (3V normalised to 1)

Process Derating

Speed	Derating Factor	
slow	1.58	
typical	1.00	
fast	0.62	

Temperature Derating

Note that it is important to use the junction and not the ambient temperature for worst-case simulations.

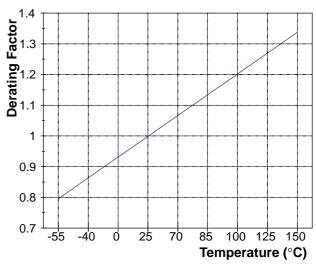


Figure 7 Temperature Derating

AC ELECTRICAL CHARACTERISTICS

For the CLA90000 series, one load unit (LU) is 17fF.

Typical Microcell Delays (ns) (25°C, 0.2ns input edge)

Gates		3	V	5'	
		34 fF (2LU)	68 fF (4LU)	34 fF (2LU)	68 fF (4LU)
INVX1	tpLH	0.24	0.34	0.16	0.23
	tpHL	0.12	0.17	0.09	0.11
NAND2X2	tpLH	0.18	0.23	0.13	0.16
	tpHL	0.15	0.19	0.10	0.12
NOR2x2	tpLH	0.31	0.41	0.20	0.26
	tpHL	0.10	0.13	0.07	0.09
SDF	tpLH	0.81	0.91	0.49	0.55
	tpHL	0.61	0.67	0.37	0.41

Typical I/O Delays (25°C, 0.2ns input edge)

I/O delays depend on the voltage of the device, i.e. all 5V I/O, all 3V I/O, or mixed 3V and 5V I/O. The tables below give example delays for each of these cases.

Example delays for 3V only I/O (ns)

Outputs			
50pF 100pF			
6mA	tpLH	4.16	6.20
bistate	tpHL	4.72	5.66
		100 pF	200 pF
12mA	tpLH	4.26	6.30
bistate	tpHL	4.75	5.68

Inputs				
	34fF (2 LU)	68fF (4 LU)		
tpLH	0.88	0.93		
tpHL	1.29	1.31		

Example delays for 5V only I/O (ns)

Outputs				
50pF 100pF				
12mA	tpLH	2.87	4.11	
bistate	tpHL	3.58	4.22	
		100pF	200pF	
24mA	tpLH	2.93	4.17	
bistate	tpHL	3.61	4.26	

Inputs				
	34fF (2 LU)	68fF (4 LU)		
tpLH	0.45	0.48		
tpHL	0.70	0.72		

Example delays for mixed 3V and 5V I/O (ns)

Delays for mixed 3 and 5V I/O are not the same as for single voltage designs because of level shifting stages.

3V I/O in a mixed 3V and 5V I/O design

Outputs			
50pF 100pF			100pF
6mA	tpLH	4.16	6.20
bistate	tpHL	4.72	5.66
		100pF	200pF
12mA	tpLH	4.25	6.29
bistate	tpHL	4.75	5.68

Inputs				
	68fF 136fF			
tpLH	0.79	0.82		
tpHL	0.82	0.86		

5V I/O in a mixed 3V and 5V I/O design.

Outputs			
50pF 100pF			
12mA	tpLH	4.01	5.25
bistate	tpHL	3.68	4.33
		100pF	200pF
24mA	tpLH	4.14	5.38
bistate	tpHL	3.74	4.39

Inputs				
	34fF	68fF		
tpLH	0.45	0.48		
tpHL	0.70	0.72		

DC ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Supply voltage	-0.5	7.0	V
Input voltage	-0.5	V _{DD} +0.5	V
Output voltage	-0.5	V _{DD} +0.5	V
Static discharge voltage (HBM)		4	kV
Storage temperature			
Ceramic	-65	150	°C
Plastic	-55	150	°C

Exceeding the absolute maximum ratings may cause permanent damage to the device. Extended exposure at the maximum ratings will affect device reliability.

HBM stands for Human Body Model.

Normal Operating Conditions

Parameter	Min.	Max.	Units
Supply voltage	2.7	5.5	V
Input voltage	V _{SS}	V _{DD}	V
Output voltage	V _{SS}	V_{DD}	V
Current per pad		100	mA
Junction temperature			
Ceramic package	-55	+150	°C
Plastic package	-55	+125	°C
Ambient temperature			
Commercial grade	0	70	°C
Industrial grade	-40	85	°C
Military grade	-55	125	°C

Neither performance nor reliability is guaranteed outside these limits. Extended operation above these limits may affect device reliability.

Input Switching Thresholds

All characteristics are for temperatures between -55 and 150°C (junction temperature).

Characteristic	Symbol		Value		Unit	Conditions
		Min.	Тур.	Max.		
CMOS Schmitt - CS						$4.5 \le V_{DD} \le 5.5V$
Input low voltage	V _{IL}			0.2V _{DD}	V	
Input high voltage	V _{IH}	0.7V _{DD}			V	
Hysteresis	V _H	400			mV	
TTL Schmitt - TS						4.5 ≤ V _{DD} ≤ 5.5V
Input low voltage	V _{IL}			0.8	V	
Input high voltage	V _{IH}	2.0			V	
Hysteresis	V _H	300			mV	
Low voltage Schmitt - BS/NS						$2.7 \le V_{DD} \le 3.3V$
Input low voltage	V _{IL}			0.2V _{DD}	V	
Input high voltage	V _{IH}	2.0			V	
Hysteresis	V _H	300			mV	

Note: CS cells are 5V CMOS compatible, TS cells are 5V TTL compatible and all other cells are 3V compatible.

Output Voltages and Currents

All characteristics are for temperatures between -55 and 150 $^{\circ}\text{C}$ (junction temperature).

Characteristic	Symbol	Value			Unit	Conditions
		Min.	Тур.	Max.	1	
High output voltage						$2.7 \le V_{DD} \le 3.3V$
All outputs	V _{OH}		V _{DD} -0.05		V	$I_{OH} = -1\mu A$
01N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -0.5 \text{mA}$
02N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -1mA$
03N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -2mA$
06N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -4mA$
12N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -8mA$
Low output voltage						$2.7 \leq V_{DD} \leq 3.3V$
All outputs	V _{OL}		V _{SS} +0.05		V	$I_{OL} = 1\mu A$
01N	V _{OL}		0.2	0.4	V	$I_{OL} = 1mA$
02N	V _{OL}		0.2	0.4	V	$I_{OL} = 2mA$
03N	V _{OL}		0.2	0.4	V	$I_{OL} = 3mA$
06N	V _{OL}		0.2	0.4	V	$I_{OL} = 6mA$
12N	V _{OL}		0.2	0.4	V	$I_{OL} = 12mA$
High output voltage						$4.5 \le V_{DD} \le 5.5V$
All outputs	V _{OH}		V _{DD} -0.05		V	$I_{OH} = -1\mu A$
01N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	I _{OH} = -2mA
02N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -4mA$
03N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -6mA$
06N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -12mA$
12N	V _{OH}	0.8V _{DD}	0.9V _{DD}		V	$I_{OH} = -24mA$
Low output voltage						$4.5 \le V_{DD} \le 5.5V$
All outputs	V _{OL}		V _{SS} +0.05		V	$I_{OL} = 1\mu A$
01N	V _{OL}		0.2	0.4	V	$I_{OL} = 2mA$
02N	V _{OL}		0.2	0.4	V	$I_{OL} = 4mA$
03N	V _{OL}		0.2	0.4	V	$I_{OL} = 6mA$
06N	V _{OL}		0.2	0.4	V	I _{OL} = 12mA
12N	V _{OL}		0.2	0.4	V	$I_{OL} = 24mA$

Short Circuit Currents

All characteristics are for temperatures between -55 and 150°C (junction temperature).

Characteristic	Sym.		Value		Unit	Conditions
		Min.	Тур.	Max.		
Output short circuit current						$V_{DD} = 5.5V$
01N	Ios	20		60	mA	$V_O = V_{DD}$
02N	I _{os}	40		120	mA	
03N	I _{OS}	50		160	mA	
06N	I _{OS}	100		300	mA	
12N	I _{OS}	190		560	mA	
Output short circuit current						V _{DD} = 5.5V
01N	I _{OS}	-10		-36	mA	$V_O = V_{SS}$
02N	I _{OS}	-20		-70	mA	
03N	I _{OS}	-30		-100	mA	
06N	I _{OS}	-55		-190	mA	
12N	I _{OS}	-100		-340	mA	
Output short circuit current						$V_{DD} = 3.6V$
01N	I _{OS}	8		35	mA	$V_O = V_{DD}$
02N	I _{OS}	16		70	mA	
03N	I _{OS}	20		100	mA	
06N	I _{OS}	40		185	mA	
12N	I _{OS}	80		350	mA	
Output short circuit current						V _{DD} = 3.6V
01N	I _{OS}	-3		-20	mA	$V_O = V_{SS}$
02N	I _{OS}	-6		-35	mA	
03N	I _{OS}	-9		-55	mA	
06N	I _{OS}	-18		-95	mA	
12N	los	-36		-190	mA	

Operating Power

All characteristics are for temperatures between -55 and 150°C (junction temperature).

Operating power	P _{DD}	0.5	μW/	V _{DD} = 3V, note 1
		1.3	MHz	V _{DD} = 5V, note 1

Note 1: For NAND2 with two standard loads.

CELL LIBRARY

- Comprehensive range of microcells
- Extensive SystemBuilder[™] library of complex functions
- Software generated gate array RAM
- High performance embedded RAM available
- JTAG controller (check availability)

A comprehensive cell library is available for the CLA90000 series including cells for specific applications.

The library is being continually expanded, so please check with your local GPS representative for the latest additions.

Register file RAM

GPS design kits feature a simple and powerful software tool called the paracell model generator (PMG) that can generate either single or dual port RAM with a minimum size of 8 words x 2 bits and a maximum of 256 words x 64 bits. Memory speeds and number of gates uses are summarized in the table below for a typical single-port RAM operating at 5V, 25° C.

Size	Read Access	Write Cycle	Size		
OIZC	(ns)	(ns)	gates	mm ²	
24 words x 4 bits	2.60	3.21	696	0.128	
256 words x 8bits	11.48	6.31	9918	1.828	
256 words x 64bits	12.20	11.22	53766	9.910	

Embedded RAM

Embedded RAM meets requirements for high density and high performance. Word length can be from 4 to 64 bits and maximum memory size is 64 kbits. The table below is for a typical embedded RAM operating at 5V, 25°C.

Size	Read Access (ns)	Write Cycle (ns)	Size (mm²)
24 words x 4 bits	3.3	3.7	0.111
256 words x 8bits	3.4	3.9	0.423
256 words x 64bits	4.0	4.7	2.059
8192 words x 8 bits	4.2	5.8	6.158

SystemBuilderTM Cells

Name	Function	Approx. No. of Gates
M85C30	Two channel enhanced Serial Communications Controller (SCC) with FIFOs	18100
M82530	Two channel enhanced Serial Communications Controller (SCC)	13400
MFDC	High performance PC-compatible floppy disk controller (82077SL) with M765A core	11500
M765A	Extended features floppy disk controller core for FM and MFM formats	10200
M8051	High performance industry-compatible 8-bit microcontroller, 2 timers, serial I/O	*8700
M8237A	General purpose programmable four channel DMA Controller	4100
M8042	8-bit peripheral interface microcontroller with timer (slave microcontroller)	*3700
M8048	Compact embedded industry-compatible 8-bit microcontroller with timer	*3700
M8254	Extended feature three channel Programmable Interval Timer (PIT)	3600
M8253	General purpose three channel Programmable Interval Timer (PIT)	3100
M6845	General purpose programmable CRT Controller	2900
M8251A	Universal Synchronous/Asynchronous Receiver/ Transmitter (USART)	2400
M16C450	Universal Synchronous/Asynchronous Receiver/ Transmitter (UART) (PC-compatible)	2200
M146818	Ultra low power real-time clock with up to 114 bytes of RAM	*2200
M8250B	Universal Asynchronous Receiver/ Transmitter (UART) (PC-compatible)	2200
M8259A	Eight channel cascadable Programmable Interrupt Controller (PIC)	1800
M8490	SCSI for 5380 compatible asynchronous SCSI interfacing	1600
M91C360	High margin floppy and tape data separator for data rates up to 1.25Mbit/s	1400
M8255	General purpose Programmable Peripheral Interface (PPI)	1200
M91C36	High margin floppy disk data separator for data rates up to 1.25Mbit/s	1200
M8868A	Compact UART with configurable data formats	840
M6402	Compact UART with configurable data formats	830
M8288	Bus controller for 8086 and 8088 microprocessors	270
M82288	Bus controller for 80286 microprocessors	230
M82289	Bus arbiter for 80286 microprocessors, supports IEEE-796	200
M82C84A	Clock generator and ready I/F for 8086 and 8088 microprocessors	70
M82C284	Clock generator and ready I/F for 80286 microprocessors	70
MxADD	Fast adder set for 8, 16 and 32 bit DSP functions	140, 260 and 520
MxMPY	Multiplier set for 8x8, 16x16 and 32x32 bit DSP functions	880, 3700 and 14300
MxBRL	Barrel shifter set for 8, 16 and 32 bit DSP functions	80, 170 and 420
MxCOMP	Comparator set for 4, 8, 16 and 32 bit DSP functions	60, 100, 200 and 350

^{*}Excluding RAM and ROM.

AND Gates

Cell Name	
Jon Hamo	Cell Function
AND2	2-input AND x1drive
AND2X2	2-input AND x 2drive
AND2X4	2-input AND x4 drive
AND3	3-input AND x1 drive
AND3X2	3-input AND x2 drive
AND3X4	3-input AND x4 drive
AND4	4-input AND x1 drive
AND4X2	4-input AND x2 drive
AND4X4	4-input AND x4 drive
AND5	5-input AND x1 drive
AND5X2	5-input AND x2 drive
AND6	6-input AND x1 drive
AND6X2	6-input AND x2 drive
AND8	8-input AND x1 drive
AND8X2	8-input AND x2 drive

OR Gates

Cell Name	Cell Function
OR2	2-input OR x1 drive
OR2X2	2-input OR x2 drive
OR2X4	2-input OR x4 drive
OR3	3-input OR x1 drive
OR3X2	3-input OR x2 drive
OR3X4	3-input OR x4 drive
OR4	4-input OR x1 drive
OR4X2	4-input OR x2 drive
OR4X4	4-input OR x4 drive
OR5	5-input OR x1 drive
OR5X2	5-input OR x2 drive
OR6	6-input OR x1 drive
OR6X2	6-input OR x2 drive
OR8	8-input OR x1 drive
OR8X2	8-input OR x2 drive

NAND Gates

Cell Name	Cell Function
NAND2	2-input NAND x1 drive
NAND2X2	2-input NAND x2 drive
NAND2X4	2-input NAND x4 drive
NAND3	3-input NAND x1 drive
NAND3X2	3-input NAND x2 drive
NAND4	4-input NAND x1 drive
NAND4X2	4-input NAND x2 drive
NAND5	5-input NAND x1 drive
NAND5X2	5-input NAND x2 drive
NAND6	6-input NAND x1 drive
NAND6X2	6-input NAND x2 drive
NAND8	8-input NAND x1 drive
NAND8X2	8-input NAND x2 drive
NAND4 NAND4X2 NAND5 NAND5X2 NAND6 NAND6X2 NAND8	4-input NAND x1 drive 4-input NAND x2 drive 5-input NAND x1 drive 5-input NAND x2 drive 6-input NAND x1 drive 6-input NAND x2 drive 8-input NAND x1 drive

NOR Gates

Cell Name	Cell Function
NOR2	2-input NOR x1 drive
NOR2X2	2-input NOR x2 drive
NOR2X4	2-input NOR x4 drive
NOR3	3-input NOR x1 drive
NOR3X2	3-input NOR x2 drive
NOR4	4-input NOR x1 drive
NOR4X2	4-input NOR x2 drive
NOR5	5-input NOR x1 drive
NOR5X2	5-input NOR x2 drive
NOR6	6-input NOR x1 drive
NOR6X2	6-input NOR x2 drive
NOR8	8-input NOR x1 drive
NOR8X2	8-input NOR x2 drive

AND-OR-INVERTER Gates

Cell Name	Cell Function
A2DO2I	2-2 AOI x1 drive
A2DO2IX2	2-2 AOI x2 drive
A2O2I	2-1 AOI x1 drive
A2O2IX2	2-1 AOI x2 drive
A2O3I	2-1-1 AOI x1 drive
A2O3IX2	2-1-1 AOI x2 drive
A2DO3I	2-2-1 AOI x1 drive
A2DO3IX2	2-2-1 AOI x2 drive
A3O2I	3-1 AOI x1 drive
A3O2IX2	3-1 AOI x2 drive
A3DO2I	3-3 AOI x1 drive
A3DO2IX2	3-3 AOI x2 drive
A2TO3I	2-2-2 AOI x1 drive
A2TO3IX2	2-2-2 AOI x2 drive
AOAI	AOAI x1 drive
AOAIX2	AOAI x2 drive

OR-AND-INVERTER Gates

Cell Name Cell Function O2DA2I 2-2 OAI x1 drive O2DA2IX2 2-2 OAI x2 drive O2A2I 2-1 OAI x1 drive O2A2IX2 2-1 OAI x2 drive O2A3I 2-1-1 OAI x1 drive O2A3IX2 2-1-1 OAI x2 drive O2DA3I 2-2-1 OAI x1 drive
O2DA2IX2 2-2 OAI x2 drive O2A2I 2-1 OAI x1 drive O2A2IX2 2-1 OAI x2 drive O2A3I 2-1-1 OAI x1 drive O2A3IX2 2-1-1 OAI x2 drive
O2A2I 2-1 OAI x1 drive O2A2IX2 2-1 OAI x2 drive O2A3I 2-1-1 OAI x1 drive O2A3IX2 2-1-1 OAI x2 drive
O2A2IX2 2-1 OAI x2 drive O2A3I 2-1-1 OAI x1 drive O2A3IX2 2-1-1 OAI x2 drive
O2A3I 2-1-1 OAI x1 drive O2A3IX2 2-1-1 OAI x2 drive
O2A3IX2 2-1-1 OAI x2 drive
Ω2DΔ3I 2-2-1 ΩΔI x1 drive
22 TO/TEXT UTIVE
O2DA3IX2 2-2-1 OAI x2 drive
O3A2I 3-1 OAI x1 drive
O3A2IX2 3-1 OAI x2 drive
O3DA2I 3-3 OAI x1 drive
O3DA2IX2 3-3 OAI x2 drive
O2TA3I 2-2-2 OAI x1 drive
O2TA3IX2 2-2-2 OAI x2 drive
OAOI OAOI x1 drive
OAOIX2 OAOI x2 drive

Exclusive OR and Adder Cells

Cell Name	Cell Function	
EXNOR	Exclusive NOR x1 drive	
EXNORX2	Exclusive NOR x2 drive	
EXOR	Exclusive OR x1 drive	
EXORX2	Exclusive OR x2 drive	
EXNOR3	3-input Exclusive NOR x1 drive	
EXNOR3X2	3-input Exclusive NOR x2 drive	
EXOR3	3-input Exclusive OR x1 drive	
EXOR3X2	3-input Exclusive OR x2 drive	
FADD	Full adder x1 drive	
FADDX2	Full Adder x2 drive	
FADD2	2 bit Full adder x1 drive	
FADD2X2	2 bit Full adder x2 drive	
HADD	Half adder x1 drive	
HADDX2	Half adder x2 drive	
INCR	Increment x1 drive	
DECR	Decrement x1 drive	

Noninverting Buffers

Cell Name	Cell Function
BUFX1	Noninverting buffer x1 drive
BUFX3	Noninverting buffer x3 drive
BUFX7	Noninverting buffer x7 drive

Inverting Buffers

Cell Name	Cell Function
INVX1	Inverting buffer x1 drive
INVX2	Inverting buffer x2 drive
INVX4	Inverting buffer x4 drive
INVX6	Inverting buffer x6 drive
INVX8	Inverting buffer x8 drive

Tristate Buffers

Cell Name	Cell Function
BDRX1	Tristate noninv buffer active low enable x1 drive
BDRX2	Tristate noninv buffer active low enable x2 drive
BDRX4	Tristate noninv buffer active low enable x4 drive
BDRX8	Tristate noninv buffer active low enable x8 drive

Multiplexers

Cell Name	Cell Function	
MUX2T1	2-1 MUX non-inverting x1 drive	
MUX2T1X2	2-1 MUX non-inverting x2 drive	
MUX4T1	4-1 MUX non-inverting x1 drive	
MUX4T1X2	4-1 MUX non-inverting x2 drive	
MUX8T1	8-1 MUX non-inverting x1 drive	
MUX8T1X2	8-1 MUX non-inverting x2 drive	

D-type Flip-Flops

Cell Name	Cell Function	
SDF	DFF x1 drive	
SDFS	DFF with SET x1 drive	
SDFR	DFF with CLEAR x1 drive	
SDFRS	DFF with SET and CLEAR x1 drive	
SMDF	MUX DFF x1 drive	
SMDFS	MUX DFF with SET x1 drive	
SMDFR	MUX DFF with CLEAR x1 drive	
SMDFRS	MUX DFF with SET and CLEAR x1 drive	

Transparent Latches

Cell Name	Cell Function	
SDL	D latch active high enable x1	
SDLR	D latch with clear active high enable x1	
SMDL	Mux D latch active high enable x1	
SRLATCH	Set reset latch	

Special Cells

Cell Name	Cell Function
DELAY	Delay cell
BHOLD	Bus hold
OSC32K	32kHz crystal oscillator
OSCMID	1MHz to 10MHz crystal oscillator
OSCHIGH	10MHz to 16MHz crystal oscillator
OSCVHIGH	16MHz to 25MHz crystal oscillator
SPRF	Single port register file memory
DPRF	Dual port register file memory

I/O Cells

The cell library contains an extensive range of I/Os. Each I/O cell occupies one I/O location and can be configured as an input, output or bidirectional, and has one pad associated with it. The output section of the I/O cell is configurable to one of four options: open drain, open source, tristate, or push-pull by suitable connection of the D and T inputs. Each cell has a program pin that controls the slew rate of the output signal.

PACKAGING

- Wide range of surface mount and through board packages
- Various MQFP and ball grid array styles to international and JEDEC standards
- Ceramic equivalents to most plastic packages for fast prototyping
- Ongoing commitment to new package development

PACKAGING OPTIONS

The package style and pin count information is intended only as a guide. Detailed package specifications are available from GPS Design Centres on request. New packages are being continually introduced, so if a particular package is not listed, please enquire through your GPS sales representative.

The tables below list preferred array size to package combinations. A stock is held of the preferred packages to ensure a fast prototype assembly turn around. Alternative array size to package combinations are available, but not always stocked.

The following tables show available packages

Available	
Check availability	

High Density Pad Array Production Packaging Options

Metric Quad Flat Pack (Commercial Pad Pitch)

Name	Body	Pitch	901	905	903	904	902	906	206	806	606	910	911	912	913	914
GP44	10x10x2	08.0														
FP48	7x7x1.4	0.50														
GP52	10x10x2	0.65														
FP64	10x10x1.4	0.50														
GP64	14x14x2.8	08.0														
GQG64	14x20x2.8	1.00														
GP80	14x20x2.8	08.0														
GP80	14x14x1.4	0.65														
GQC80	14x14x2	0.65														
FP100	14x14x1.4	0.50														
FP100	14x14x2	0.50														
GP100	14x20x2.8	0.65														
GP120	28x28x3.4	08.0														
FP128	14x14x1.4	0.40														
GP128	28x28x3.4	08.0														
FP144	20x20x1.4	0.50														
GP144	28x28x3.4	0.65														
GP160	28x28x3.4	0.65														
FP176	24x24x1.4	09.0														
FP208	28x28x3.4	0.50														
FP240	32x32x3.4	09.0														
FP304	40x40x3.8	0.50														
TP48	7x7x1.0	0.50														
TP64	10x10x1	09.0														
TP100	14x14x1.0	09.0														
TP128	14x14x1.0	0.50														
TP144	20x20x1.0	0.50														

Power Quad 2, Commercial Pad Pitch

914							
913							
912							
911							
910							
606							
806							
206							
906							
902							
904							
903							
905							
901							
Pitch	0.65	08.0	0.80	0.65	0.50	0.50	0.50
Body	14x20x2.8	28x28x3.4	28x28x3.4	28x28x3.4	28x28x3.4	32x32x3.4	40x40x3.8
Name	GH100	GH120	GH128	GH160	GH208	GH240	GH304

Power Quad 4, Commercial Pad Pitch

All dimensions are in mm.

914							
913							
912							
911							
910							
606							
806							
907							
906							
902							
904							
903							
902							
901							
Pitch	0.65	0.80	0.80	0.65	0.50	0.50	0.50
Body	14x20x2.8	28x28x3.4	28x28x3.4	28x28x3.4	28x28x3.4	32x32x3.4	40x40x3.8
Name	GH100	GH120	GH128	GH160	GH208	GH240	GH304

Prototypes for MQFP/TQFP/PowerQuad, Commercial Pad Pitch

9																					
913																					
912																					
911																					
910																					
606																					
806																					
907																					
906																					
902																					
904																					
903																					
902																					
901																					
Pitch	0.80	0.50	0.65	0.50	1.00	1.00	08.0	08.0	0.65	0.50	0.65	08.0	08.0	0.50	0.65	0.50	0.65	0.50	0.50	0.50	0.50
dy	0x3.2	TBA	0x3.2	0x3.2	0x2.8	0x2.8	4x2.8	0x2.8	4x2.8	4x2.8	0x2.8	3x3.6	3x3.6	×TBA	3x3.6	0x3.6	3x3.6	×TBA	x4.05	2x3.6	3x3.6
Body	10x10x3	7x7xTBA	10x10x3	10x10x3	14x20x2.	14x20x2	14x14x2	14x20x2	14x14x2	14x14x2	14x20x2	28x28x3	28x28x3	14x14xTBA	28x28x3	20x20x3	28x28x3	24x24xTBA	28x28x4.05	32x32x3	40x40x3
Name	GGA44	FG48	GGA52	FGA64	GGC64	GGC64	GG64	GGC80	GGB80	FGB100	GGC100	GGD120	GGD128	FG128	GGD144	FGN144	GGD160	FG176	FGD208	FGF240	FGG304

TBA: To be advised

PLCC, Commercial Pad Pitch

All dimensions are in inches.

914			
913			
912			
911			
910			
606			
806			
206			
906			
902			
904			
903			
902			
901			
Pitch	0.05	90'0	0.05
Body	0.65x0.65x0.18	0.95x0.95x0.2	1.15x1.15x0.2
Name	HP44	HP68	HP84

Prototypes for PLCC, Commercial Pad Pitch

All dimensions are in inches.

Name Body Pitch 901 902 905 906 907 908 909 910 911 912 913 914 914 915 914 915 914 914 914 915 914							
Pitch 901 902 903 904 905 907 908 909 910 911 912 913 0.05 <th>914</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	914						
Pitch 901 902 903 906 907 908 909 910 911 0.05 <th>913</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	913						
Pitch 901 902 903 904 905 906 907 908 909 910 0.05 <th>912</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	912						
Pitch 901 902 903 904 905 906 907 908 909 0.05 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Pitch 901 902 903 904 905 906 907 908 0.05	910						
Pitch 901 902 903 904 905 906 907 0.05 0.05 0.05	606						
Pitch 901 902 903 904 905 906 907 </th <th>806</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	806						
Pitch 901 902 903 904 905 0.05 0.05 0.05 0.05 0.05	206						
Pitch 901 902 903 904 0.05 n n n n	906						
Pitch 901 902 903 0.05	902						
Pitch 901 902 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	904						
901 0.05 0.05 0.05 0.05 0.05	903						
0.05 0.05 0.05 0.05 0.05	902						
	901						
Name Body HC44 0.65x0.65x0.14 HCA44 0.65x0.65x0.14 HCA68 0.95x0.95x0.14 HCA68 0.95x0.95x0.14 HCA84 1.15x1.15x0.14 HCA84 1.15x1.15x0.14	Pitch	0.05	0.05	0.05	0.05	0.05	0.05
Name HC44 HCA44 HCA68 HCA84 HCA84	Body	0.65x0.65x0.14	0.65x0.65x0.14	0.95x0.95x0.14	0.95x0.95x0.14	1.15x1.15x0.14	1.15x1.15x0.14
	Name	HC44	HCA44	HCA68	HCA68	HCA84	HCA84

Plastic BGA, Commercial Pad Pitch

914				
913				
912				
911				
910				
606				
806				
907				
906				
902				
904				
903				
905				
901				
Pitch	1.50	1.50	1.27	1.27
Body	23x23x2.33	27x27x2.33	BP313 35x35x2.33	35x35x2.3
Name	BP169	BP225	BP313	BP352

Note: The pitch of the BP313 package is staggered.

Prototypes for Plastic BGA, Commercial Pad Pitch

All dimensions are in mm.

Name	Body	Pitch	901	902	903	904	902	906	206	806	606	910	911	912	913	914
BC169	23x23x2.33	1.50														
BC225	27x27x2.33	1.50														
BC313	35x35x2.33	1.27														
BC352	35x35x2.3	1.27														

Note: The pitch of the BC313 package is staggered.

Leaded Ceramic Chip Carrier (LdCC), Power LdCC Military Pad Pitch

913 914										
911 912										
910										
606										
806 206										
06 906										
302										
904										
903										
1 902										
901										
Pitch	0.025"	0.025″	0.025"	0.025"	0.025"	0.025"	0.025"	0.025" 0.025" 0.025"	0.025" 0.025" 0.025" 0.5mm	0.025" 0.025" 0.025" 0.5mm 0.5mm
Body	0.95x0.95x0.1"	0.95x0.95x0.13"	1.15x1.15x0.11"	1.15x1.15x0.14"	1.15x1.15x0.14" 1.35x1.35x0.11"	1.15x1.15x0.14" 1.35x1.35x0.11" 1.35x1.35x0.14"	1.15x1.15x0.14" 1.35x1.35x0.11" 1.35x1.35x0.14"	1.15x1.15x0.14" 1.35x1.35x0.11" 1.35x1.35x0.14" 37x37x3mm	1.15x1.15x0.14" 1.35x1.35x0.11" 1.35x1.35x0.14" 37x37x3mm 37x37x3.8mm	1.15x1.15x0.14" 1.35x1.35x0.11" 1.35x1.35x0.14" 37x37x3mm 44x44x3.8mm
Name	YCA132	YCP132	YCA172	YCP172	YCP172 YCA196	YCP172 YCA196 YCP196	YCP172 YCA196 YCP196	YCP172 YCA196 YCP196 YCA256	YCP172 YCA196 YCP196 YCA256	YCP172 YCA196 YCP196 YCA256 YCP256

TBA: To be advised

PGA, Power PGA Military Pad Pitch

All dimensions are in inches.

PRIMARY SEMI-CUSTOM DESIGN CENTRES

UNITED KINGDOM: Swindon, Tel: (01793) 518000 Fax: (01793) 518411. **UNITED STATES OF AMERICA**: San Jose, CA, Tel: (408) 451-4700 Fax: (408) 451-4710. Irvine, CA, Tel: (714) 852-3900 Fax: (714) 852-3910. Boston, MA, Tel: (617) 251-0100 Fax: (617) 251-0104. **FRANCE**: Les Ulis Cedex, Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07. **GERMANY**: Munich, Tel: (089) 3609 06 0 Fax: (089) 3609 06 55. **JAPAN**: Tokyo, Tel: (03) 5276-5501 Fax: (03) 5276-5510.

HEADQUARTERS OPERATIONS

GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom. Tel: (01793) 518000 Fax: (01793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America. Tel: (408) 438 2900 Fax: (408) 438 5576

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07
- **GERMANY** Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
- ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933
- NORTH AMERICA Scotts Valley, USA Tel (408) 438 2900 Fax: (408) 438 7023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
 SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- SWEDEN Stockholm 1ei: 46 8 702 97 70 Fax: 46 8 640 47 36
 TAIWAN, ROC Taipei Tel: 886 2 5461260. Fax: 886 2 7190260
- UK, EIRE, DENMARK, FINLAND & NORWAY

Swindon Tel: (01793) 518527/518566 Fax: (01793) 518582 These are supported by Agents and Distributors in major countries worldwide

© GEC Plessey Semiconductors 1996 Publication No. DS4375 Issue No. 1.1 February 1996 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN THE UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.