
BYT 11-600 →1000

FAST RECOVERY RECTIFIER DIODES

- SOFT RECOVERY
- VERY HIGH VOLTAGE
- SMALL RECOVERY CHARGE

APPLICATIONS

- ANTISATURATION DIODES FOR TRANSIS-TOR BASE DRIVE
- SNUBBER DIODES

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{FRM}	Repetive Peak Forward Current	20	Α	
I _{F (AV)}	Average Forward Current *	1	А	
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	35	А
P _{tot}	Power Dissipation *	1.25	W	
T _{stg} Tj	Storage and Junction Temperature Range	- 55 to + 150 - 55 to + 150	°C	
TL	Maximum Lead Temperature for Soldering during from Case	230	°C	

Symbol	Parameter		Unit		
	i arameter	600	800	1000	Ot
V_{RRM}	Repetitive Peak Reverse Voltage	600	800	1000	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j - a)}	Junction-ambient*	60	°C/W

^{*} On infinite heatsink with 10mm lead length.

November 1994 1/4

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol		Test Conditions	Min.	Тур.	Max.	Unit
I _R	T _j = 25°C	$V_R = V_{RRM}$			20	μΑ
V _F	T _j = 25°C	I _F = 1A			1.3	٧

RECOVERY CHARACTERISTICS

Symbol		Test	Min.	Тур.	Max.	Unit		
t _{rr}	T _j = 25°C	$I_{F} = 0.5A$	$I_R = 1A$	$I_{rr} = 0.25A$			100	ns

To evaluate the conduction losses use the following equations:

 $V_F = 1.1 + 0.075 I_F$

 $P = 1.1 \times I_{F(AV)} + 0.075 I_{F}^{2}(RMS)$

Figure 1. Maximum average power dissipation versus average forward current.

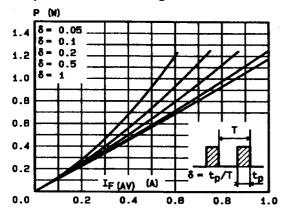


Figure 2. Average forward current versus ambient temperature.

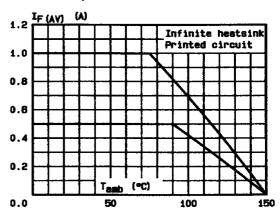
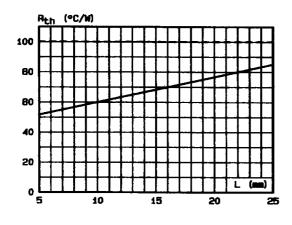



Figure 3. Thermal resistance versus lead length.

Mounting n°1
INFINITE HEATSINK

Mounting n°2 PRINTED CIRCUIT

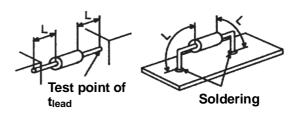


Figure 4. Transient thermal impedance junction-ambient for mounting n^2 versus pulse duration (L = 10 mm).

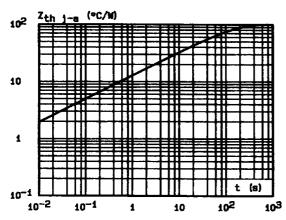


Figure 5. Peak forward current versus peak forward voltage drop (maximum values).

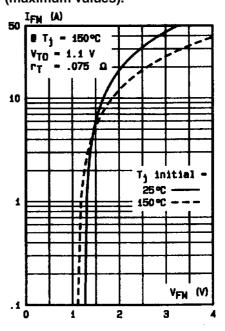


Figure 6. Capacitance versus reverse applied voltage

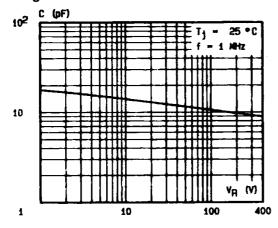
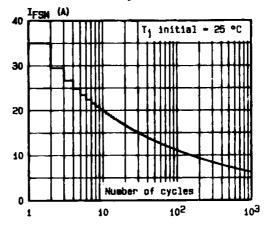
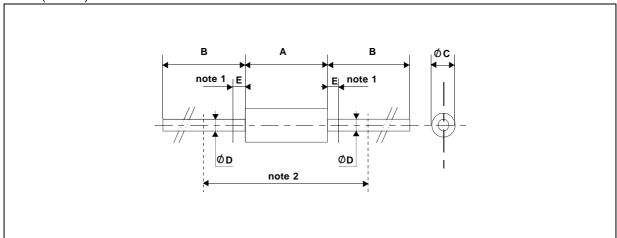




Figure 7. Non repetitive surge peak current versus number of cycles

PACKAGE MECHANICAL DATA

F 126 (Plastic)

	DIMENSIONS					
REF.	REF. Millimeters		Inches		NOTES	
	Min.	Max.	Min.	Max.		
Α	6.05	6.35	0.238	0.250	1 - The lead diameter Ø D is not controlled over zone E	
В	26		1.024			
ØC	2.95	3.05	0.116	0.120	2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59"(15 mm)	
Ø D	0.76	0.86	0.029	0.034	phaced with its leads bent at right angles is 0.59 (15 min)	
Е		1.27		0.050		

Cooling method: by convection (method A) Marking: type number ring at cathode end Weight: 0.4g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\hbox{@ 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.}$

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

