BYT 03-200 →400 # FAST RECOVERY RECTIFIER DIODES - VERY LOW REVERSE RECOVERY TIME - VERY LOW SWITCHING LOSSES - LOW NOISE TURN-OFF SWITCHING #### **SUITABLE APPLICATIONS** - FREE WHEELING DIODE IN CONVERTERS AND MOTOR CONTROL CIRCUITS - RECTIFIER IN S.M.P.S. # **ABSOLUTE MAXIMUM RATINGS** (limiting values) | Symbol | Parameter | Value | Unit | | |------------------------------------|--|---------------------------------------|--------------------------------|----| | I _{FRM} | Repetive Peak Forward Current | t _p ≤ 10μs | 60 | Α | | I _{F (AV)} | Average Forward Current* | $T_{a=}65^{\circ}C$
$\delta = 0.5$ | 3 | А | | I _{FSM} | Surge non Repetitive Forward Current | t _p = 10ms
Sinusoidal | 60 | А | | P _{tot} | Power Dissipation * | T _{a =} 65°C | 4.2 | W | | T _{stg}
T _j | Storage and Junction Temperature Range | | - 40 to + 150
- 40 to + 150 | °C | | Symbol | Parameter | | Unit | | | |------------------|-------------------------------------|-----|------|-----|-------| | | i arameter | 200 | 300 | 400 | Oille | | V_{RRM} | Repetitive Peak Reverse Voltage | 200 | 300 | 400 | V | | V _{RSM} | Non Repetitive Peak Reverse Voltage | 220 | 330 | 440 | V | #### THERMAL RESISTANCE | Symbol | Parameter | Value | Unit | |-------------------------|-------------------|-------|------| | R _{th (j - a)} | Junction-ambient* | 20 | °C/W | ^{*} On infinite heatsink with 10mm lead length. November 1994 1/5 # **ELECTRICAL CHARACTERISTICS** # STATIC CHARACTERISTICS | Synbol | Tes | Min. | Тур. | Max. | Unit | | |----------------|------------------------|---------------------|------|------|------|----| | I _R | T _j = 25°C | $V_R = V_{RRM}$ | | | 20 | μΑ | | | T _j = 100°C | | | | 0.5 | mA | | V _F | T _j = 25°C | I _F = 3A | | | 1.5 | V | | | T _j = 100°C | | | | 1.4 | | # RECOVERY CHARACTERISTICS | Symbol | | Min. | Тур. | Max. | Unit | | | | |-----------------|-----------------------|-----------------------|------------------------|------------------|------|--|----|----| | t _{rr} | T _j = 25°C | I _F = 1A | $di_F/dt = -15A/\mu s$ | $V_R = 30V$ | | | 55 | ns | | | | I _F = 0.5A | I _R = 1 A | $t_{rr} = 0.25A$ | | | 25 | | # TURN-OFF SWITCHING CHARACTERISTICS - Without Series Inductance | Symbol | | Test Conditions | | | | | | Unit | |------------------|------------------------|-------------------------|------------------------|------------|--|-----|----|------| | t _{IRM} | $di_F/dt = -50A/\mu s$ | T _j = 100 °C | V _{CC} = 200V | $I_F = 3A$ | | 35 | 50 | ns | | I _{RM} | $di_F/dt = -50A/\mu s$ | L _P ≤ 0.05μH | | | | 1.5 | 2 | Α | To evaluate the conduction losses use the following equations: $$V_F = 1.1 + 0.050 I_F$$ $P = 1.1 \times I_{F(AV)} + 0.050 I_{F^2(RMS)}$ Figure 1. Maximum average power dissipation versus average forward current. Figure 3. Thermal resistance versus lead length. Figure 4. Transient thermal impedance junction-ambient for mounting n^2 versus pulse duration (L = 10 mm). Figure 2. Average forward current versus ambient temperature. Mounting n°1 INFINITE HEATSINK Mounting n°2 PRINTED CIRCUIT Figure 5. Peak forward current versus peak forward voltage drop (maximum values). Figure 7. Recovery time versus dif/dt. Figure 8. Peak forward voltage versus dif/dt. Figure 9. Peak forward voltage versus di_F/dt. Figure 10. Recovery charge versus di⊧/dt (typical values). Figure 11. Dynamic parameters versus junction temperature. Figure 12. Non repetitive surge peak current versus number of cycles. #### **PACKAGE MECHANICAL DATA** #### DO 27A (Plastic) | | | DIMEN | SIONS | | | | | | | | |------|------------------|-------|--------------------|-------|--|--|-------|--|--|--| | REF. | REF. Millimeters | | Millimeters Inches | | meters Inches | | NOTES | | | | | | Min. | Max. | Min. | Max. | | | | | | | | Α | | 9.80 | | 0.385 | 1 - The lead diameter Ø D is not controlled over zone E | | | | | | | В | 26 | | 1.024 | | The lead diameter & B is not controlled over zone E | | | | | | | ØC | | 5.10 | | | 2 - The minimum axial lengh within which the device may be | | | | | | | ØD | | 1.28 | | 0.050 | placed with its leads bent at right angles is 0.59"(15 mm) | | | | | | | Е | | 1.25 | | 0.049 | | | | | | | Cooling method: by convection (method A) Marking: type number; white band indicates cathode Weight: 1g Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. © 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved. SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.