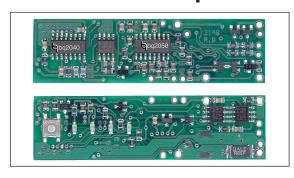


Smart Battery Module with LEDs and Pack Supervisor


Features

- Complete smart battery management solution for Li-Ion battery packs
- ➤ Accurate measurement of available battery capacity
- Provides overvoltage, undervoltage, and overcurrent protection
- ➤ Designed for battery pack integration:
 - Small size
 - Includes bq2040 and bq2058 ICs, and configuration EEPROM
 - On-board charge and discharge control FETs
 - Low operating current for minimal battery drain
- Critical battery information available over two-wire serial port
- ➤ "L" version includes 4 push-button activated LEDs to display state-of-charge information

General Description

The bq2148 Smaart Battery Module provides a complete and compact battery management solution for Li-Ion battery packs. Designed for battery pack integration, the bq2168 combines the bq2040H Gas Gauge IC with the bq2058 Supervisor IC on a small printed circuit board. The board includes all the necessary components to accurately monitor battery capacity and protect the cells from overvoltage, undervoltage, and overcurrent conditions. The board works with three or four Li-Ion series cells.

The Gas Gauge IC uses the on-board sense resistor to track charge and discharge activity of the battery pack. Critical battery information can be accessed through the serial communications port at SMBC/SMBD. The bq2148 uses the SMBus communications protocol and supports the Smart Battery Data Commands in the SBD specification. The supervisor circuit consists of the bq2058 and two FETs. The bq2058 controls the FETs to protect the batteries during charge/discharge cycles and short circuit conditions. The bq2168 provides contacts for the positive and negative terminals of each battery in the stack. Please refer to the bq2040 and bq2058 data sheets for the specifics on the operation of the power gauge and supervisor ICs.

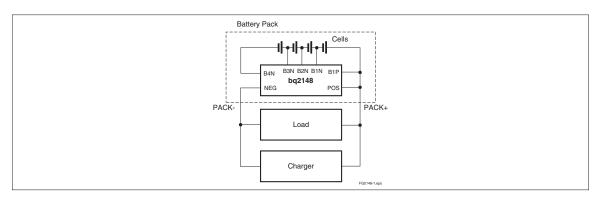
Unitrode configures the bq2168 based on the information requested in Table 1. The configuration defines all the EEPROM parameters and the protection threshold. Figure 1 shows how the module connects to the cells.

The bq2148L includes four LEDs to display remaining capacity in 25% increments of the learned capacity. The LEDs are activated with the onboard push-button switch.

A module development kit is also available for the bq2148. The bq2148B-KT or the bq2148LB-KT includes one configured module and the following:

- An EV2200-40 interface board that allows connection to the serial port of any AT-compatible computer.
- Menu driven software to display charge/discharge activity and to allow user interface to the bq2040 from any standard Windows 3.1x or 95 PC.

PACK+/Pack positive


Pin Descriptions

POS

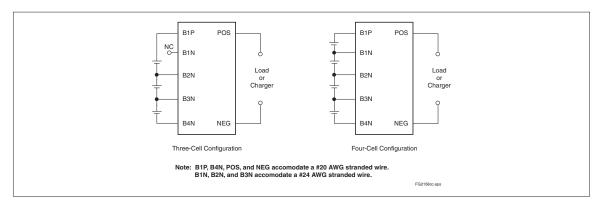
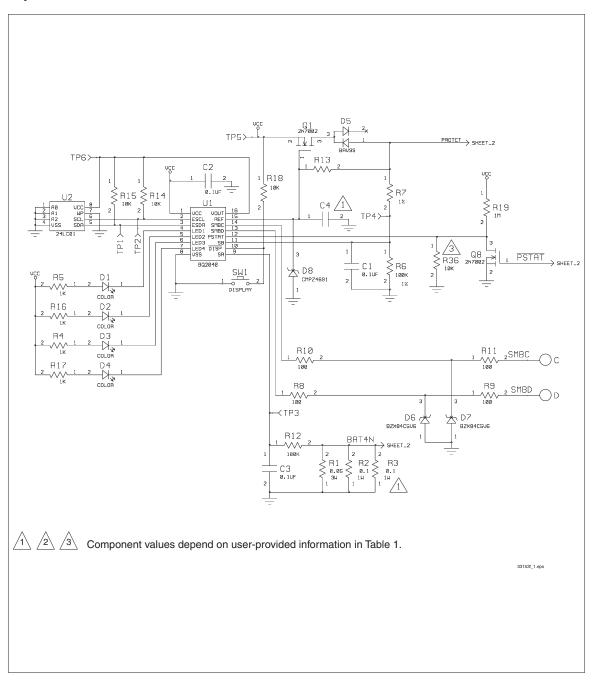

NEG	PACK-/Pack negative
SMBC	Communications clock
SMBD	Serial data
ITEST	Overcurrent test input
B1P	Battery 1 positive input
B1N	Battery 1 negative input
B2N	Battery 2 negative input
B3N	Battery 3 negative input
B4N	Battery 4 negative input

Table 1. bq2148 Module Configuration

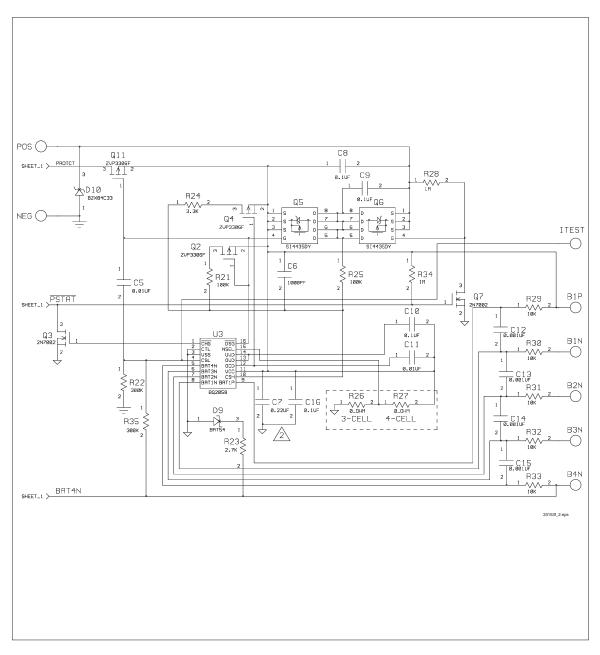
Customer Name:				
Contact:	Phone:			
Address:				
Sales Contact:	es Contact: Phone:			
Board Configuration				
LEDs and switch	Yes or No			
Display mode	Relative or Absolute			
Discharge current (3.9A max.) Min _	Avg Max	_		
Duration at max. discharge				
Overvoltage threshold (4.25, 4.30, or 4.3	35V)			
Number of series cells				
EEPROM Configuration		Typical Values		
Remaining time alarm (min)	Sets the low time alarm level	10 min		
Remaining capacity alarm (mAh)	Sets the low capacity alarm level	C/10		
Charging voltage (mV)	Sets the requested charging voltage	4.1V/cell		
Design cpaacity (mAh)	Defines the battery pack capacity	3600		
Design voltage (mV)	Defines the battery pack voltage	10800		
Manufacturer date	Battery pack manufacturer date	mm/dd/yy		
Serial number	Battery pack serial number	0-65535		
Fast-charging current (mA)	Sets the requested charging current	1C		
Maintenance charging current (mA)	Sets the requested maintenance charging current	0		
Li-Ion taper current (mA)	Sets the upper limit for charge termination	C/10		
Maximum overcharge (mAh)	Sets the maximum amount of overcharge	128mAh		
Maximum temperature (°C)	Sets the maximum charge temperature	$61^{\circ}\mathrm{C}$		
ΔΤ/Δt (°C/min)	Sets the termination rate	$4.6^{\circ}\mathrm{C/20s}$		
Fast-charge efficiency (%)	Sets the fast-charge efficiency factor	100%		
Maintenance charge efficiency (%)	Sets the maintence charge efficiency factor	100%		
Self-discharge rate (%/day)	Sets the batterys self-discharge rate	0.2%/day		
EDV1 (mV)	Sets the initial end-of-discharge warning	3.0V/cell		
EDVF (mV)	Sets the final end-of-discharge warning	2.8V/cell		
Hold-off timer for ΔT/Δt (sec.)	Sets the hold off period for $\Delta T/\Delta t$ termination	320s		
Manufacturer name	Programs manufacturer's name (11 char. max)	bq		
Device name	Programs device name (7 char. max)	bq202		
Chemistry	Programs pack's chemistry (5 char. max)	LION		
Manufacturer data	Open field (5 char. max)	2040		
FAE approval:	Date:			

Figure 1. Module Connection Diagram

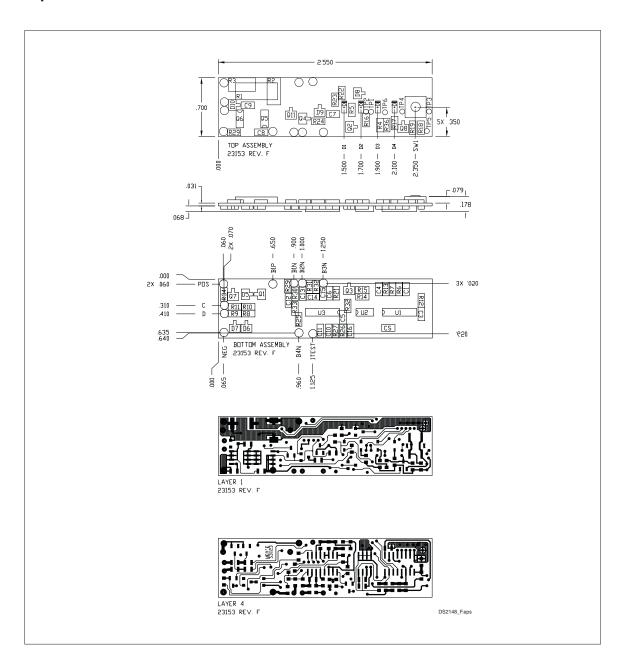
Figure 1. Module Connection Diagram


Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	Conditions
VOP	Supply voltage (B1P to B4N)	18	V	DC
V_{TR}	Maximum transient voltage (B1P to B4N)	32	V	Maximum duration = 1.5μs
VCHG	Charging voltage (POS to NEG)	18	V	
ICHG	Continuous charge/discharge current	3.9	A	$V_{\mathrm{OP}} > 6V$ $T_{\mathrm{A}} = 25^{\circ}\mathrm{C}$
TOPR	Operating temperature	0 to +70	°C	
TSTG	Storage temperature	-55 to +125	°C	


Note:

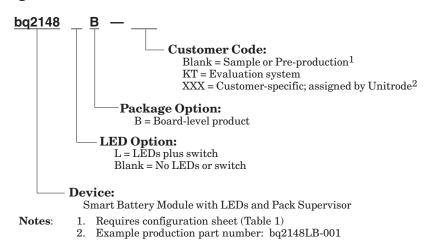
Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.


bq2148 Schematic

bq2148 Schematic (Continued)

bq2148 Board

DC Electrical Characteristics (TA = TOPR)


Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
VOP	Operating voltage, B1P to B4N	4.0	-	18	V	
ICCA	Operating current	-	-	350	μΑ	
RON	On resistance, B1P to POS	-	-	50	$m\Omega$	$T_{A} = 25^{\circ}C, V_{OP} = 10V$

DC Thresholds (TA = TOPR)

Symbol	Parameter	Value	Tolerance	Unit	Notes
Vov	Overvoltage threshold	4.25	$\pm 50 \mathrm{mV}$	V	
V_{CE}	Charge enable voltage	V _{OV} - 100mV	$\pm~50 \mathrm{mV}$	V	
VUV	Undervoltage limit	2.25	$\pm~100 \mathrm{mV}$	V	
Ioc	Overcurrent limit	3.4		A	$T_A = 25^{\circ}C$
		3.8		A	$T_A = 60^{\circ}C$
tUVD	Undervoltage delay	950	±50%	ms	$T_A = 30$ °C
VCD	Charge detect threshold	70	-60, +80	mV	
tovd	Overvoltage delay	950	±50%	ms	$T_{\rm A}=30^{\circ}{ m C}$
tocd	Overcurrent delay	12	±60%	ms	TA = 30°C

Note: The thresholds above reflect the operation of a bq2148 using the standard bq2058 IC ($V_{OV} = 4.25V$). Specify other versions of the bq2058 by indicating the appropriate V_{OV} threshold in Table 1.

Ordering Information

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated