
Preliminary bq2954

Lithium Ion Fast-Charge IC

Features

- ► Safe charge of Li-Ion battery packs
- Voltage-regulated currentlimited charging
- ► Programmable high-side/low-side current-sense
- ► Fast charge terminated by selectable minimum current; safety backup termination on maximum time
- ► Pre-charge qualification detects shorted or damaged cells and conditions battery
- ► Charging continuously qualified by temperature and voltage limits
- ► Pulse-width modulation control
 - Ideal for high-efficiency switch-mode power conversion

Pin Connections

- Configurable for linear or gated current use
- ➤ Direct LED control outputs display charge status and fault conditions

General Description

The bq2954 Li-Ion Fast-Charge IC uses a flexible pulse-width modulation regulator to control voltage and current during charging. The regulator frequency is set by an external capacitor for design flexibility. The switch-mode design minimizes power dissipation.

The bq2954 measures battery temperature using an external thermistor for charge qualification. Charging begins when power is applied or the battery is inserted

For safety, the bq2954 inhibits fast charging until the battery voltage and temperature are within configured limits. If the battery voltage is less than the low-voltage threshold, the bg2954 provides low-current conditioning of the battery.

The bq2954 charges a battery in two phases. A constant-current phase replenishes approximately 70% of battery capacity. A voltage-regulation phase completes the battery charge.

The bq2954 provides status indications of all charger states and faults for accurate determination of the battery and charge system conditions.

Pin I	Names
-------	-------

TM	Time-out programming	TPWM	Regulator timebase input
	input	BTST	Battery test output
CHG	Charge active output	LCOM	Common LED output
BAT	Battery voltage input	Vss	System ground
VCOMP	Voltage loop comp input	55	
ICOMP	Current loop comp input	VCC	5.0V±10% power
Iterm	Minimum current	MOD	Modulation control output
LEKW	termination select input	LED1/	L.
SNS	Sense resistor input	CSEL input	Charge status output 1/ Charge sense select
TS	Temperature sense input	LED ₂ /	Charge status output 2/
		DSEL	Display select input

Pin Descriptions

TM Time-out programming input

Sets the maximum charge time. The resistor and capacitor values are determined using Equation 5. Figure 5 shows the resistor/capacitor connection.

CHG Charge active output

An open-drain output which is driven low when the battery is removed, during a temperature pend, when a fault condition is present, or when charge is done. CHG may be used to disable a high value load capacitor to detect quickly any battery removal.

BAT Battery voltage input

Sense input. This potential is generally developed using a high-impedance resistor divider network connected between the positive and the negative terminals of the battery. See Figure 3a and 3b and Equation 1.

VCOMP Voltage loop compensation input

Connects to an external R-C network to stabilize the regulated voltage.

ICOMP Current loop compensation input

Connects to an external R-C network to stabilize the regulated current.

ITERM Charge full and minimum current termination select

Three-state input is used to set I_{FULL} and I_{MIN} for fast charge termination. See Table 2.

SNS Charging current sense input

Battery current is sensed via the voltage developed on this pin by an external sense resistor.

TS Temperature sense input

Used to monitor battery temperature. An external resistor divider network sets the lower and upper temperature thresholds. (See Figures 4a and 4b and Equations 3 and 4.)

TPWM Regulation timebase input

Uses an external timing capacitor to ground to set the pulse-width modulation (PWM) frequency. See Equation 7.

BTST Battery test output

Driven high in the absence of a battery in order to provide a potential at the battery terminal when no battery is present.

LCOM Common LED output

Common output for LED₁₋₂. This output is in a high-impedance state during initialization to read programming input on DSEL and CSEL.

Vss Ground

VCC VCC supply

5.0V, ±10% power

MOD Current-switching control output

Pulse-width modulated push/pull output used to control the charging current to the battery. MOD swithces high to enable current flow and low to inhibit current flow. (The maximum duty cycle is 80% at 100kHz)

LED1- Charger display status 1-2 outputs LED2

Drivers for the direct drive of the LED display. These outputs are tri-stated during initialization so that DSEL and CSEL can be read.

DSEL Display select input (shared pin with LED₂)

This three-level input controls the LED_{1-2} charge display modes.

CSEL Charge sense-select input (shared pin with LED₁)

Input that controls whether current is sensed on low side of battery or high side of battery. A current mirror is required for high-side sense.

Functional Description

The bq2954 functional operation is described in terms of the following:

- Charge algorithm
- Charge qualification
- Charge status display
- Configuring the display and termination
- Voltage and current monitoring
- Battery insertion and removal
- Temperature monitoring
- Maximum time--out
- Charge regulation
- Recharge after fast charge

Charge Algorithm

The bq2954 uses a two-phase fast-charge algorithm. In phase 1, the bq2954 regulates constant current (I_{SNS} = I_{MAX}) until V_{BAT} rises to V_{REG}. The bq2954 then transitions to phase 2 and regulates constant voltage (V_{BAT} = V_{REG}) until the charging current falls below the programmed I_{MIN} threshold. Fast charge then terminates and the bq2954 enters the Charge Complete state. (See Figure 1.)

Charge Qualification

The bq2954 starts a charge cycle when power is applied while a battery is present or when a battery is inserted. Figure 1 shows the state diagram for pre-charge qualification and temperature monitoring. The bq2954 first checks that the battery temperature is within the allowed, user-configurable range. If the temperature is out of range, the bq2954 enters the Charge Pending state and waits until the battery temperature is within the allowed range.

If during any state of charge, a temperature excursion occurs HOT, the bq2954 proceeds to the DONE state and indicates this state by LED and provides no current. If this occurs, the bq2954 remains in the DONE state unless the following two conditions are met:

- Temperature falls within valid charge range
- VCELL falls below VMIN

If these two conditions are met, a new charge cycle begins. If during any state of charge, a temperature excursion occurs COLD, the bq2954 terminates charge and re-

Nov. 1997

turns to BATTST state. Charge restarts if V_{BAT} and temperature are in valid range.

When the temperature is valid, the bq2954 then regulates current to I_{COND} (= $I_{MAX}/10$). After an initial holdoff period t_{HO} (which prevents the chip from reacting to transient voltage spikes that may occur when charge current is first applied), the chip begins monitoring V_{BAT}. If V_{BAT} does not rise to at least V_{MIN} before the expiration of time-out limit t_{QT} (i.e., the battery has failed short), the bq2954 enters the Fault state. If V_{MIN} is achieved before expiration of the time limit, the chip begins fast charging.

Once in the Fault state, the bq2954 waits until V_{CC} is cycled or a new battery insertion is detected. It then starts a new charge cycle and begins the qualification process again.

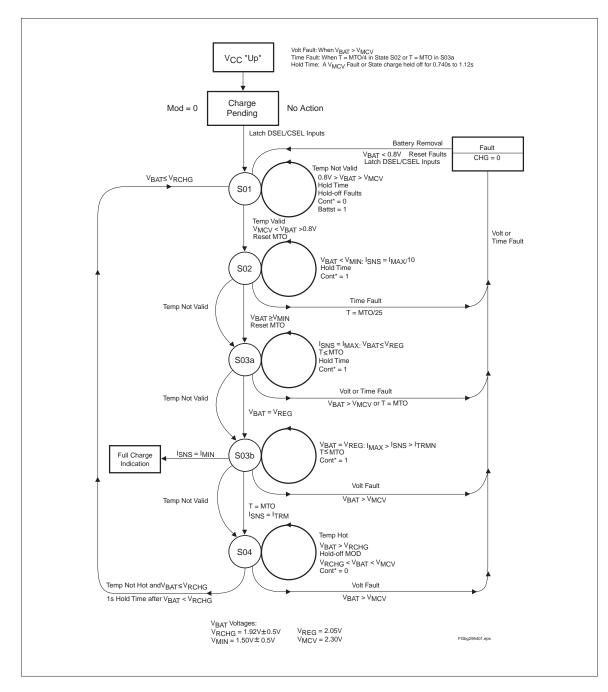
Charge Status Display

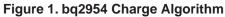
Charge status is indicated by the LED driver outputs LED₁-LED₂. Three display modes are available in the bq2954; the user selects a display mode by configuring pin DSEL. Tables 1a through 1c show the three display modes. Table 1a illustrates a normal fast charge cycle, 1b a recharge-after-fast-charge cycle, and 1c an abnormal condition.

Configuring the Display Mode, I_{FULL}/I_{MIN} , and I_{SENSE}

DSEL/LED₂ and CSEL/LED₁ are bi-directional pins with two functions: as LED driver pins as output and as programming pins as input. The selection of pull-up, pull-down, or no-resistor programs the display mode on DSEL as shown in Tables 1a through 1c. A pull-down or no-resistor programs the current-sense mode on CSEL.

The bq2954 latches the programming data sensed on the DSEL and CSEL input when V_{CC} rises to a valid level. The LEDs go blank for approximately 400ms (typical) while new programming data is latched.


When fast charge reaches a condition where the charging current drops below IFULL, the LED1 and LED2 outputs indicate a full battery condition. Fast charge terminates when the charging current drops below a minimum current threshold. The IFULL and IMIN thresholds are programmed using the ITERM input pin (See Table 2.)


Figures 2a and 2b show the bq2954 configured for display mode 2 and I_{FULL} = $I_{MAX}/5$ while I_{MIN} = $I_{MAX}/10$.

Voltage and Current Monitoring

In low-side sensing, the bq2954 monitors the battery pack voltage as a differential voltage between BAT and

V _{BAT}		Battery Absent	Qualification	Fast Charge Current Regulate	Voltage Regulate Current Taper	I _{FULL} Detect	Charge Complete
	VREG I _{MAX} VMIN			/	\		
	ICOND IFULL IMIN			Time		MTO	1
				Time		MIO	
Mode 1	LED1	Low	High	High	High	Low	Low
(DSEL = 0)	LED2	Low	Low	Low	Low	High	High
Mode 2	LED1	Low	High	High	High	Low	Low
(DSEL = 1)	LED2	Low	Low	Low	Low	High	High
Mode 3	LED1	Low	High	High	High	Low	Low
(DSEL = F)	LED2	Low	Low	Low	High	High	High
Mode 1	CHG	Low	High	High	High	High	Low
and 2	BTST	High	Low	Low	Low	Low	Low
Mode 3	CHG	Low	High	High	High	High	Low
woue 5	BTST	High	High	Low	Low	Low	Low

Table 1a. Normal Fast Charge Cycle

SNS. In high-side sensing, the bq2954 monitors the battery pack voltage as a differentialvoltage between BAT and GND. This voltage is derived by scaling the battery voltage with a voltage divider. (See Figures 3a and 3b.) The resistance of the voltage divider must be high enough to minimize battery drain but low enough to minimize noise susceptibility. RB1 + RB2 is typically between 150K and 1Meg. The voltage-divider resistors are calculated from the following:

Equation 1

$$\frac{\text{RB1}}{\text{RB2}} = \frac{\text{N * V}_{\text{CELL}}}{\text{V}_{\text{REG}}} - 1$$

where:

 $\label{eq:VCELL} V_{CELL} = Manufacturer-specified charging cell voltage \\ N = Number of cells in series \\ V_{REG} = 2.05 V \\ \mbox{Nov. 1997}$

The current sense resistor, R_{SNS} (see Figures 3a and 3b), determines the fast charge current. The value of R_{SNS} is given by the following:

GR295401.eps

Equation 2

$$R_{SNS} = \frac{0.25V}{I_{MAX}}$$

Where I_{MAX} is the current during the constant-current phase of the charge cycle. (See Table 1a.)

Battery Insertion and Removal

 V_{BAT} is interpreted by the bq2954 to detect the presence or absence of a battery. The bq2954 determines that a battery is present when V_{BAT} is between the High-Voltage Cutoff (V_{HCO} = V_{REG} + 0.25V) and the Low-Voltage Cutoff (V_{LCO} = 0.8V). When V_{BAT} is

Vbat	 VREG	Charge Complete	Fast Charge Current Regulate	Voltage Regulate Current Taper	I _{FULL} Detect	Charge Complete
	IMAX	Discharge	/ /]		
	VMIN					
	ICOND					
	IFULL IMIN					1
			Time		МТО	
Mode 1	LED1	Low	High	High	Low	Low
(DSEL = 0)	LED2	High	Low	Low	High	High
Mode 2	LED1	Low	High	High	Low	Low
(DSEL = 1)	LED2	High	Low	Low	High	High
Mode 3	LED1	Low	High	High	Low	Low
(DSEL = F)	LED2	High	Low	High	High	High
Mode 1	CHG	Low	High	High	High	Low
and 2	BTST	Low	Low	Low	Low	Low
Mode 3	CHG	Low	High	High	High	Low
	BTST	Low	Low	Low	Low	Low

Table 1b. Recharge After Fast Charge Cycle

Grbq295402.eps

VBAT IBAT VREG		Battery Absent	Qualification	Abnormal Battery
	IMAX			
	IWAX			
	VMIN			
	ICOND		 Time tu	QT
Mode 1	LED1	Law	Llink	Flash
(DSEL = 0)	LED1 LED2	Low	High Low	Low
(DSEL = 0) Mode 2	LED2 LED1	Low	High	Low
(DSEL = 1)	LED1	Low	Low	Low
Mode 3	LED2	Low	High	Low
(DSEL = F)	LED1	Low	Low	Low
CHG	LLDZ	Low	High	Low
BTST		High	Low	Low

Table 1c. Abnormal Condition

GR295403.eps

Table 2. IFULL and IMIN Thresholds

ITERM	IFULL	IMIN
0	IMAX/5	I _{MAX} /10
1	I _{MAX} /10	I _{MAX} /15
Z	I _{MAX} /15	I _{MAX} /20

Nov. 1997

Г

outside this range, the bq2954 determines that no battery is present and transitions to the battery test state, testing for valid battery voltage. The bq2954 detects battery removal when V_{BAT} falls below V_{LCO}. The BTST pin is driven high during battery test and can activate an external battery contact pull-up. This pull-up may be used to activate an over-discharged Li-Ion battery pack. The V_{HCO} limit implicitly serves as an over-voltage charge fault. The CHG output can be used to disconnect capacitors from the regulation circuitry in order to quickly detect a battery-removed condition.

Battery insertion is enunciated within 500ms. Transition to the fast-charge phase, however, will not occur for time t_{HO} (approximately one second), even if voltage qualification V_{MIN} is reached. This is done so that the fast-charge phase is not entered prematurely from a voltage spike at the BAT input. It also creates a delay in enunciation of battery removal if the battery is removed during this hold-off period.

Temperature Monitoring

Temperature is measured as a *differential* voltage between TS and BAT-. This voltage is typically generated by a NTC (negative tempco) thermistor and thermistor linearization network. The bq2954 compares this voltage against its internal threshold voltages to determine if charging is allowed. These thresholds are:

- High-Temperature Cutoff Voltage: V_{TCO} = 0.4 * V_{CC} This voltage corresponds to the maximum temperature (TCO) at which charging is allowed.
- High-Temperature Fault Voltage: V_{HTF} = 0.44 * V_{CC} This voltage corresponds to the temperature (HTF) at which charging resumes after exceeding TCO.
- Low-Temperature Fault Voltage: V_{LTF} = 0.6 * V_{CC} This voltage corresponds to the minimum temperature (LTF) at which charging is allowed.

Charging is inhibited if the temperature is outside the LTF—TCO window. Once the temperature exceeds TCO, it must drop below HTF before charging resumes.

RT1 and RT2 for the thermistor linearization network are determined as follows:

Equation 3

$$0.6 * V_{\text{CC}} = \frac{(V_{\text{CC}} - 0.250)}{1 + \frac{\text{RT1}*(\text{RT2} + \text{R}_{\text{LTF}})}{(\text{RT2}*\text{R}_{\text{LTF}})}}$$

Equation 4

$$0.44 = \frac{1}{1 + \frac{\text{RT1} * (\text{RT2} + \text{R}_{\text{HTF}})}{(\text{RT2} * \text{R}_{\text{HTF}})}}$$

where:

R_{LTF} = thermistor resistance at LTF

R_{HTF} = thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1% resistors are recommended.

Disabling Temperature Sensing

Temperature sensing can be disabled by placing a $10k\Omega$ resistor between TS and BAT- and a $10k\Omega$ resistor between TS and V_{CC} . See Figure 4a and 4b.

Maximum Time-Out

MTO is programmed from 1 to 24 hours by an R-C network on the TM pin (see Figure 5) per the following equation:

Equation 5

MTO =
$$500 * R * C$$

The MTO timer is reset at the beginning of fast charge. If the MTO timer expires during the voltage regulated phase, fast charging terminates and the bq2954 enters the Charge Complete state. If the conditioning phase continues for time equal to $t_{\rm QT}$ (MTO/4) such that the battery potential does not reach V_{MIN}, the bq2954 enters the fault state and terminates charge. See Table 1c. If the MTO timer expires during the current-regulated portion of the fast-charge phase (V_{BAT} never reaches V_{REG}), fast charging is terminated, and the bq2954 enters the fault state.

Charge Regulation

The bq2954 controls charging through pulse-width modulation of the MOD output pin, supporting both constant-current and constant-voltage regulation. Charge current is monitored at the SNS pin, and charge voltage is monitored at the BAT pin. These voltages are compared to an internal reference, and the MOD output is modulated to maintain the desired value. The maximum duty cycle is 80% at 100kHz.

Voltage at the SNS pin is determined by the value of resistor R_{SNS} , so nominal regulated current is set by the following equation:

Equation 6

$I_{MAX} = 0.250 V/R_{SNS}$

The switching frequency of the MOD output is determined by an external capacitor (CPWM) between the pin TPWM and ground, per the following:

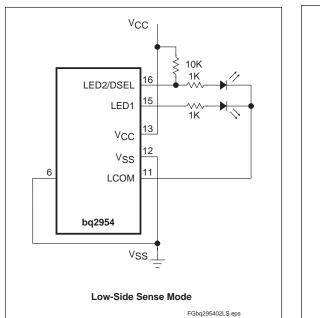


Figure 2a. Configured Display Mode (Low-Side Sense)

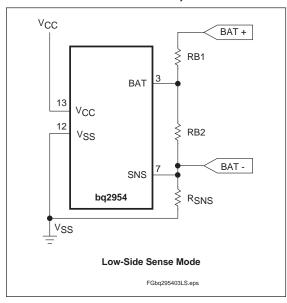


Figure 3a. Configuring the Battery Divider (Low-Side Sense)

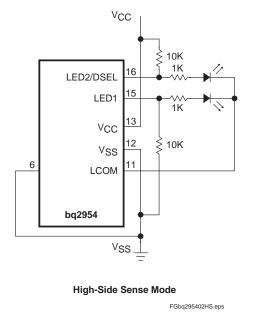


Figure 2b. Configured Display Mode (High-Side Sense)

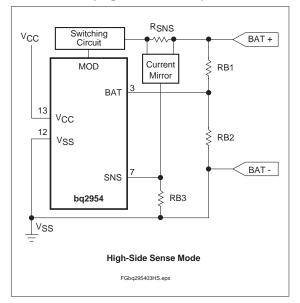


Figure 3b. Configuring the Battery Divider (High-Side Sense)

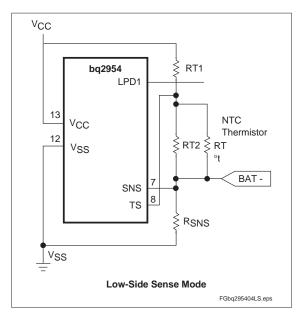


Figure 4a. Low-Side Temperature Sensing

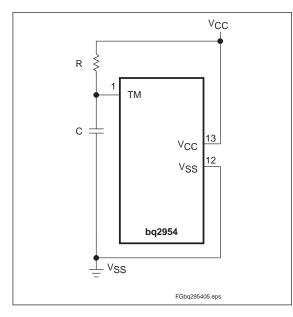


Figure 5. R-C Network/Setting MTO

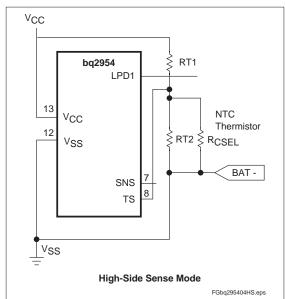


Figure 4b. High-Side Temperature Sensing

Equation 7

$$f_{PWM} = \frac{1 * 10^{-4} \text{ Hz F}}{C_{PWM}}$$

Where C is in farads and the frequency is in Hz. A typical switching rate is 100kHz, implying $C_{PWM} = 0.001 \mu F$. MOD pulse width is modulated between 0 and 80% of the switching period.

To prevent oscillation in the voltage and current control loops, frequency compensation networks (C or R-C) are typically required on the V_{COMP} and I_{COMP} pins (respectively).

Recharge After Fast Charge

Once charge completion occurs, a fast charge is initiated when the battery voltage falls below $V_{\rm RECHG}. \ A$ delay of approximately one second passes before recharge begins so that adequate time is allowed to detect for battery removal. See Table 1b.

Symbol	Parameter	Minimum	Maximum	Unit	Notes
Vcc	V _{CC} relative to V _{SS}	-0.3	+7.0	V	
VT	DC voltage applied on any pin excluding V _{CC} relative to V _{SS}	-0.3	+7.0	V	
Ton	Operating ambient temperature	-20	+70	°C	Commercial
T _{OPR}		-40	+85	°C	Industrial "N"
TSTG	Storage temperature	-55	+125	°C	
T _{SOLDER}	Soldering temperature	-	+260	°C	10 sec. max.

Absolute Maximum Ratings

Note: Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds (TA = TOPR; VCC = $5V \pm 10\%$)

Symbol	Parameter	Rating	Unit	Tolerance	Notes
VREG	Internal reference voltage	2.05	v	1%	$TA = 25^{\circ}C$
- nEd	Temperature coefficient	-0.5	mV/°C	10%	
V _{LTF}	TS maximum threshold	0.6 * V _{CC}	v	±0.03V	Low-temperature fault
VHTF	TS hysteresis threshold	0.44 * VCC	v	±0.03V	High-temperature fault
V _{TCO}	TS minimum threshold	0.4 * V _{CC}	v	±0.03V	Temperature cutoff
Vнсо	High cutoff voltage	V _{REG} + 0.25V	v	±0.03V	
V _{MIN}	Under-voltage threshold at BAT	1.5	v	±0.05V	
VRECHG	Recharge voltage threshold at BAT	1.92	v	$\pm 0.05 V$	
VLCO	Low cutoff voltage	0.8	v	±0.03V	
N	Comment and a CNIC	0.250	v	10%	I _{MAX}
VSNS	Current sense at SNS	0.025	v	10%	ICOND

bq2954 Preliminary

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
VCC	Supply voltage	4.5	5.0	5.5	V	
VTEMP	TS voltage potential	0	-	VCC	V	V _{TS} - V _{SNS}
VBAT	BAT voltage potential	0	-	V _{CC}	V	
ICC	Supply current	-	2	4	mA	Outputs unloaded
-	DSEL tri-state open detection	-2	-	2	μA	Note
IIZ	ITERM tri-state open detection	-2		2	μA	
VIH	Logic input high	Vcc-0.3	-	-	V	DSEL, I _{TERM}
VIL	Logic input low	-	-	V _{SS} +0.3	V	DSEL, CSEL, I _{TERM}
	LED1, LED2, BTST, output high	V _{CC} -0.8	-	-	V	$I_{OH} \leq 10 mA$
VOH	MOD output high	V _{CC} -0.8	-	-	V	$I_{OH} \leq 10 mA$
	LED ₁ , LED ₂ , BTST, output low	-	-	V _{SS} +0.8	V	$I_{OL} \leq 10 mA$
* 7	MOD output low	-	-	V _{SS} +0.8	V	$I_{OL} \leq 10 mA$
Vol	CHG output low	-	-	V _{SS} + 0.8	V	$I_{OL} \le 5mA$, Note 3
	LCOM output low	-	-	V _{SS+} 0.5	V	$I_{OL} \leq 30 mA$
	LED ₁ , LED ₂ , BTST, source	-10	-	-	mA	V _{OH} =V _{CC} - 0.5V
IOH	MOD source	-5.0	-	-	mA	VOH =VCC - 0.5V
	LED1, LED2, BTST, sink	10	-	-	mA	$V_{OL} = V_{SS} + 0.5V$
-	MOD sink	5	-	-	mA	$V_{OL} = V_{SS} + 0.8V$
IOL	CHG sink	5	-	-	mA	VoL = VSS + 0.8V, Note 3
	LCOM sink	30	-	-	mA	$V_{OL} = V_{SS} + 0.5V$
IIL	DSEL logic input low source	-	-	+30	μA	V = V_{SS} to V_{SS} + 0.3V, Note 2
-IL	I _{TERM} logic input low source	-	-	+70	μA	$V = V_{SS}$ to $V_{SS} + 0.3V$
I _{IH}	DSEL logic input high source	-30	-	-	μA	$V = V_{CC} - 0.3V$ to V_{CC}
1H	I _{TERM} logic input high source	-70	-	-	μA	$V = V_{CC} - 0.3V$ to V_{CC}

Recommended DC Operating Conditions (TA = TOPR)

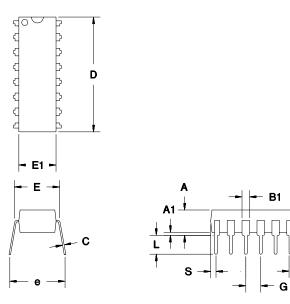
Notes: 1. All voltages relative to VSS.

 $2. \quad Conditions \ during \ initialization \ after \ V_{CC} \ applied.$

3. SNS = 0V

Impedance

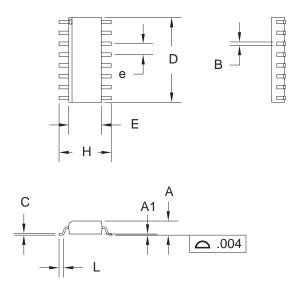
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
R _{BATZ}	BAT pin input impedance	50	-	-	MΩ	
R _{SNSZ}	SNS pin input impedance	50	-	-	MΩ	
R _{TSZ}	TS pin input impedance	50	-	-	MΩ	
R _{PROG1}	Soft-programmed pull-up or pull-down resistor value (for programming)	-	-	10	kΩ	DSEL, CSEL
R _{PROG2}	Pull-up or pull-down resistor value	-	-	3	kΩ	I _{TERM}
R _{MTO}	Charge timer resistor	20	-	480	kΩ	


Timing (TA = TOPR; VCC = 5V \pm 10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
t _{MTO}	Charge time-out range	1	-	24	hours	See Figure 5
tQT	Pre-charge qual test time-out period	-	0.25t _{MTO}	-	-	
tHO	Pre-charge qual test hold-off period	300	600	900	ms	
fpwm	PWM regulator frequency range	-	100	200	kHz	See Equation 7
dpwm	Duty cycle	0		80	%	f _{PWM} = 100kHz

Capacitance

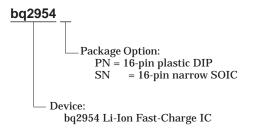
Symbol	Parameter	Minimum	Typical	Maximum	Unit
C _{MTO}	Charge timer capacitor	-	-	0.1	μF
Срум	PWM capacitor	-	0.001	-	μF


16-Pin DIP Narrow (PN)

16-Pin PN (0.300" DIP)

Min.	neters Max.
	Max.
4.06	4.57
0.38	1.02
0.38	0.56
1.40	1.65
0.20	0.33
18.80	19.56
7.62	8.26
5.84	7.11
7.62	9.40
2.29	2.79
2.92	3.81
0.51	1.02
	0.38 1.40 0.20 18.80 7.62 5.84 7.62 2.29 2.92

16-Pin SOIC Narrow (SN)


16-Pin SN (0.150" SOIC)

	Inches		Millimeters	
Dimension	Min.	Max.	Min.	Max.
А	0.060	0.070	1.52	1.78
A1	0.004	0.010	0.10	0.25
В	0.013	0.020	0.33	0.51
С	0.007	0.010	0.18	0.25
D	0.385	0.400	9.78	10.16
Е	0.150	0.160	3.81	4.06
e	0.045	0.055	1.14	1.40
Н	0.225	0.245	5.72	6.22
L	0.015	0.035	0.38	0.89

Nov. 1997

в

Ordering Information

BENCHMARQ[®] Microelectronics, Inc. 17919 Waterview Parkway Dallas, Texas 75252 Fax: (972) 437-9198 Tel: (972) 437-9195 E-mail: benchmarq@benchmarq.com World Wide Web: http://www.benchmarq.com

Copyright © 1997, BENCHMARQ Microelectronics, Inc. All rights reserved. No part of this data sheet may be reproduced in any form or means, without express permission from Benchmarq. Benchmarq reserves the right to make changes in its products without notice.

Benchmarq assumes no responsibility for use of any products or circuitry described within. No license for use of intellectual property (patents, copyrights, or other rights) owned by Benchmarq or other parties is granted or implied.

Benchmarq does not authorize the use of its components in life-support systems where failure or malfunction may cause injury to the user. If Benchmarq components are used in life-support systems, the user assumes all responsibilities and indemnifies Benchmarq from all liability or damages.

Benchmarq is a registered trademark of BENCHMARQ Microelectronics, Inc.

Printed in U.S.A.