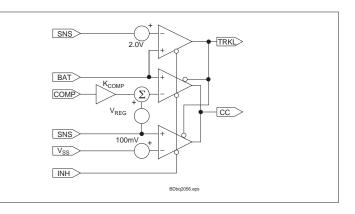
Preliminary bq2056/T/V

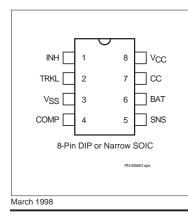
Low-Dropout Li-Ion Charge-Control IC With AutoComp[™] Charge-Rate Compensation

Features

 Significant reduction in charge time with AutoComp charge-rate compensation


BENCHMARQ

- Ideal for low-dropout linear regulator design
- 1-cell, 2-cell, and programmable multicell versions
- Low-cost charger implementation with minimum number of external components
- Programmable current limit to accommodate any battery size
- Interface to external trickle charger for reviving deeply discharged batteries
- ► High-accuracy charge control
- Sleep mode for low power consumption
- Direct battery voltage sense without resistive dividers (bq2056 and bq2056T)



The bq2056 series ICs are low-cost precision linear charge-control devices for Li-Ion applications. With a minimum number of external components, the bq2056 is a complete lowdropout linear charger. The dropout voltage is typically less than 0.5V when the bq2056 is used with an external PNP transistor or P-channel FET. Features include proprietary automatic charge-rate compensation (AutoComp) and a trickle-charger interface output for reviving deeply discharged cells. The bq2056 supports a single-cell 4.1V pack and the 2056T supports a two-cell 8.2V pack. The bq2056V may be externally programmed for supporting other voltages. All versions feature a sleep mode for low-power applications.

Functional Block Diagram

Pin Connections

Pin Names

INH	Charge-inhibit input	SNS
TRKL	Trickle-charge interface output	BAT
X 7		CC
V_{SS}	Ground	V_{CC}
COMP	Charge-rate compensation input	

- Current sense input
- Battery voltage input
- Charge control output
- V_{CC} Supply input

Pin Descriptions:

INH Charge-inhibit input

When input to this pin is high, the bq2056 suspends the charge in progress and places the device in sleep mode. When input is low, the bq2056 resumes operation.

TRKL Trickle-charge interface output

This output is driven low if the battery voltage is less than an internal threshold level and INH is low. This open drain output can be used to enable an external trickle charger to revive a deeply discharged battery.

Vss Ground

COMP Charge-rate compensation input

This input is used to set the charge-rate compensation level. The voltage regulation output may be programmed to vary as a function of the charge current delivered to the battery. This feature, called AutoComp, provides compensation for internal cell impedance during charge and therefore may be used to safely reduce charging time. Connecting this pin to V_{SS} disables the Auto-Comp feature.

SNS Current sense input

Battery current is sensed via the voltage developed on this pin by an external senseresistor, connected in series with the negative terminal of the battery pack.

BAT Battery voltage input

This is the battery voltage sense input. This input is tied directly to the positive side of the battery pack on bq2056 and bq2056T versions. A simple resistive divider is required to generate this input for bq2056V.

CC Charge-control output

CC is an open-collector output that is used to control the charging current to the battery.

Vcc Vcc supply input

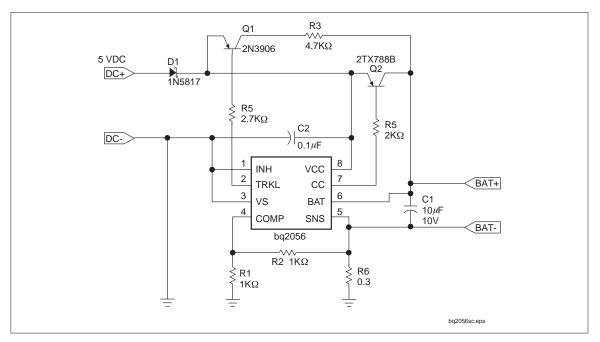


Figure 1. Low-Dropout Single-Cell Li-Ion Charger

Functional Description

The bq2056 supports a precision current- and voltagelimited charging system for Li-Ion applications. The noload voltage regulation references (V_{REG}) for the bq2056 and bq2056T are maintained at 4.1V and 8.2V, respectively. The bq2056V provides variable regulation to accommodate a wide range of charge voltages and may be used to meet tighter tolerance requirements through external trimming. The functional block diagram for the bq2056 is on the first page of this data sheet, and Figure 1 illustrates a typical application.

Charge Algorithm

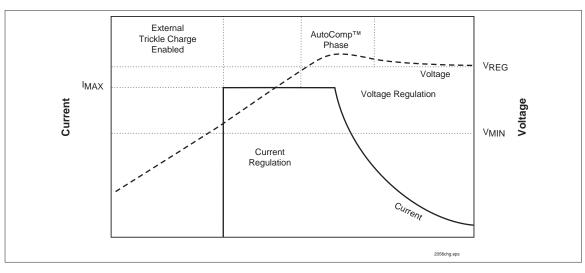
The bq2056 completes the charge cycle in two phases. A constant current phase replenishes approximately 70% of battery capacity, while an accurate voltage regulation phase completes the charge.

Figure 2 shows a typical charge algorithm for bq2056, including charge qualification, current regulation, and voltage regulation phases.

Charge Qualification

During charge qualification the bq2056 detects a low battery and reports this status on pin TRKL. Detection March 1998

is accomplished by comparing pin BAT voltage to the internal threshold $V_{\rm MIN}$. While pin BAT voltage is less than $V_{\rm MIN}$ and pin INH is low, the open-drain output TRKL is driven low and the voltage/current regulator is disabled (CC=high-z). In the bq2056V, low-voltage detection occurs when the voltage on pin BAT is less than or equal to $V_{\rm MIND}$. As shown in Figure 1, TRKL enables an external trickle-charge circuit to bring the battery voltage up to $V_{\rm MIND}$.


Current Regulation

The bq2056 provides current regulation while the pack voltage is below the voltage limit. Charge current feedback, applied through pin SNS, maintains regulation around a threshold of V_{SNS} . The following formula calculates the value of the sense-resistor connected in series with the negative terminal of the battery pack (Figure 3):

R_{SNS}= 0.1/ I_{MAX}

where I_{MAX} is the maximum charging current. I_{MAX} should not exceed 1A.

An external PNP or power P-FET may be used as the series pass element with control provided through output pin CC.

Voltage Regulation

Voltage regulation feedback is through pin BAT. This pin is connected directly to the pack in the bq2056 and bq2056T. This voltage is compared with the voltage regulation reference, V_{REG} . In the bq2056V, a resistive divider may be used to generate this input (Figure 4). In this case, the voltage presented on pin BAT is compared with the internal reference voltage V_{REF} . The resistor values R_{B1} and R_{B2} (Figure 4) are calculated based on the following equation:

$$\frac{R_{B1}}{R_{B2}} = \frac{N * V_{CELL}}{V_{REF}} - 1$$

where

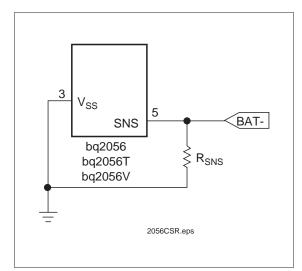
N = Number of cells in series

V_{CELL} = Manufacturer-specified charge voltage

Automatic Charge-Rate Compensation (AutoComp) Feature

To reduce charging time, the bq2056 series uses the proprietary AutoComp technique to compensate safely for internal impedance of battery and any voltage drop in the charging and protection circuitry. This maximizes battery's capacity while reducing charging time. Compensation is through input pin COMP (Figure 5). A portion of the current sense voltage, presented through this pin, is scaled by a factor of K_{COMP} and summed with the regulation reference, V_{REG}. This process increases the output voltage to compensate for the battery's internal impedance.

For bq2056 and bq2056T, the voltage across the battery pack, V_{PAK}, is


 $V_{PAK} = V_{REG} + (K_{COMP} * voltage on pin COMP)$

For bq2056V, the compensation voltage is added to the product of the internal voltage reference, V_{REF} , and the gain of the external resistive divider between the battery pack and BAT input (Figure 4).

V_{PAK} = (V_{REF}*K_{DIV}) + (K_{COMP} * voltage on pin COMP)

Sleep Mode

The charge function may be disabled through pin INH. When INH is driven high, internal current consumption is reduced, and pins CC and TRKL assumes a highimpedance output state.

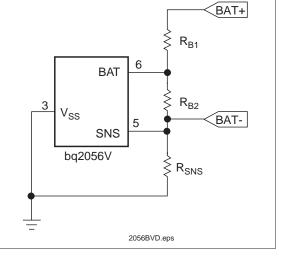


Figure 3. Current-Sensing Resistor

Figure 4. Battery Voltage Divider for bq2056V

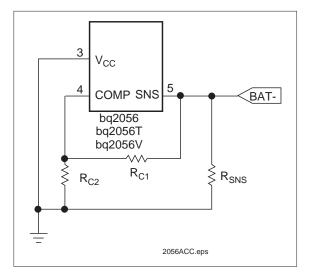


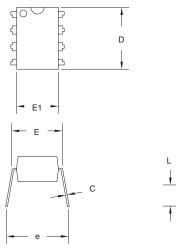
Figure 5. AutoComp Circuit

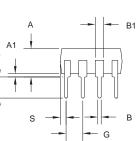
Symbol	Parameter	Min	Max	Units	Notes
Vcc	V _{CC} relative to V _{SS}	-0.3	+18	V	
VT	DC voltage applied on any pin (excluding $V_{CC})$ relative to V_{SS}	-0.3	V _{CC} +0.3	V	
TOPR	Operating ambient temperature	-20	70	°C	
T _{STG}	Storage temperature	-40	125	°C	
T _{SOLDER}	Soldering temperature	-	260	°C	10s max.
PD	Power dissipation		300	mW	

Absolute Maximum Ratings

DC	Thresholds	(TA=25°C and V	/CC = 5V unless	otherwise specified)
----	------------	----------------	-----------------	----------------------

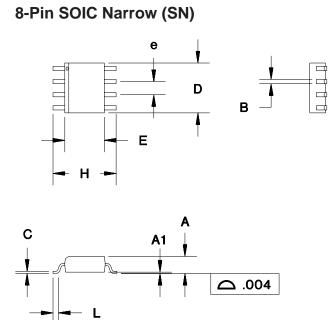
Symbol	Parameter	Rating	Unit	Tolerance	Notes
V _{REG} (bq2056)	Voltage regulation reference	4.10	v	±0.7%	$\pm 0.5\%$ variation over power supply and temperature range
V _{REG} (bq2056T)	Voltage regulation reference	8.20	v	±0.7%	$\pm 0.5\%$ variation over power supply and temperature range
V _{REF} (bq2056V)	Voltage regulation reference	3.35	v	±0.7%	$\pm 0.5\%$ variation over power supply and temperature range
V _{SNS}	Current regulation reference	100	mV	±15%	
V _{MIN} (bq2056)	Trickle-charge voltage reference	2.0	v	±15%	
V _{MIN} (bq2056T)	Trickle-charge voltage reference	4.0	v	±15%	
V _{MIND} (bq2056V)	Trickle-charge voltage reference	1.64	v	±15%	
K _{COMP}	AutoComp constant	2.0	-	±15%	


Symbol	Parameter	Min	Typical	Max	Units	Notes
V _{CC}	Supply voltage relative to $V_{\mbox{\scriptsize SS}}$	5.0	-	17.0	V	
I _{CC}	Supply current	-	1	2	mA	INH = LOW
Iccs	Sleep current	-	10	30	μΑ	INH = HIGH
VIL	Input low	-	-	0.5	V	Pin INH
VIH	Input high	2.0	-	-	V	Pin INH
Vol	Output low	-	-	0.4	V	Pin TRKL, I _{OL} = 1mA
I _{OH}	Leakage current	-	-	1	μΑ	Pin TRKL
I _{SNK}	Sink current	-	-	40	mA	Pin CC

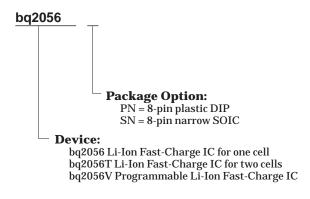

Recommended DC Operating Conditions (TA=25°C)

Impedance

Symbol	Parameter	Min	Typical	Мах	Units	Notes
R _{BAT}	BAT pin input impedance	-	1	-	MΩ	
R _{SNS}	SNS pin input impedance	-	100	-	kΩ	
R _{COMP}	COMP pin input impedance	-	100	-	kΩ	


8-Pin DIP (PN)

8-Pin PN (0.300" DIP)


	Inc	hes	Millim	neters	
Dimension	Min. Max.		Min.	Max.	
Α	0.160	0.180	4.06	4.57	
A1	0.015	0.040	0.38	1.02	
В	0.015	0.022	0.38	0.56	
B1	0.055	0.065	1.40	1.65	
C	0.008	0.013	0.20	0.33	
D	0.350	0.380	8.89	9.65	
Е	0.300	0.325	7.62	8.26	
E1	0.230	0.280	5.84	7.11	
e	0.300	0.370	7.62	9.40	
G	0.090	0.110	2.29	2.79	
L	0.115	0.150	2.92	3.81	
S	0.020	0.040	0.51	1.02	

	Inc	hes	Millimeters		
Dimension	Min. Max.		Min.	Max.	
А	0.060	0.070	1.52	1.78	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.010	0.18	0.25	
D	0.185	0.200	4.70	5.08	
Е	0.150	0.160	3.81	4.06	
е	0.045	0.055	1.14	1.40	
Н	0.225	0.245	5.72	6.22	
L	0.015	0.035	0.38	0.89	

8-Pin SN (0.150" SOIC)

Ordering Information

Notes

BENCHMARQ[®] Microelectronics, Inc. 17919 Waterview Parkway Dallas, Texas 75252 Fax: (972) 437-9198 Tel: (972) 437-9195 e-mail: benchmarq@benchmarq.com World Wide Web: http://www.benchmarq.com

Copyright © 1998, BENCHMARQ Microelectronics, Inc. All rights reserved. No part of this data sheet may be reproduced in any form or means, without express permission from Benchmarq. Benchmarq reserves the right to make changes in its products without notice.

Benchmarq assumes no responsibility for use of any products or circuitry described within. No license for use of intellectual property (patents, copyrights, or other rights) owned by Benchmarq or other parties is granted or implied.

Benchmarq does not authorize the use of its components in life-support systems where failure or malfunction may cause injury to the user. If Benchmarq components are used in life-support systems, the user assumes all responsibilities and indemnifies Benchmarq from all liability or damages.

Benchmarq is a registered trademark and AutoComp is a trademark of BENCHMARQ Microelectronics, Inc. Printed in U.S.A.