

SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

General purpose metal to silicon diode featuring very low turn-on voltage and fast switching.

This device has integrated protection against excessive voltage such as electrostatic discharges.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit		
V_{RRM}	Repetitive Peak Reverse Voltage	100	V		
I _F	Forward Continuous Current*	100	mA		
I _{FRM}	Repetitive Peak Forward Current*	350	mA		
I _{FSM}	Surge non Repetitive Forward Current*	750	mA		
P _{tot}	Power Dissipation*	100	mW		
T _{stg} T _j	Storage and Junction Temperature Range	- 65 to +150 - 65 to +125	°C		
T∟	Maximum Lead Temperature for Soldering during 10s at 4mm from Case 230				

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
R _{th(j-a)}	Junction-ambient*	300	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
V_{BR}	$T_j = 25^{\circ}C$ $I_R = 100\mu A$	100			V
V _F * *	$T_j = 25^{\circ}C$ $I_F = 1mA$		0.4	0.45	V
	$T_j = 25^{\circ}C$ $I_F = 200mA$			1	
I _R * *	$T_j = 25^{\circ}C$ $V_R = 50^{\circ}$	V		0.1	μΑ
	T _j = 100°C			20	

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions				Тур.	Max.	Unit
С	T _i = 25°C	$V_R = 1V$	f = 1MHz		2		pF

^{*} On infinite heatsink with 4mm lead length * * Pulse test: $t_p\!\leq\!300\mu s~\delta\!<\!2\%$.

November 1994 1/4

Figure 1. Forward current versus forward voltage at different temperatures (typical values).

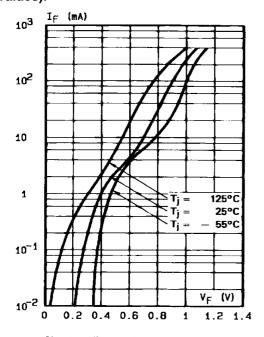


Figure 2. Forward current versus forward voltage (typical values).

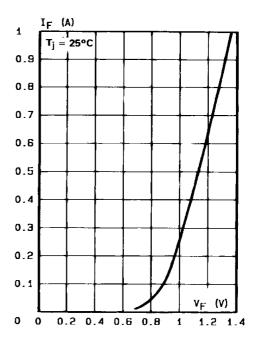


Figure 3. Reverse current versus junction temperature.

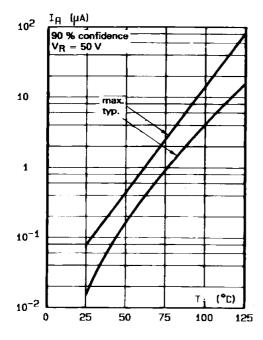
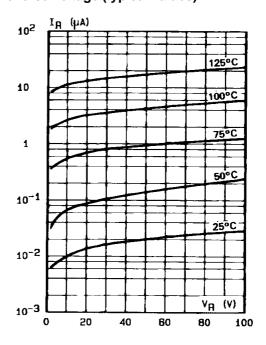
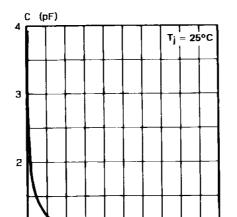




Figure 4. Reverse current versus continuous reverse voltage (typical values).

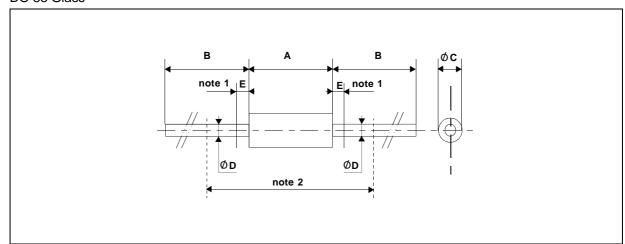
v_B (v)

100

80

60

40


0

50

Figure 5. Capacitance C versus reverse applied voltage $V_{\mbox{\scriptsize R}}$ (typical values).

PACKAGE MECHANICAL DATA

DO 35 Glass

	DIMENSIONS				
REF.	Millimeters Inches		hes	NOTES	
	Min.	Max.	Min.	Max.	
Α	3.050	4.500	0.120	0.117	
В	12.7		0.500		1 - The lead diameter Ø D is not controlled over zone E
ØC	1.530	2.000	0.060	0.079	2 - The minimum axial lengh within which the device may be placed
ØD	0.458	0.558	0.018	0.022	with its leads bent at right angles is 0.59"(15 mm)
Е		1.27		0.050	

Cooling method : by convection and conduction Marking: clear, ring at cathode end. Weight: 0.15g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

