Features

- Incorporates the ARM7TDMI[™] ARM[®] Thumb[®] Processor Core
 - High-performance 32-bit RISC Architecture
 - High-density 16-bit Instruction Set
 - Leader in MIPS/Watt
 - Embedded ICE (In-Circuit Emulation)
- 8K Bytes of On-chip SRAM
 - 32-bit Data Bus
 - Single-clock Cycle Access
- 128K Bytes of On-chip ROM
 20 bit Date Bue
 - 32-bit Data Bus
 - Single-clock Cycle Access
- Fully Programmable External Bus Interface (EBI)
 - Maximum External Address Space of 64M Bytes
 - Up to 8 Chip Selects
 - Software Programmable 8/16-bit External Data Bus
- 8-level Priority, Individually Maskable, Vectored Interrupt Controller
 - 4 External Interrupts, Including a High-priority Low-latency Interrupt Request
- 32 Programmable I/O Lines
- 3-channel 16-bit Timer/Counter
 - 3 External Clock Inputs
 - 2 Multi-purpose I/O Pins per Channel
- 2 USARTs
 - 2 Dedicated Peripheral Data Controller (PDC) Channels per USART
- Programmable Watchdog Timer
- Advanced Power-saving Features
 - CPU and Peripherals Can be Deactivated Individually
- Fully Static Operation:
 - 0 Hz to 16 MHz at 1.8V
 - 0 Hz to 33 MHz at 2.7V
 - 0 Hz to 40 MHz at 3.0V
- 1.8V to 3.6V Operating Range
- Available in a 100-lead TQFP Package

Description

The AT91M40807 microcontroller is a member of the Atmel AT91 16/32-bit microcontroller family, which is based on the ARM7TDMI processor core. This processor has a high-performance 32-bit RISC architecture with a high-density 16-bit instruction set and very low power consumption. In addition, a large number of internally banked registers result in very fast exception handling, making the device ideal for real-time control applications.

The AT91M40807 microcontroller features a direct connection to off-chip memory, including Flash, through the fully programmable External Bus Interface (EBI). An eight-level priority vectored interrupt controller, in conjunction with the Peripheral Data Controller, significantly improves the real-time performance of the device.

The device is manufactured using Atmel's high-density CMOS technology. By combining the ARM7TDMI processor core with an on-chip high-speed SRAM and ROM memory and a wide range of peripheral functions on a monolithic chip, the AT91M40807 is a powerful microcontroller that offers a flexible, cost-effective solution to many compute-intensive embedded control applications.

AT91 ARM[®] Thumb[®] Microcontrollers

AT91M40807 Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature (Industrial)40°C to +85°C	*1
Voltage on Any Input Pin with Respect to Ground0.5V to +4.0V	
Maximum Operating Voltage4.6V	
DC Output Current6 mA	

NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{DD}	DC Supply		1.8		3.6	V
T _A	Ambient Temperature		-40		85	°C
V _{IL}	Input Low Voltage	V _{DD} = 1.8V to 3.6V	-0.5		0.3 x V _{DD}	V
V _{IH}	Input High Voltage	V _{DD} = 1.8V to 3.6V	$0.7 \times V_{DD}$		3.6	V
V _{OL}	Output Low Voltage	I _{OL} = 0.8 mA, V _{DD} = 3.0V			0.1	V
V _{OH}	Output High Voltage	$I_{OH} = 0.8 \text{ mA}, V_{DD} = 3.0 \text{V}$	V _{DD} - 0.1			V
I _{LEAK}	Input Leakage Current				390	nA
I _{PULL}	Input Pull-up Current	V _{DD} = 3.6V			350	μA
I _{CAP}	Input Capacitance				6	pF
		V_{DD} = 3.6V - MCKI = 0 Hz All inputs driven TMS, TDI, TCK, NRST = 1		TBD		
I _{SC}	Static Current	$V_{DD} = 1.8V - MCKI = 0 Hz$ All inputs driven TMS, TDI, TCK, NRST = 1		TBD		- μΑ

Power Consumption

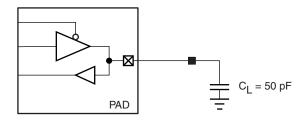
The values in the following tables are measured values in the operating conditions indicated (i.e., $V_{DD} = 3.3V$ or 2.0V, T = 25°) on the AT91EB40 Evaluation Board.

Table 1.	Power Consumption
----------	-------------------

		V _{DD}		
Mode	Conditions	2.0V	3.3V	Unit
Reset		0.05	0.13	
	Fetch in ARM mode out of Internal SRAM All peripheral clocks activated	1.52	4.13	
Normal	Fetch in ARM mode out of Internal SRAM All peripheral clocks deactivated	1.12	3.06	mW/MHz
	All peripheral clocks activated	0.69	1.88	
Idle	All peripheral clocks deactivated	0.2	0.54	

Table 2. Power Consumption per Peripheral

	v	DD	
Peripheral	2.0V	3.3V	Unit
PIO Controller	0.01	0.03	
Timer/Counter Channel	0.01	0.02	mW/MHz
Timer/Counter Block (3 Channels)	0.02	0.07	
USART	0.03	0.083	



Conditions

Environment Constraints

The output delays are valid for a capacitive load of 50 pF, as shown in Figure 1.

Figure 1. Output/Bidirectional Pad Capacitive Load

Timing Results

The output delays are for a capacitive load of 50 pF, as shown in Figure 1.

In order to obtain the timing for other capacitance values, the following equation should be used.

 $t = t_{datasheet} + factor \times (C_{load} - 50 \text{pF})$

Table 3. Derating Factor Due to Capacitive Load Variation

Parameter	Industrial	Units
Factor	0.04	ns/pF

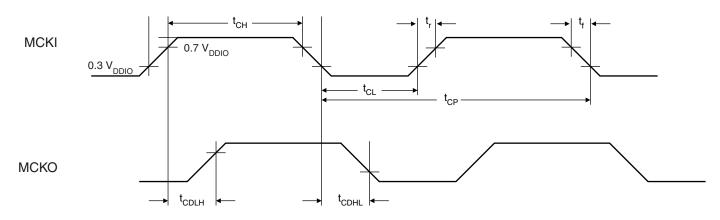
Voltage Ranges

Timings are provided for the three operating conditions defined. The core voltage is supplied from 1.8V to 3.6V, but the three following operating conditions have been characterized for timing purposes.

Table 4.	Voltage Ranges	for Timing	Characterization
	• ontago i tangot		onalaotoneation

	V	Maximum Operating	
Operating Conditions	Minimum	Maximum	Frequency
33 MHz at 2.7V	2.7V	3.6V	33 MHz
40 MHz at 3.0V	3.0V	3.6V	40 MHz
16 MHz at 1.8V	1.8V	3.6V	16 MHz

Clock Waveforms


Table 5. Clock Waveform Parameters

			Minimum					
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
1/(t _{CP})	Oscillator Frequency				33	40	16	MHz
t _{CP}	Main Clock Period	33	25	62				
t _{CH}	High Time	12	11	22				
t _{CL}	Low Time	12	11	22				ns
t _r	Rising Edge				2	2	2	
t _f	Falling Edge				2	2	2	

Table 6. Clock Propagation Times

		Minimum							
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units	
t _{CDLH}	Rising Edge Propagation Time	4	4	8	10	9	18	20	
t _{CDHL}	Falling Edge Propagation Time	5	5	10	12	11	22	ns	

Figure 2. Clock Waveform

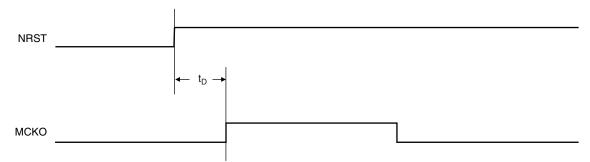


Table 7. NRST to MCKO

		Minimum			Maximum			
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
t _D	NRST Rising Edge to MCKO Valid Time	3(t _{CP} /2)	3(t _{CP} /2)	3(t _{CP} /2)	7(t _{CP} /2)	7(t _{CP} /2)	7(t _{CP} /2)	ns

Figure 3. MCKO Relative to NRST

AC Characteristics

EBI Signals Relative to MCKI

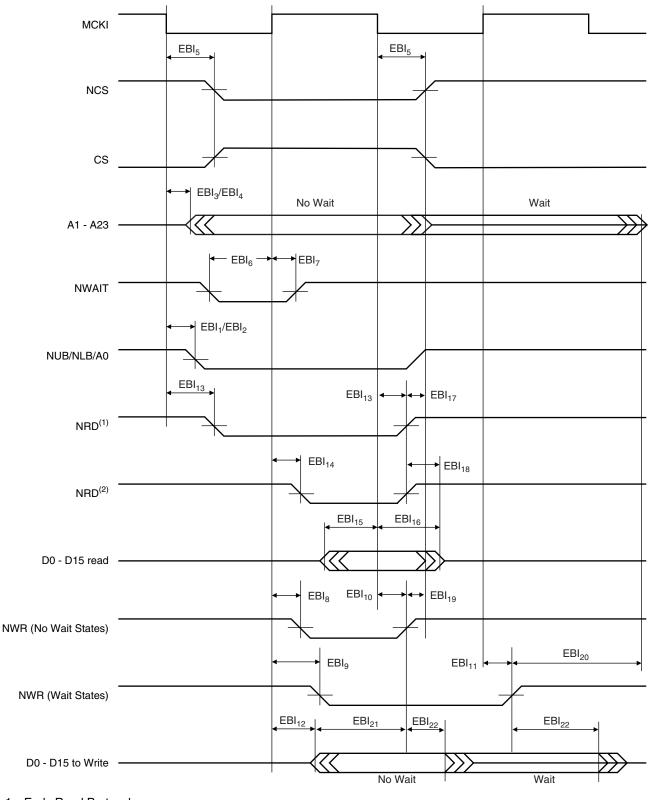
The following tables show timings relative to operating condition limits defined in Table 4. See Figure 4.

Table 8. General-purpose EBI Signals

		Minimum						
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
EBI ₁	MCKI Falling to NUB Valid	4	4	8	14	12	24	
EBI ₂	MCKI Falling to NLB/A0 Valid	3	3	6	10	8	16	
EBI ₃	MCKI Falling to A7 - A1 Valid	3	3	6	10	8	16	
EBI ₄	MCKI Falling to A23 - A8 Valid	3	3	6	10	8	16	ns
EBI ₅	MCKI Falling to Chip Select	5	5	10	17	15	30	
EBI ₆	NWAIT Setup before MCKI Rising				10	8	16	
EBI ₇	NWAIT Hold after MCKI Rising	2	1	2				

Table 9. EBI Write Signals

			Minimum			Maximum		
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
EBI ₈	MCKI Rising to NWR Active (No Wait States)	5	5	10	13	11	22	
EBI ₉	MCKI Rising to NWR Active (Wait States)	5	5	10	13	11	22	
EBI ₁₀	MCKI Falling to NWR Inactive (No Wait States)	5	5	10	14	12	24	
EBI ₁₁	MCKI Rising to NWR Inactive (Wait States)	5	5	10	14	12	24	ns
EBI ₁₂	MCKI Rising to D0 - D15 Out Valid	5	5	10	17	15	30	115
EBI ₁₉	NWR High to A23 - A1, NUB/NLB/A0, NCS, CS Changes (No Wait States)	3	2	4				
EBI ₂₀	NWR High to A23 - A1, NCS, CS Changes (Wait States)	t _{CP/2}	t _{CP/2}	t _{CP/2}				
EBI ₂₁	Data Out Valid before NWR High	11	10	20				
EBI ₂₂	Data Out Valid after NWR High	3	3	6				


Table 10. EBI Read Signals

			Minimum			Maximum		
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
EBI ₁₃	MCKI Falling to NRD Valid ⁽¹⁾	5	5	10	15	13	26	
EBI ₁₄	MCKI Rising to NRD Valid ⁽²⁾	4	4	8	12	10	20	
EBI ₁₅	D0 - D15 in Setup before MCKI Falling				4	4	8	
EBI ₁₆	D0 - D15 in Hold after MCKI Falling	3	3	6				ns
EBI ₁₇	NRD High to A23 - A1, NCS, CS Changes	0	0	0				
EBI ₁₈	Data Hold after NRD High	0	0	0				

Notes: 1. Early Read Protocol

2. Standard Read Protocol

Figure 4. EBI Signals Relative to MCKI

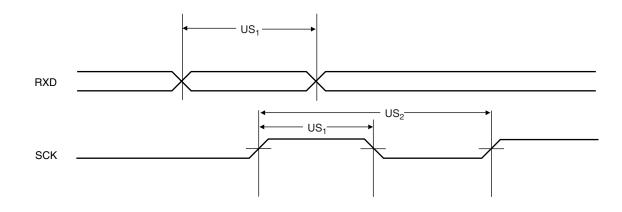
Notes: 1. Early Read Protocol

2. Standard Read Protocol

Peripheral Signals Relative to MCKI

USART Signals

The inputs have to meet the minimum pulse width and period constraints as shown in Table 11 and Table 12, and represented in Figure 5.


Table 11. USART Input Minimum Pulse Width

Symbol	Parameter	Minimum Pulse Width	Units
US ₁	SCK/RXD Minimum Pulse Width	3(t _{CP} /2)	ns

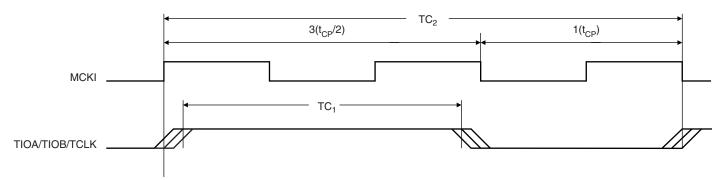
Table 12. USART Minimum Input Period

Symbol	Parameter	Minimum Input Period	Units
US ₂	SCK Minimum Input Period	5(t _{CP} /2)	ns

Figure 5. USART Signals

Timer/Counter Signals

Due to internal synchronization of input signals, there is a delay between an input event and a corresponding output event. This delay is $3(t_{CP})$ in Waveform Event Detection mode and $4(t_{CP})$ in Waveform Total Count Detection mode. The inputs have to meet the minimum pulse width and minimum input period shown in Tables 13 and 14, and as represented in Figure 6.

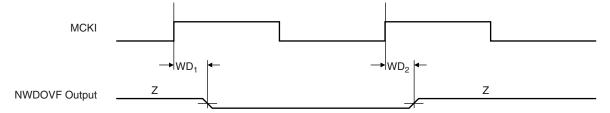

Table 13. Timer Input Minimum Pulse Width

Symbol	Parameter	Minimum Pulse Width	Units
TC ₁	TCLK/TIOA/TIOB Minimum Pulse Width	3(t _{CP} /2)	ns

Table 14. Timer Input Minimum Input Period

Symbol	Parameter	Minimum Input Period	Units
TC ₂	TCLK/TIOA/TIOB Minimum Input Period	5(t _{CP} /2)	ns

Figure 6. Timer Input

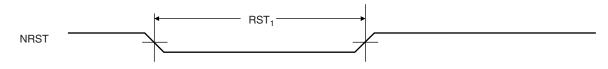


Watchdog Timer Signals

Table 15. Watchdog Timer Outputs

		Minimum		Maximum				
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
WD ₁	MCKI Rising to NWDOVF Rising	2	2	4	10	8	16	2
WD ₂	MCKI Rising to NWDOVF Falling	2	2	4	10	8	16	ns

Figure 7. Watchdog Signals Relative to MCKI


Reset Signals

A minimum pulse width is necessary, as shown in Table 16 and as represented in Figure 8.

Table 16. Reset Minimum Pulse Width

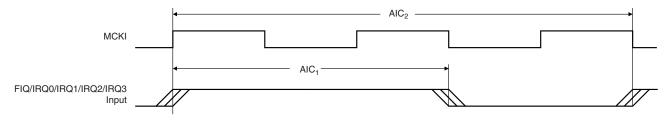
Symbol	Parameter	Minimum Pulse Width	Units
RST ₁	NRST Minimum Pulse Width	10(t _{CP})	ns

Figure 8. Reset Signal

Only the NRST rising edge is synchronized with MCKI. The falling edge is asynchronous.

Advanced Interrupt Controller Signals

Inputs have to meet the minimum pulse width and minimum input period shown in Tables 17 and 18 and represented in Figure 9.

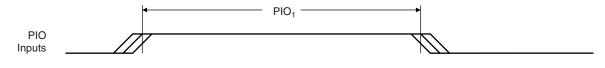

Table 17. AIC Input Minimum Pulse Width

Symbol	Parameter	Minimum Pulse Width	Units
AIC ₁	FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Minimum Pulse Width	3(t _{CP} /2)	ns

Table 18. AIC Input Minimum Input Period

Symbol	Parameter	Minimum Input Period	Units
AIC ₂	AIC Minimum Input Period	5(t _{CP} /2)	ns

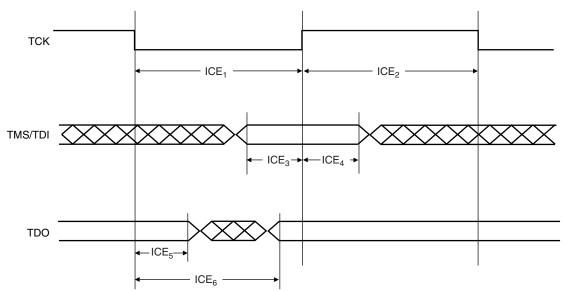
Figure 9. AIC Signals


Parallel I/O Signals

The inputs have to meet the minimum pulse width shown in Table 19 and represented in Figure 10.

Table 19. PIO Input Minimum Pulse Width

Symbol	Parameter	Minimum Pulse Width	Units
PIO ₁	PIO Input Minimum Pulse Width	3(t _{CP} /2)	ns


Figure 10. PIO Signal

ICE Interface Signals

		Minimum			Maximum			
Symbol	Parameter	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	33 MHz at 2.7V	40 MHz at 3.0V	16 MHz at 1.8V	Units
ICE ₁	TCK Low Period	50	50	50				
ICE ₂	TCK High Period	50	50	50				
ICE ₃	TDI, TMS Setup to TCK				0	-1	2	
ICE ₄	TDI, TMS Hold from TCK	3	2	4				- ns -
ICE ₅	TDO Hold Time	3	3	6				
ICE ₆	TCK to TDO Valid	3	3	6	15	13	26	

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. **Coliseum Business Centre Riverside Way** Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 2000.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ARM, Thumb and ARM Powered are registered trademarks of ARM Limited. ARM7TDMI is a trademark of ARM Limited.

Printed on recycled paper.

Marks bearing [®] and/or [™] are registered trademarks and trademarks of Atmel Corporation. Terms and product names in this document may be trademarks of others.