
is the registered trademark of Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131

is the registered trademark of Advanced
RISC Machines Limited

Atmel Corporation
 ARM7TDMITM (Thumb®)

Datasheet
January 1999

Document Details
Title: ARM7TDMI (Thumb) Data Sheet
Literature Number: 0673B
Revision: B
Date: January 1999

Printed and distributed by Atmel ES2 in accordance with the license agreement existing between ARM for
the ARM7TDMI microprocessor.

Revision History
Revision A: July 1996

Revision B: Reformatting of Revision A (numbering removed) and electrical characteristics removed. From
now on, please see one of the following datasheets for electrical characteristics:

• ARM7TDMI Embedded Core ATC50 Electrical Characteristics (0.5 micron three-layer-metal CMOS
process intended for use with a supply voltage of 3.3V ± 0.3V)

• ARM7TDMI Embedded Core ATC50/E2 Electrical Characteristics (0.5 micron three-layer-metal CMOS/
NVM process intended for use with a supply voltage of 3.3V ± 0.3V)

• ARM7TDMI Embedded Core ATC35 Electrical Characteristics (0.35 micron three-layer-metal CMOS
process intended for use with a supply voltage of 3.3V ± 0.3V)

© Copyright Advanced RISC Machines Limited (ARM) 1996
ARM, Thumb and ARM Powered are registered trademarks of ARM Limited.

The ARM7TDMI EmbeddedICE, BlackICE and ICEbreaker are trademarks of ARM Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this datasheet
may be adapted or reproduced in any material form except with the prior written permission of the copy-
right holder.

The product described in this datasheet is subject to continuous developments and improvements. All par-
ticulars of the product and its use contained in this datasheet are given by ARM in good faith. However, all
warranties implied or expressed, including but not limited to implied warranties or merchantability, or fitness
for purpose are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd. shall not be liable
for any loss or damage arising from the use of any information in this datasheet, or any error or omission in
such information, or any incorrect use of the product.

Important Notice
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in
the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Com-
pany’s website. The Company assumes no responsibility for any errors which may appear in this docu-
ment, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other
intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products,
expressly or by implication. Atmel’s products are not authorized for use as critical components in life sup-
port devices or systems.

Marks bearing ® and/or TM are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.

Atmel ES2
Zone Industrielle
13106 Rousset Cedex
France

Tel: (+33) (0)4 42 53 60 00
Fax: (+33) (0)4 42 53 60 01

For other Atmel addresses see back page.

Table of Contents
Architectural Overview ... 1
Introduction ... 1
ARM7TDMI Architecture ... 2
ARM7TDMI Block Diagram ... 3
ARM7TDMI Core Diagram .. 4
ARM7TDMI Functional Diagram ... 5

Signal Description .. 7

Programmer’s Model 15
Processor Operating States .. 15
Switching State ... 15
Memory Formats ... 16
Instruction Length .. 17
Data Types .. 17
Operating Modes ... 17
Registers ... 17
The Program Status Registers .. 21
Exceptions ... 23
Interrupt Latencies .. 26
Reset ... 26

ARM Instruction Set 27
Instruction Set Summary ... 28
The Condition Field ... 30
Branch and Exchange (BX) ... 30
Branch and Branch with Link (B, BL) .. 32
Data Processing .. 34
PSR Transfer (MRS, MSR) ... 40
Multiply and Multiply-Accumulate (MUL, MLA) ... 44
Multiply Long and Multiply-Accumulate Long (MULL,MLAL) .. 46
Single Data Transfer (LDR, STR) ... 48
Halfword and Signed Data Transfer(LDRH/STRH/LDRSB/LDRSH) 52
Block Data Transfer (LDM, STM) .. 56
Single Data Swap (SWP) .. 62
Software Interrupt (SWI) ... 64
Coprocessor Data Operations (CDP) .. 66
Coprocessor Data Transfers (LDC, STC) ... 68
Coprocessor Register Transfers (MRC, MCR) ... 70
Undefined Instruction .. 71
Instruction Set Examples .. 72

Thumb Instruction Set 77
Format Summary .. 78
Opcode Summary ... 79
i

Format 1: move shifted register .. 80
Format 2: add/subtract .. 81
Format 3: move/compare/add/subtract immediate .. 83
Format 4: ALU operations ... 84
Format 5: Hi register operations/branch exchange ... 86
Format 6: PC-relative load .. 89
Format 7: load/store with register offset .. 90
Format 8: load/store sign-extended byte/halfword .. 92
Format 9: load/store with immediate offset ... 94
Format 10: load/store halfword ... 96
Format 11: SP-relative load/store ... 98
Format 12: load address ... 100
Format 13: add offset to Stack Pointer .. 101
Format 14: push/pop registers .. 102
Format 15: multiple load/store ... 104
Format 16: conditional branch ... 105
Format 17: software interrupt .. 107
Format 18: unconditional branch ... 108
Format 19: long branch with link ... 109
Instruction Set Examples .. 110

Memory Interface .. 117
Overview ... 117
Cycle Types .. 118
Data Transfer Size .. 124
Instruction Fetch .. 124
Memory Management ... 126
Locked Operations .. 126
Stretching Access Times ... 126
The ARM Data Bus ... 127
The External Data Bus .. 129

Coprocessor Interface .. 135
Overview ... 135
Interface Signals ... 136
Register Transfer Cycle .. 137
Privileged Instructions ... 137
Idempotency .. 137
Undefined Instructions .. 137

Debug Interface ... 139
Overview ... 139
Debug Systems ... 140
Debug Interface Signals .. 141
Table of Contentsii

Table of Contents
Scan Chains and JTAG Interface .. 143
Reset ... 145
Pullup Resistors .. 145
Instruction Register ... 145
Public Instructions ... 145
Test Data Registers .. 147
ARM7TDMI Core Clocks ... 151
Determining the Core and System State ... 152
The PC’s Behaviour During Debug ... 155
Priorities / Exceptions .. 157
Scan Interface Timing ... 158
Debug Timing .. 161

ICEBreaker Module ... 163
Overview ... 164
The Watchpoint Registers ... 165
Programming Breakpoints ... 168
Programming Watchpoints .. 169
The Debug Control Register ... 169
Debug Status Register .. 170
Coupling Breakpoints and Watchpoints .. 171
Disabling ICEBreaker .. 172
ICEBreaker Timing .. 172
Programming Restriction ... 172
Debug Communications Channel ... 173

Instruction Cycle Operations ... 175
Introduction ... 176
Branch and Branch with Link .. 176
THUMB Branch with Link .. 177
Branch and Exchange (BX) ... 177
Data Operations .. 178
Multiply and Multiply Accumulate .. 179
Load Register .. 180
Store Register ... 180
Load Multiple Registers ... 181
Store Multiple Registers .. 182
Data Swap ... 182
Software Interrupt and Exception Entry .. 183
Coprocessor Data Operation .. 183
Coprocessor Data Transfer (from memory to coprocessor) .. 184
Coprocessor Data Transfer (from coprocessor to memory) .. 185
Coprocessor Register Transfer (Load from coprocessor) ... 186
Coprocessor Register Transfer (Store to coprocessor) .. 186
iii

Undefined Instructions and Coprocessor Absent .. 187
Unexecuted Instructions .. 187
Instruction Speed Summary .. 188

AC/DC Parameters .. 189
Timing Diagrams ... 190
Table of Contentsiv

Rev. 0673B–12/98

Architectural
Overview
Architectural Overview

This chapter introduces the ARM7TDMI architecture and shows block, core, and func-
tional diagrams for the ARM7TDMI.

Introduction
The ARM7TDMI is a member of the Advanced RISC Machines (ARM) family of gen-
eral purpose 32-bit microprocessors, which offer high performance for very low power
consumption and price.

The ARM architecture is based on Reduced Instruction Set Computer (RISC) princi-
ples, and the instruction set and related decode mechanism are much simpler than
those of microprogrammed Complex Instruction Set Computers. This simplicity results
in a high instruction throughput and impressive real-time interrupt response from a
small and cost-effective chip.

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.

The ARM memory interface has been designed to allow the performance potential to
be realised without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals facilitate the exploitation of the fast local
access modes offered by industry standard dynamic RAMs.
1

ARM7TDMI Architecture
The ARM7TDMI is a 3-stage pipeline, 32-bit RISC proces-
sor. The processor architecture is Von Neumann load/store
architecture, which is characterized by a single data and
address bus for instructions and data. The CPU has two
instruction sets, the ARM and the Thumb instruction set.
The ARM instruction set has 32-bit wide instructions and
provides maximum performance. Thumb instructions are
16-bits wide and give maximum code-density. Instructions
operate on 8-, 16-, and 32-bit data types.

The CPU has seven operating modes (see Operating
Modes on page 17). Each operating mode has dedicated
banked registers for fast exception handling. The processor
has a total of 37 32-bit registers, including 6 status registers
(see Registers).

The THUMB Concept
The ARM7TDMI processor employs a unique architectural
strategy known as THUMB, which makes it ideally suited to
high-volume applications with memory restrictions, or appli-
cations where code density is an issue.

The key idea behind THUMB is that of a super-reduced
instruction set. Essentially, the ARM7TDMI processor has
two instruction sets:

• the standard 32-bit ARM set

• a 16-bit THUMB set

The THUMB set’s 16-bit instruction length allows it to
approach twice the density of standard ARM code while
retaining most of the ARM’s performance advantage over a
traditional 16-bit processor using 16-bit registers. This is
possible because THUMB code operates on the same 32-
bit register set as ARM code.

THUMB code is able to provide up to 65% of the code size
of ARM, and 160% of the performance of an equivalent
ARM processor connected to a 16-bit memory system.

THUMB’s Advantages
THUMB instructions operate with the standard ARM regis-
ter configuration, allowing excellent interoperability

between ARM and THUMB states. Each 16-bit THUMB
instruction has a corresponding 32-bit ARM instruction with
the same effect on the processor model.

The major advantage of a 32-bit (ARM) architecture over a
16-bit architecture is its ability to manipulate 32-bit integers
with single instructions, and to address a large address
space efficiently. When processing 32-bit data, a 16-bit
architecture will take at least two instructions to perform the
same task as a single ARM instruction.

However, not all the code in a program will process 32-bit
data (for example, code that performs character string han-
dling), and some instructions, like Branches, do not pro-
cess any data at all.

If a 16-bit architecture only has 16-bit instructions, and a
32-bit architecture only has 32-bit instructions, then overall
the 16-bit architecture will have better code density, and
better than one half the performance of the 32-bit architec-
ture. Clearly 32-bit performance comes at the cost of code
density.

THUMB breaks this constraint by implementing a 16-bit
instruction length on a 32-bit architecture, making the pro-
cessing of 32-bit data efficient with a compact instruction
coding. This provides far better performance than a 16-bit
architecture, with better code density than a 32-bit architec-
ture.

THUMB also has a major advantage over other 32-bit
architectures with 16-bit instructions. This is the ability to
switch back to full ARM code and execute at full speed.
Thus critical loops for applications such as

• fast interrupts

• DSP algorithms

can be coded using the full ARM instruction set, and linked
with THUMB code. The overhead of switching from
THUMB code to ARM code is folded into sub-routine entry
time. Various portions of a system can be optimised for
speed or for code density by switching between THUMB
and ARM execution as appropriate.
Architecture2

Architecture
ARM7TDMI Block Diagram
Figure 1. ARM7TDMI Block Diagram

•

•

Scan Chain 0

A[31:0]

Core

Scan Chain 1
D[31:0]

nOPC
nRW

All
Other

Signals

TCK TMS TDInTRST TDO

EXTERN1

EXTERN0

nTRANS
nMREQ

Scan Chain 2

ICEBreaker

TAP controller

MAS[1:0]

B
u

s
S

p
lit

te
r

DIN[31:0]

DOUT[31:0]

RANGEOUT1

RANGEOUT0

TAPSM[3:0] IR[3:0] SCREG[3:0]
3

ARM7TDMI Core Diagram
Figure 2. ARM7TDMI Core

nRESET

nMREQ

SEQ

ABORT

nIRQ
nFIQ

nRW

LOCK
nCPI
CPA
CPB

nWAIT
MCLK

nOPC

nTRANS

Instruction
Decoder

&
Control
Logic

Instruction Pipeline
& Read Data Register

DBE D[31:0]

32-bit ALU

Barrel
Shifter

Address
Incrementer

Address Register

Register Bank
(31 x 32-bit registers)

(6 status registers)

A[31:0]
ALE

Multiplier

ABE

Write Data Register

nM[4:0]

32 x 8

nENOUT nENIN

TBE

Scan
Control

BREAKPTI
DBGRQI

nEXEC

DBGACK
ECLK

ISYNC

B

b
u
s

A
L
U

b
u
s

A

b
u
s

P
C

b
u
s

I
n
c
r
e
m
e
n
t
e
r

b
u
s

APE
BL[3:0]

MAS[1:0]

TBIT
HIGHZ

& Thumb Instruction Decoder
Architecture4

Architecture
ARM7TDMI Functional Diagram
Figure 3. ARM7TDMI Functional Diagram

LOCK

A[31:0]

ABORT
Memory
Management

nOPC

nCPI

CPA
CPB

Coprocessor
Interface

nTRANS

Memory

Interface

Interface

D[31:0]

TCK
TMS
TDI

nTRST

Boundary
Scan

TDO

Processor
Mode

nRW

nMREQ
SEQ

BL[3:0]

MAS[1:0]

APE

TBIT Processor
State

nM[4:0]

A
R

M
7T

D
M

I

DIN[31:0]

DOUT[31:0]

TAPSM[3:0]
IR[3:0]

Boundary Scan

TCK1
TCK2

11
Control Signals

nTDOEN

SCREG[3:0]

ABE

ALE

nIRQ

nFIQ

Bus

Interrupts

ISYNC

nRESET

MCLK

nWAITClocks

VDD

VSS
Power

DBGRQ

BREAKPT

DBGACK
nEXEC

Debug

Controls

EXTERN 1

DBE

TBE

EXTERN 0

nENOUT

nENIN

ECLK

DBGEN

APE

HIGHZ

BIGEND

BUSEN

RANGEOUT0

RANGEOUT1

DBGRQI

COMMRX
COMMTX

nENOUTI

ECAPCLK

BUSDIS
5

Architecture6

Signal
Description
Signal Description

This chapter lists and describes the input/output signals for the ARM7TDMI.

The following table (Table 1) lists and describes all of the signals for the ARM7TDMI.

Key to signal types
IC Input with CMOS thresholds

P Power

O4 Output with INV4 driver

O8 Output with INV8 driver
7

Table 1. Signal Description

Name Type Description
A[31:0]
Addresses

08 This is the processor address bus. If ALE (address latch enable) is HIGH and APE
(Address Pipeline Enable) is LOW, the addresses become valid during phase 2 of
the cycle before the one to which they refer and remain so during phase 1 of the
referenced cycle. Their stable period may be controlled by ALE or APE as
described below.

ABE
Address bus enable

IC This is an input signal which, when LOW, puts the address bus drivers into a high
impedance state. This signal has a similar effect on the following control signals:
MAS[1:0], nRW, LOCK, nOPC and nTRANS. ABE must be tied HIGH when there
is no system requirement to turn off the address drivers.

ABORT
Memory Abort

IC This is an input which allows the memory system to tell the processor that a
requested access is not allowed.

ALE
Address latch enable.

IC This input is used to control transparent latches on the address outputs. Normally
the addresses change during phase 2 to the value required during the next cycle,
but for direct interfacing to ROMs they are required to be stable to the end of phase
2. Taking ALE LOW until the end of phase 2 will ensure that this happens. This
signal has a similar effect on the following control signals: MAS[1:0], nRW, LOCK,
nOPC and nTRANS. If the system does not require address lines to be held in this
way, ALE must be tied HIGH. The address latch is static, so ALE may be held
LOW for long periods to freeze addresses.

APE
Address pipeline enable.

IC When HIGH, this signal enables the address timing pipeline. In this state, the
address bus plus MAS[1:0], nRW, nTRANS, LOCK and nOPC change in the
phase 2 prior to the memory cycle to which they refer. When APE is LOW, these
signals change in the phase 1 of the actual cycle. Please refer to Memory Interface
on page 117 for details of this timing.

BIGEND
Big Endian configuration.

IC When this signal is HIGH the processor treats bytes in memory as being in Big
Endian format. When it is LOW, memory is treated as Little Endian.

BL[3:0]
Byte Latch Control.

IC These signals control when data and instructions are latched from the external
data bus. When BL[3] is HIGH, the data on D[31:24] is latched on the falling edge
of MCLK. When BL[2] is HIGH, the data on D[23:16] is latched and so on. Please
refer to for details on the use of these signals.

BREAKPT
Breakpoint.

IC This signal allows external hardware to halt the execution of the processor for
debug purposes. When HIGH causes the current memory access to be break-
pointed. If the memory access is an instruction fetch, ARM7TDMI will enter debug
state if the instruction reaches the execute stage of the ARM7TDMI pipeline. If the
memory access is for data, ARM7TDMI will enter debug state after the current
instruction completes execution.This allows extension of the internal breakpoints
provided by the ICEBreaker module. See ICEBreaker Module on page 163.

BUSDIS
Bus Disable

O This signal is HIGH when INTEST is selected on scan chain 0 or 4 and may be
used to disable external logic driving onto the bidirectional data bus during scan
testing. This signal changes on the falling edge of TCK.

BUSEN
Data bus configuration

IC This is a static configuration signal which determines whether the bidirectional data
bus, D[31:0], or the unidirectional data busses, DIN[31:0] and DOUT[31:0], are to
be used for transfer of data between the processor and memory. Refer also to
Memory Interface on page 117.
When BUSEN is LOW, the bidirectional data bus, D[31:0] is used. In this case,
DOUT[31:0] is driven to value 0x00000000, and any data presented on DIN[31:0]
is ignored.
When BUSEN is HIGH, the bidirectional data bus, D[31:0] is ignored and must be
left unconnected. Input data and instructions are presented on the input data bus,
DIN[31:0], output data appears on DOUT[31:0].

COMMRX
Communications Channel Receive

O When HIGH, this signal denotes that the comms channel receive buffer is empty.
This signal changes on the rising edge of MCLK. See Debug Communications
Channel for more information on the debug comms channel.
Signal8

Signal
COMMTX
Communications Channel Transmit

O When HIGH, this signal denotes that the comms channel transmit buffer is empty.
This signal changes on the rising edge of MCLK. See Debug Communications
Channel for more information on the debug comms channel.

CPA
Coprocessor absent.

IC A coprocessor which is capable of performing the operation that ARM7TDMI is
requesting (by asserting nCPI) should take CPA LOW immediately. If CPA is
HIGH at the end of phase 1 of the cycle in which nCPI went LOW, ARM7TDMI will
abort the coprocessor handshake and take the undefined instruction trap. If CPA is
LOW and remains LOW, ARM7TDMI will busy-wait until CPB is LOW and then
complete the coprocessor instruction.

CPB
Coprocessor busy.

IC A coprocessor which is capable of performing the operation which ARM7TDMI is
requesting (by asserting nCPI), but cannot commit to starting it immediately,
should indicate this by driving CPB HIGH. When the coprocessor is ready to start it
should take CPB LOW. ARM7TDMI samples CPB at the end of phase 1 of each
cycle in which nCPI is LOW.

D[31:0]
Data Bus.

IC
08

These are bidirectional signal paths which are used for data transfers between the
processor and external memory. During read cycles (when nRW is LOW), the
input data must be valid before the end of phase 2 of the transfer cycle. During
write cycles (when nRW is HIGH), the output data will become valid during phase
1 and remain valid throughout phase 2 of the transfer cycle.
Note that this bus is driven at all times, irrespective of whether BUSEN is HIGH or
LOW. When D[31:0] is not being used to connect to the memory system it must be
left unconnected. See Memory Interface on page 117.

DBE
Data Bus Enable.

IC This is an input signal which, when driven LOW, puts the data bus D[31:0] into the
high impedance state. This is included for test purposes, and should be tied HIGH
at all times.

DBGACK
Debug acknowledge.

04 When HIGH indicates ARM is in debug state.

DBGEN
Debug Enable.

IC This input signal allows the debug features of ARM7TDMI to be disabled. This sig-
nal should be driven LOW when debugging is not required.

DBGRQ
Debug request.

IC This is a level-sensitive input, which when HIGH causes ARM7TDMI to enter
debug state after executing the current instruction. This allows external hardware
to force ARM7TDMI into the debug state, in addition to the debugging features pro-
vided by the ICEBreaker block. See ICEBreaker Module on page 163 for details.

DBGRQI
Internal debug request

04 This signal represents the debug request signal which is presented to the proces-
sor. This is the combination of external DBGRQ, as presented to the ARM7TDMI
macrocell, and bit 1 of the debug control register. Thus there are two conditions
where this signal can change. Firstly, when DBGRQ changes, DBGRQI will
change after a propagation delay. When bit 1 of the debug control register has
been written, this signal will change on the falling edge of TCK when the TAP con-
troller state machine is in the RUN-TEST/IDLE state. See ICEBreaker Module on
page 163 for details.

DIN[31:0]
Data input bus

IC This is the input data bus which may be used to transfer instructions and data
between the processor and memory.This data input bus is only used when BUSEN
is HIGH. The data on this bus is sampled by the processor at the end of phase 2
during read cycles (i.e. when nRW is LOW).

DOUT[31:0]
Data output bus

08 This is the data out bus, used to transfer data from the processor to the memory
system. Output data only appears on this bus when BUSEN is HIGH. At all other
times, this bus is driven to value 0x00000000. When in use, data on this bus
changes during phase 1 of store cycles (i.e. when nRW is HIGH) and remains valid
throughout phase 2.

Table 1. Signal Description (Continued)

Name Type Description
9

DRIVEBS
Boundary scan
cell enable

04 This signal is used to control the multiplexers in the scan cells of an external
boundary scan chain. This signal changes in the UPDATE-IR state when scan
chain 3 is selected and either the INTEST, EXTEST, CLAMP or CLAMPZ instruc-
tion is loaded. When an external boundary scan chain is not connected, this output
should be left unconnected.

ECAPCLK
Extest capture clock

O This signal removes the need for the external logic in the test chip which was
required to enable the internal tristate bus during scan testing. This need not be
brought out as an external pin on the test chip.

ECAPCLKBS
Extest capture clock for Boundary
Scan

04 This is a TCK2 wide pulse generated when the TAP controller state machine is in
the CAPTURE-DR state, the current instruction is EXTEST and scan chain 3 is
selected. This is used to capture the macrocell outputs during EXTEST. When an
external boundary scan chain is not connected, this output should be left uncon-
nected.

ECLK
External clock output.

04 In normal operation, this is simply MCLK (optionally stretched with nWAIT)
exported from the core. When the core is being debugged, this is DCLK. This
allows external hardware to track when the ARM7TDMI core is clocked.

EXTERN0
External input 0.

IC This is an input to the ICEBreaker logic in the ARM7TDMI which allows break-
points and/or watchpoints to be dependent on an external condition.

EXTERN1
External input 1.

IC This is an input to the ICEBreaker logic in the ARM7TDMI which allows break-
points and/or watchpoints to be dependent on an external condition.

HIGHZ 04 This signal denotes that the HIGHZ instruction has been loaded into the TAP con-
troller. See Debug Interface on page 139 for details.

ICAPCLKBS
Intest capture clock

04 This is a TCK2 wide pulse generated when the TAP controller state machine is in
the CAPTURE-DR state, the current instruction is INTEST and scan chain 3 is
selected. This is used to capture the macrocell outputs during INTEST. When an
external boundary scan chain is not connected, this output should be left uncon-
nected.

IR[3:0]
TAP controller Instruction register

04 These 4 bits reflect the current instruction loaded into the TAP controller instruction
register. The instruction encoding is as described in Public Instructions. These
bits change on the falling edge of TCK when the state machine is in the UPDATE-
IR state.

ISYNC
Synchronous interrupts.

IC When LOW indicates that the nIRQ and nFIQ inputs are to be synchronised by the
ARM core. When HIGH disables this synchronisation for inputs that are already
synchronous.

LOCK
Locked operation.

08 When LOCK is HIGH, the processor is performing a “locked” memory access, and
the memory controller must wait until LOCK goes LOW before allowing another
device to access the memory. LOCK changes while MCLK is HIGH, and remains
HIGH for the duration of the locked memory accesses. It is active only during the
data swap (SWP) instruction. The timing of this signal may be modified by the use
of ALE and APE in a similar way to the address, please refer to the ALE and APE
descriptions. This signal may also be driven to a high impedance state by driving
ABE LOW.

MAS[1:0]
Memory Access Size.

08 These are output signals used by the processor to indicate to the external memory
system when a word transfer or a half-word or byte length is required. The signals
take the value 10 (binary) for words, 01 for half-words and 00 for bytes. 11 is
reserved. These values are valid for both read and write cycles. The signals will
normally become valid during phase 2 of the cycle before the one in which the
transfer will take place. They will remain stable throughout phase 1 of the transfer
cycle. The timing of the signals may be modified by the use of ALE and APE in a
similar way to the address, please refer to the ALE and APE descriptions. The sig-
nals may also be driven to high impedance state by driving ABE LOW.

Table 1. Signal Description (Continued)

Name Type Description
Signal10

Signal
MCLK
Memory clock input.

IC This clock times all ARM7TDMI memory accesses and internal operations. The
clock has two distinct phases - phase 1 in which MCLK is LOW and phase 2 in
which MCLK (and nWAIT) is HIGH. The clock may be stretched indefinitely in
either phase to allow access to slow peripherals or memory. Alternatively, the
nWAIT input may be used with a free running MCLK to achieve the same effect.

nCPI
Not Coprocessor instruction.

04 When ARM7TDMI executes a coprocessor instruction, it will take this output LOW
and wait for a response from the coprocessor. The action taken will depend on this
response, which the coprocessor signals on the CPA and CPB inputs.

nENIN
NOT enable input.

IC This signal may be used in conjunction with nENOUT to control the data bus dur-
ing write cycles. See Memory Interface on page 117.

nENOUT
Not enable output.

04 During a data write cycle, this signal is driven LOW during phase 1, and remains
LOW for the entire cycle. This may be used to aid arbitration in shared bus applica-
tions. See Memory Interface on page 117.

nENOUTI
Not enable output.

O During a coprocessor register transfer C-cycle from the ICEbreaker comms chan-
nel coprocessor to the ARM core, this signal goes LOW during phase 1 and stays
LOW for the entire cycle. This may be used to aid arbitration in shared bus sys-
tems.

nEXEC
Not executed.

04 When HIGH indicates that the instruction in the execution unit is not being exe-
cuted, because for example it has failed its condition code check.

nFIQ
Not fast interrupt request.

IC This is an interrupt request to the processor which causes it to be interrupted if
taken LOW when the appropriate enable in the processor is active. The signal is
level-sensitive and must be held LOW until a suitable response is received from
the processor. nFIQ may be synchronous or asynchronous, depending on the
state of ISYNC.

nHIGHZ
Not HIGHZ

04 This signal is generated by the TAP controller when the current instruction is
HIGHZ. This is used to place the scan cells of that scan chain in the high imped-
ance state. When a external boundary scan chain is not connected, this output
should be left unconnected.

nIRQ
Not interrupt request.

IC As nFIQ, but with lower priority. May be taken LOW to interrupt the processor
when the appropriate enable is active. nIRQ may be synchronous or asynchro-
nous, depending on the state of ISYNC.

nM[4:0]
Not processor mode.

04 These are output signals which are the inverses of the internal status bits indicat-
ing the processor operation mode.

nMREQ
Not memory request.

04 This signal, when LOW, indicates that the processor requires memory access dur-
ing the following cycle. The signal becomes valid during phase 1, remaining valid
through phase 2 of the cycle preceding that to which it refers.

nOPC
Not op-code fetch.

08 When LOW this signal indicates that the processor is fetching an instruction from
memory; when HIGH, data (if present) is being transferred. The signal becomes
valid during phase 2 of the previous cycle, remaining valid through phase 1 of the
referenced cycle. The timing of this signal may be modified by the use of ALE and
APE in a similar way to the address, please refer to the ALE and APE descrip-
tions. This signal may also be driven to a high impedance state by driving ABE
LOW.

nRESET
Not reset.

IC This is a level sensitive input signal which is used to start the processor from a
known address. A LOW level will cause the instruction being executed to terminate
abnormally. When nRESET becomes HIGH for at least one clock cycle, the pro-
cessor will re-start from address 0. nRESET must remain LOW (and nWAIT must
remain HIGH) for at least two clock cycles. During the LOW period the processor
will perform dummy instruction fetches with the address incrementing from the
point where reset was activated. The address will overflow to zero if nRESET is
held beyond the maximum address limit.

Table 1. Signal Description (Continued)

Name Type Description
11

nRW
Not read/write.

08 When HIGH this signal indicates a processor write cycle; when LOW, a read cycle.
It becomes valid during phase 2 of the cycle before that to which it refers, and
remains valid to the end of phase 1 of the referenced cycle. The timing of this sig-
nal may be modified by the use of ALE and APE in a similar way to the address,
please refer to the ALE and APE descriptions. This signal may also be driven to a
high impedance state by driving ABE LOW.

nTDOEN
Not TDO Enable.

04 When LOW, this signal denotes that serial data is being driven out on the TDO out-
put. nTDOEN would normally be used as an output enable for a TDO pin in a pack-
aged part.

nTRANS
Not memory translate.

08 When this signal is LOW it indicates that the processor is in user mode. It may be
used to tell memory management hardware when translation of the addresses
should be turned on, or as an indicator of non-user mode activity. The timing of this
signal may be modified by the use of ALE and APE in a similar way to the address,
please refer to the ALE and APE description. This signal may also be driven to a
high impedance state by driving ABE LOW.

nTRST
Not Test Reset.

IC Active-low reset signal for the boundary scan logic. This pin must be pulsed or
driven LOW to achieve normal device operation, in addition to the normal device
reset (nRESET). For more information, see Debug Interface on page 139.

nWAIT
Not wait.

IC When accessing slow peripherals, ARM7TDMI can be made to wait for an integer
number of MCLK cycles by driving nWAIT LOW. Internally, nWAIT is ANDed with
MCLK and must only change when MCLK is LOW. If nWAIT is not used it must be
tied HIGH.

PCLKBS
Boundary scan
update clock

04 This is a TCK2 wide pulse generated when the TAP controller state machine is in
the UPDATE-DR state and scan chain 3 is selected. This is used by an external
boundary scan chain as the update clock. When an external boundary scan chain
is not connected, this output should be left unconnected.

RANGEOUT0
ICEbreaker Rangeout0

04 This signal indicates that ICEbreaker watchpoint register 0 has matched the condi-
tions currently present on the address, data and control busses. This signal is
independent of the state of the watchpoint’s enable control bit. RANGEOUT0
changes when ECLK is LOW.

RANGEOUT1
ICEbreaker Rangeout1

04 As RANGEOUT0 but corresponds to ICEbreaker’s watchpoint register 1.

RSTCLKBS
Boundary Scan
Reset Clock

O This signal denotes that either the TAP controller state machine is in the RESET
state or that nTRST has been asserted. This may be used to reset external bound-
ary scan cells.

SCREG[3:0]
Scan Chain Register

O These 4 bits reflect the ID number of the scan chain currently selected by the TAP
controller. These bits change on the falling edge of TCK when the TAP state
machine is in the UPDATE-DR state.

SDINBS
Boundary Scan
Serial Input Data

O This signal contains the serial data to be applied to an external scan chain and is
valid around the falling edge of TCK.

SDOUTBS
Boundary scan serial output data

IC This control signal is provided to ease the connection of an external boundary scan
chain. This is the serial data out of the boundary scan chain. It should be set up to
the rising edge of TCK. When an external boundary scan chain is not connected,
this input should be tied LOW.

SEQ
Sequential address.

O4 This output signal will become HIGH when the address of the next memory cycle
will be related to that of the last memory access. The new address will either be the
same as the previous one or 4 greater in ARM state, or 2 greater in THUMB state.

The signal becomes valid during phase 1 and remains so through phase 2 of the
cycle before the cycle whose address it anticipates. It may be used, in combination
with the low-order address lines, to indicate that the next cycle can use a fast
memory mode (for example DRAM page mode) and/or to bypass the address
translation system.

Table 1. Signal Description (Continued)

Name Type Description
Signal12

Signal
SHCLKBS
Boundary scan shift clock, phase 1

04 This control signal is provided to ease the connection of an external boundary scan
chain. SHCLKBS is used to clock the master half of the external scan cells. When
in the SHIFT-DR state of the state machine and scan chain 3 is selected,
SHCLKBS follows TCK1. When not in the SHIFT-DR state or when scan chain 3 is
not selected, this clock is LOW. When an external boundary scan chain is not con-
nected, this output should be left unconnected.

SHCLK2BS
Boundary scan shift clock, phase 2

04 This control signal is provided to ease the connection of an external boundary scan
chain. SHCLK2BS is used to clock the master half of the external scan cells.
When in the SHIFT-DR state of the state machine and scan chain 3 is selected,
SHCLK2BS follows TCK2. When not in the SHIFT-DR state or when scan chain 3
is not selected, this clock is LOW. When an external boundary scan chain is not
connected, this output should be left unconnected.

TAPSM[3:0]
TAP controller
state machine

04 This bus reflects the current state of the TAP controller state machine, as shown in
The JTAG state machine. These bits change off the rising edge of TCK.

TBE
Test Bus Enable.

IC When driven LOW, TBE forces the data bus D[31:0], the Address bus A[31:0],
plus LOCK, MAS[1:0], nRW, nTRANS and nOPC to high impedance. This is as if
both ABE and DBE had both been driven LOW. However, TBE does not have an
associated scan cell and so allows external signals to be driven high impedance
during scan testing. Under normal operating conditions, TBE should be held HIGH
at all times.

TBIT O4 When HIGH, this signal denotes that the processor is executing the THUMB
instruction set. When LOW, the processor is executing the ARM instruction set.
This signal changes in phase 2 in the first execute cycle of a BX instruction.

TCK IC Test Clock.
TCK1
TCK, phase 1

04 This clock represents phase 1 of TCK. TCK1 is HIGH when TCK is HIGH,
although there is a slight phase lag due to the internal clock non-overlap.

TCK2
TCK, phase 2

04 This clock represents phase 2 of TCK. TCK2 is HIGH when TCK is LOW, although
there is a slight phase lag due to the internal clock non-overlap.TCK2 is the non-
overlapping compliment of TCK1.

TDI IC Test Data Input.
TDO
Test Data Output.

O4 Output from the boundary scan logic.

TMS IC Test Mode Select.
VDD
Power supply.

P These connections provide power to the device.

VSS
Ground.

P These connections are the ground reference for all signals.

Table 1. Signal Description (Continued)

Name Type Description
13

Signal14

Programmer’s
Model
Programmer’s Model

This chapter describes the two operating states of the ARM7TDMI.

Processor Operating States
From the programmer’s point of view, the ARM7TDMI can be in one of two states:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB instructions. In this
state, the PC uses bit 1 to select between alternate halfwords.

Note: Transition between these two states does not affect the processor mode or the
contents of the registers.

Switching State
Entering THUMB state
Entry into THUMB state can be achieved by executing a BX instruction with the state
bit (bit 0) set in the operand register.

Transition to THUMB state will also occur automatically on return from an exception
(IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the exception was entered with the proces-
sor in THUMB state.

Entering ARM state
Entry into ARM state happens:

1. On execution of the BX instruction with the state bit clear in the operand regis-
ter.

2. On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT,
SWI etc.).

In this case, the PC is placed in the exception mode’s link register, and execution
commences at the exception’s vector address.
15

Memory Formats
ARM7TDMI views memory as a linear collection of bytes
numbered upwards from zero. Bytes 0 to 3 hold the first
s tored word, by tes 4 to 7 the second and so on.
ARM7TDMI can treat words in memory as being stored
either in Big Endian or Little Endian format.

Big endian format
In Big Endian format, the most significant byte of a word is
stored at the lowest numbered byte and the least significant
byte at the highest numbered byte. Byte 0 of the memory
system is therefore connected to data lines 31 through 24.

Little endian format
In Little Endian format, the lowest numbered byte in a word
is considered the word’s least significant byte, and the
highest numbered byte the most significant. Byte 0 of the

memory system is therefore connected to data lines 7
through 0

Figure 4. Big Endian Addresses of Bytes within Words

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

Figure 5. Little Endian Addresses of Bytes within Words

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte
Model16

Model
Instruction Length
Instructions are either 32 bits long (in ARM state) or 16 bits
long (in THUMB state).

Data Types
ARM7TDMI supports byte (8-bit), halfword (16-bit) and
word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

Operating Modes
ARM7TDMI supports seven modes of operation:

User (usr): The normal ARM pro-
gram execution state

FIQ (fiq): Designed to support a
data transfer or channel
process

IRQ (irq): Used for general-purpose
interrupt handling

Supervisor (svc): Protected mode for the
operating system

Abort mode (abt): Entered after a data or
instruction prefetch abort

System (sys): A privileged user mode for
the operating system

Undefined (und): Entered when an unde-
fined instruction is exe-
cuted

Mode changes may be made under software control, or
may be brought about by external interrupts or exception
processing. Most application programs will execute in User
mode. The non-user modes - known as privileged modes -
are entered in order to service interrupts or exceptions, or
to access protected resources.

Registers
ARM7TDMI has a total of 37 registers - 31 general-purpose
32-bit registers and six status registers - but these cannot
all be seen at once. The processor state and operating
mode dictate which registers are available to the program-
mer.

The ARM state register set
In ARM state, 16 general registers and one or two status
registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched
in. Figure 7 shows which registers are available in each
mode: the banked registers are marked with a shaded tri-
angle.

The ARM state register set contains 16 directly accessible
registers: R0 to R15. All of these except R15 are general-
purpose, and may be used to hold either data or address
values. In addition to these, there is a seventeenth register
used to store status information

Register 14 is used as the subroutine link register. This
receives a copy of R15 when a Branch and Link (BL)
instruction is executed. At all other times it may be
treated as a general-purpose register. The corre-
sponding banked registers R14_svc, R14_irq,
R14_fiq, R14_abt and R14_und are similarly used to
hold the return values of R15 when interrupts and
exceptions arise, or when Branch and Link instructions
are executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state,
bits [1:0] of R15 are zero and bits [31:2] contain the
PC. In THUMB state, bit [0] is zero and bits [31:1] con-
tain the PC.

Register 16 is the CPSR (Current Program Status Regis-
ter). This contains condition code flags and the current
mode bits.

FIQ mode has seven banked registers mapped to R8-14
(R8_fiq-R14_fiq). In ARM state, many FIQ handlers do not
need to save any registers. User, IRQ, Supervisor, Abort
and Undefined each have two banked registers mapped to
R13 and R14, allowing each of these modes to have a pri-
vate stack pointer and link registers.
17

Figure 6. Register Organization in ARM State

ARM State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM State Program Status Registers

= banked register
Model18

Model
The THUMB state register set
The THUMB state register set is a subset of the ARM state
set. The programmer has direct access to eight general
registers, R0-R7, as well as the Program Counter (PC), a
stack pointer register (SP), a link register (LR), and the

CPSR. There are banked Stack Pointers, Link Registers
and Saved Process Status Registers (SPSRs) for each
privileged mode. This is shown in Figure 7.

Figure 7. Register Organization in Thumb State

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

LR_fiq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

LR_svc

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

LR_abt

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_irq

LR_irq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

LR_und

PC

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

= banked register
19

The relationship between ARM and THUMB state registers
The THUMB state registers relate to the ARM state regis-
ters in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR
and SPSRs are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM
state Program Counter (R15)

This relationship is shown in Figure 8.

Figure 8. Mapping of THUMB State Registers onto ARM State Registers

Accessing Hi registers in THUMB state
In THUMB state, registers R8-R15 (the Hi registers) are not
part of the standard register set. However, the assembly
language programmer has limited access to them, and can
use them for fast temporary storage.

A value may be transferred from a register in the range R0-
R7 (a Lo register) to a Hi register, and from a Hi register to
a Lo register, using special variants of the MOV instruction.
Hi register values can also be compared against or added to
Lo register values with the CMP and ADD instructions. See
Format 5: Hi register operations/branch exchange on page
86.

R0

R1
R2

R3

R5
R6

R7
R8
R9

R10
R11
R12

Stack Pointer (R13)
Link Register (R14)

Program Counter (R15)

R0

R1
R2

R3

R5

R6

R7

Stack Pointer (SP)
Link Register (LR)

Program Counter (PC)

CPSR CPSR
SPSR SPSR

THUMB state ARM state

R4R4

L
o

re
g

is
te

rs
H

i r
eg

is
te

rs
Model20

Model
The Program Status Registers
The ARM7TDMI contains a Current Program Status Regis-
ter (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These registers

• hold information about the most recently performed ALU
operation

• control the enabling and disabling of interrupts

• set the processor operating mode

The arrangement of bits is shown in Figure 9.

Figure 9. Program Status Register Format

The condition code flags
The N, Z, C and V bits are the condition code flags. These
may be changed as a result of arithmetic and logical opera-
tions, and may be tested to determine whether an instruc-
tion should be executed.

In ARM state, all instructions may be executed conditionally:
see The Condition Field on page 30 for details.

In THUMB state, only the Branch instruction is capable of
conditional execution: see Format 17: software interrupt on
page 107.

0123456782728293031

M0M1M2M3M4. FIVCZN

Overflow
Carry / Borrow

Zero
Negative / Less Than

Mode bits

FIQ disable
IRQ disable

. .

condition code flags control bits

State bit

(reserved)

23

. .

24

T

25

.

26

.

/ Extend
21

The control bits
The bottom 8 bits of a PSR (incorporating I, F, T and
M[4:0]) are known collectively as the control bits. These will
change when an exception arises. If the processor is oper-
ating in a privileged mode, they can also be manipulated by
software.

The T bit This reflects the operating state. When this bit is
set, the processor is executing in THUMB state, other-
wise it is executing in ARM state. This is reflected on
the TBIT external signal.

Note that the software must never change the state of
the TBIT in the CPSR. If this happens, the processor
will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt dis-
able bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0])
are the mode bits. These determine the processor’s
operating mode, as shown in Table 2. Not all combina-
tions of the mode bits define a valid processor mode.
Only those explicitly described shall be used. The user
should be aware that if any illegal value is pro-
grammed into the mode bits, M[4:0], then the proces-
sor will enter an unrecoverable state. If this occurs,
reset should be applied.

Reserved bits The remaining bits in the PSRs are reserved.
When changing a PSR’s flag or control bits, you must
ensure that these unused bits are not altered. Also,
your program should not rely on them containing spe-
cific values, since in future processors they may read
as one or zero.

Table 2. PSR Mode Bit Values

M[4:0] Mode Visible THUMB state
registers

Visible ARM state
registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq..R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc..R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und..R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR
Model22

Model
Exceptions
Exceptions arise whenever the normal flow of a program
has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be
handled, the current processor state must be preserved so
that the original program can resume when the handler rou-
tine has finished.

It is possible for several exceptions to arise at the same time.
If this happens, they are dealt with in a fixed order - see
Exception priorities on page 25.

Action on entering an exception
When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the
appropriate Link Register. If the exception has been
entered from ARM state, then the address of the
next instruction is copied into the Link Register (that
is, current PC + 4 or PC + 8 depending on the
exception). (See Table 3 for details). If the exception
has been entered from THUMB state, then the
value written into the Link Register is the current PC
offset by a value such that the program resumes
from the correct place on return from the exception.
This means that the exception handler need not
determine which state the exception was entered
from. For example, in the case of SWI, MOVS PC,
R14_svc will always return to the next instruction
regardless of whether the SWI was executed in
ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which
depends on the exception

4. Forces the PC to fetch the next instruction from the
relevant exception vector

It may also set the interrupt disable flags to prevent other-
wise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception
occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on leaving an exception
On completion, the exception handler:

1. Moves the Link Register, minus an offset where
appropriate, to the PC. (The offset will vary depend-
ing on the type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on
entry

Note: An explicit switch back to THUMB state is never
needed, since restoring the CPSR from the SPSR automat-
ically sets the T bit to the value it held immediately prior to
the exception.

Exception entry/exit summary
Table 3 summarises the PC value preserved in the relevant
R14 on exception entry, and the recommended instruction
for exiting the exception handler.

Notes
1. Where PC is the address of the BL/SWI/Undefined

Instruction fetch which had the prefetch abort.

2. Where PC is the address of the instruction which
did not get executed since the FIQ or IRQ took pri-
ority.

3. Where PC is the address of the Load or Store
instruction which generated the data abort.

4. The value saved in R14_svc upon reset is unpre-
dictable.

Table 3. Exception Entry/Exit

Return Instruction Previous State
ARM THUMB
R14_x R14_x

Notes

BL MOV PC, R14 PC + 4 PC + 2 1
SWI MOVS PC, R14_svc PC + 4 PC + 2 1
UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2
IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2
PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3
RESET NA - - 4
23

FIQ
The FIQ (Fast Interrupt Request) exception is designed to
support a data transfer or channel process, and in ARM
state has sufficient private registers to remove the need for
register saving (thus minimising the overhead of context
switching).

FIQ is externally generated by taking the nFIQ input LOW.
This input can except either synchronous or asynchronous
transitions, depending on the state of the ISYNC input sig-
nal. When ISYNC is LOW, nFIQ and nIRQ are considered
asynchronous, and a cycle delay for synchronization is
incurred before the interrupt can affect the processor flow.

Irrespective of whether the exception was entered from
ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note
that this is not possible from User mode). If the F flag is
clear, ARM7TDMI checks for a LOW level on the output of
the FIQ synchroniser at the end of each instruction.

IRQ
The IRQ (Interrupt Request) exception is a normal interrupt
caused by a LOW level on the nIRQ input. IRQ has a lower
priority than FIQ and is masked out when a FIQ sequence
is entered. It may be disabled at any time by setting the I bit
in the CPSR, though this can only be done from a privi-
leged (non-User) mode.

Irrespective of whether the exception was entered from
ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort
An abort indicates that the current memory access cannot
be completed. It can be signalled by the external ABORT
input. ARM7TDMI checks for the abort exception during
memory access cycles.

There are two types of abort:

Prefetch abort occurs during an instruction prefetch.

Data abort occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is
marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the
instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take
place.

If a data abort occurs, the action taken depends on the
instruction type:

1. Single data transfer instructions (LDR, STR) write
back modified base registers: the Abort handler
must be aware of this.

2. The swap instruction (SWP) is aborted as though it
had not been executed.

3. Block data transfer instructions (LDM, STM) com-
plete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with
data (ie it has the base in the transfer list), the over-
writing is prevented. All register overwriting is pre-
vented after an abort is indicated, which means in
particular that R15 (always the last register to be
transferred) is preserved in an aborted LDM instruc-
tion.

The abort mechanism allows the implementation of a
demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses.
When the data at an address is unavailable, the Memory
Management Unit (MMU) signals an abort. The abort han-
dler must then work out the cause of the abort, make the
requested data available, and retry the aborted instruction.
The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way
affected by the abort.

After fixing the reason for the abort, the handler should
execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 for a prefetch abort, or
SUBS PC,R14_abt,#8 for a data abort

This restores both the PC and the CPSR, and retries the
aborted instruction.
Model24

Model
Software interrupt
The software interrupt instruction (SWI) is used for entering
Supervisor mode, usually to request a particular supervisor
function. A SWI handler should return by executing the fol-
lowing irrespective of the state (ARM or Thumb):

MOV PC, R14_svc

This restores the PC and CPSR, and returns to the instruc-
tion following the SWI.

Undefined instruction
When ARM7TDMI comes across an instruction which it
cannot handle, it takes the undefined instruction trap. This

mechanism may be used to extend either the THUMB or
ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler
should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction fol-
lowing the undefined instruction.

Exception vectors
The following table shows the exception vector addresses.

Exception priorities
When multiple exceptions arise at the same time, a fixed
priority system determines the order in which they are han-
dled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not all exceptions can occur at once:
Undefined Instruction and Software Interrupt are mutually
exclusive, since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs
are enabled (ie the CPSR’s F flag is clear), ARM7TDMI
enters the data abort handler and then immediately pro-
ceeds to the FIQ vector. A normal return from FIQ will
cause the data abort handler to resume execution. Placing
data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection.
The time for this exception entry should be added to worst-
case FIQ latency calculations.

Table 4. Exception Vectors

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ
25

Interrupt Latencies
The worst case latency for FIQ, assuming that it is enabled,
consists of the longest time the request can take to pass
through the synchroniser (Tsyncmax if asynchronous), plus
the time for the longest instruction to complete (Tldm, the
longest instruction is an LDM which loads all the registers
including the PC), plus the time for the data abort entry
(Texc), plus the time for FIQ entry (Tfiq). At the end of this
time ARM7TDMI will be executing the instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is
3 cycles, and Tfiq is 2 cycles. The total time is therefore 28
processor cycles. This is just over 1.4 microseconds in a
system which uses a continuous 20 MHz processor clock.
The maximum IRQ latency calculation is similar, but must
allow for the fact that FIQ has higher priority and could
delay entry into the IRQ handling routine for an arbitrary
length of time. The minimum latency for FIQ or IRQ con-
sists of the shortest time the request can take through the
synchroniser (Tsyncmin) plus Tfiq. This is 4 processor
cycles.

Reset
When the nRESET signal goes LOW, ARM7TDMI aban-
dons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the
current values of the PC and CPSR into them. The
value of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the
I and F bits in the CPSR, and clears the CPSR’s T
bit.

3. Forces the PC to fetch the next instruction from
address 0x00.

4. Execution resumes in ARM state.
Model26

ARM Instruction
Set
ARM Instruction Set

This chapter describes the ARM instruction set.
27

Instruction Set Summary
Format summary
The ARM instruction set formats are shown below.

Figure 10. ARM Instruction Set Formats

Note: Some instruction codes are not defined but do not
cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1.
These instructions should not be used, as their action may
change in future ARM implementations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing /
PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer:
register offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
immediate offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data
Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data
Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register
Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Set28

Instruction Set
Instruction summary
Table 5. The ARM Instruction Set

Mnemonic Instruction Action See Page
ADC Add with carry Rd := Rn + Op2 + Carry 34

ADD Add Rd := Rn + Op2 34
AND AND Rd := Rn AND Op2 34
B Branch R15 := address 32

BIC Bit Clear Rd := Rn AND NOT Op2 34
BL Branch with Link R14 := R15, R15 := address 32
BX Branch and Exchange R15 := Rn,

T bit := Rn[0]
31

CDP Coprocesor Data Processing (Coprocessor-specific) 66

CMN Compare Negative CPSR flags := Rn + Op2 34
CMP Compare CPSR flags := Rn - Op2 34
EOR Exclusive OR Rd := (Rn AND NOT Op2)

OR (op2 AND NOT Rn)
34

LDC Load coprocessor from memory Coprocessor load 68

LDM Load multiple registers Stack manipulation (Pop) 56
LDR Load register from memory Rd := (address) 48, 52
MCR Move CPU register to

coprocessor register
cRn := rRn {<op>cRm} 70

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn 44, 46

MOV Move register or constant Rd : = Op2 34
MRC Move from coprocessor

register to CPU register
Rn := cRn {<op>cRm} 70

MRS Move PSR status/flags to
register

Rn := PSR 40

MSR Move register to PSR
status/flags

PSR := Rm 40

MUL Multiply Rd := Rm * Rs 44, 46
MVN Move negative register Rd := 0xFFFFFFFF EOR Op2 34

ORR OR Rd := Rn OR Op2 34
RSB Reverse Subtract Rd := Op2 - Rn 34
RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry 34

SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry 34
STC Store coprocessor register to mem-

ory
address := CRn 68

STM Store Multiple Stack manipulation (Push) 56
STR Store register to memory <address> := Rd 48, 52

SUB Subtract Rd := Rn - Op2 34
SWI Software Interrupt OS call 64
SWP Swap register with memory Rd := [Rn], [Rn] := Rm 62

TEQ Test bitwise equality CPSR flags := Rn EOR Op2 34
TST Test bits CPSR flags := Rn AND Op2 34
29

The Condition Field
In ARM state, all instructions are conditionally executed
according to the state of the CPSR condition codes and the
instruction’s condition field. This field (bits 31:28) deter-
mines the circumstances under which an instruction is to
be executed. If the state of the C, N, Z and V flags fulfils the
conditions encoded by the field, the instruction is executed,
otherwise it is ignored.

There are sixteen possible conditions, each represented by
a two-character suffix that can be appended to the instruc-
tion’s mnemonic. For example, a Branch (B in assembly

language) becomes BEQ for "Branch if Equal", which
means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these
are listed in Table 6. The sixteenth (1111) is reserved, and
must not be used.

In the absence of a suffix, the condition field of most
instructions is set to "Always" (sufix AL). This means the
instruction will always be executed regardless of the CPSR
condition codes.

Table 6. Condition Code Summary

Code Suffix Flags Meaning
0000 EQ Z set equal
0001 NE Z clear not equal

0010 CS C set unsigned higher or same
0011 CC C clear unsigned lower

0100 MI N set negative
0101 PL N clear positive or zero
0110 VS V set overflow

0111 VC V clear no overflow
1000 HI C set and Z clear unsigned higher
1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal
1011 LT N not equal to V less than
1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal
1110 AL (ignored) always
Instruction Set30

Instruction Set
Branch and Exchange (BX)
This instruction is only executed if the condition is true. The
various conditions are defined in Table 6.

This instruction performs a branch by copying the contents
of a general register, Rn, into the program counter, PC. The
branch causes a pipeline flush and refill from the address

specified by Rn. This instruction also permits the instruction
set to be exchanged. When the instruction is executed, the
value of Rn[0] determines whether the instruction stream
will be decoded as ARM or THUMB instructions.

Figure 11. Branch and Exchange Instructions

Instruction cycle times
The BX instruction takes 2S + 1N cycles to execute, where
S and N are as defined in Cycle Types.

Assembler syntax
BX - branch and exchange.

BX{cond} Rn

{cond}: Two character condition mnemonic. See Table 6.

Rn: is an expression evaluating to a valid register number.

Using R15 as an operand
If R15 is used as an operand, the behaviour is undefined.

Examples
ADR R0, Into_THUMB + 1; Generate branch target address

; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions

.

.
ADR R5, Back_to_ARM: Generate branch target to word

: aligned ; address - hence bit 0
; is low and so change back to ARM
; state.

BX R5 ; Branch and change back to ARM
; state.

.

.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM

Back_to_ARM ; instructions

.

.

Cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn

034781112151619202324272831

Operand register
If bit 0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions

Condition Field

1 1 1 1 1 1 1 1 1 1 1 1
31

Branch and Branch with Link (B, BL)
The instruction is only executed if the condition is true. The
various conditions are defined Table 6. The instruction
encoding is shown in Figure 12 below.

Figure 12. Branch Instructions

Branch instructions contain a signed 2’s complement 24 bit
offset. This is shifted left two bits, sign extended to 32 bits,
and added to the PC. The instruction can therefore specify
a branch of +/- 32Mbytes. The branch offset must take
account of the prefetch operation, which causes the PC to
be 2 words (8 bytes) ahead of the current instruction.

Branches beyond +/- 32Mbytes must use an offset or abso-
lute destination which has been previously loaded into a
register. In this case the PC should be manually saved in
R14 if a Branch with Link type operation is required.

The link bit
Branch with Link (BL) writes the old PC into the link register
(R14) of the current bank. The PC value written into R14 is

adjusted to allow for the prefetch, and contains the address
of the instruction following the branch and link instruction.
Note that the CPSR is not saved with the PC and R14[1:0]
are always cleared.

To return from a routine called by Branch with Link use
MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack
pointed to by Rn.

Instruction cycle times
Branch and Branch with Link instructions take 2S + 1N
incremental cycles, where S and N are as defined in Cycle
Types.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field
Instruction Set32

Instruction Set
Assembler syntax
Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the
instruction. If absent, R14 will not be affected by the
instruction.

{cond} is a two-character mnemonic as shown in Table 6. If
absent then AL (ALways) will be used.

<expression> is the destination. The assembler calculates
the offset.

Examples
here BAL here ; assembles to 0xEAFFFFFE (note effect of

 ; PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue
BEQ fred ; continue to next instruction.

BL sub+ROM; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.
33

Data Processing
The data processing instruction is only executed if the con-
dition is true. The conditions are defined in Table 6.

The instruction encoding is shown in Figure 13 below.

Figure 13. Data Processing Instructions

The instruction produces a result by performing a specified
arithmetic or logical operation on one or two operands. The
first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a
rotated 8 bit immediate value (Imm) according to the value
of the I bit in the instruction. The condition codes in the
CPSR may be preserved or updated as a result of this
instruction, according to the value of the S bit in the instruc-
tion.

Certain operations (TST, TEQ, CMP, CMN) do not write the
result to Rd. They are used only to perform tests and to set

the condition codes on the result and always have the S bit
set. The instructions and their effects are listed in Table 7.

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register
1st operand register
Set condition codes

Operation Code

0 = do not alter condition codes
1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C
0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register
shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1
- 1
Instruction Set34

Instruction Set
CPSR flags
The data processing operations may be classified as logi-
cal or arithmetic. The logical operations (AND, EOR, TST,
TEQ, ORR, MOV, BIC, MVN) perform the logical action on
all corresponding bits of the operand or operands to pro-
duce the result. If the S bit is set (and Rd is not R15, see

below) the V flag in the CPSR will be unaffected, the C flag
will be set to the carry out from the barrel shifter (or pre-
served when the shift operation is LSL #0), the Z flag will be
set if and only if the result is all zeros, and the N flag will be
set to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC,
RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2’s complement signed, the two are
equivalent). If the S bit is set (and Rd is not R15) the V flag
in the CPSR will be set if an overflow occurs into bit 31 of
the result; this may be ignored if the operands were consid-
ered unsigned, but warns of a possible error if the oper-
ands were 2’s complement signed. The C flag will be set to
the carry out of bit 31 of the ALU, the Z flag will be set if and
only if the result was zero, and the N flag will be set to the
value of bit 31 of the result (indicating a negative result if
the operands are considered to be 2’s complement signed).

Shifts
When the second operand is specified to be a shifted regis-
ter, the operation of the barrel shifter is controlled by the
Shift field in the instruction. This field indicates the type of
shift to be performed (logical left or right, arithmetic right or
rotate right). The amount by which the register should be
shifted may be contained in an immediate field in the
instruction, or in the bottom byte of another register (other
than R15). The encoding for the different shift types is
shown in Figure 14.

Figure 14. ARM Shift Operations

Table 7. ARM Data Processing Instructions

Assembler Mnemonic OpCode Action

AND 0000 operand1 AND operand2
EOR 0001 operand1 EOR operand2
SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1
ADD 0100 operand1 + operand2
ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1
RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written
TEQ 1001 as EOR, but result is not written
CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written
ORR 1100 operand1 OR operand2
MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)
MVN 1111 NOT operand2 (operand1 is ignored)

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs
35

Instruction specified shift amount

When the shift amount is specified in the instruction, it is
contained in a 5 bit field which may take any value from 0 to
31. A logical shift left (LSL) takes the contents of Rm and
moves each bit by the specified amount to a more significant
position. The least significant bits of the result are filled with
zeros, and the high bits of Rm which do not map into the

result are discarded, except that the least significant
discarded bit becomes the shifter carry output which may be
latched into the C bit of the CPSR when the ALU operation
is in the logical class (see above). For example, the effect of
LSL #5 is shown in Figure 15.

Figure 15. Logical Shift Left

Note: LSL #0 is a special case, where the shifter carry out
is the old value of the CPSR C flag. The contents of Rm are
used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5
has the effect shown in Figure 16.

Figure 16. Logical Shift Right

The form of the shift field which might be expected to corre-
spond to LSR #0 is used to encode LSR #32, which has a
zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift
left zero, so the assembler will convert LSR #0 (and ASR
#0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right,
except that the high bits are filled with bit 31 of Rm instead
of zeros. This preserves the sign in 2’s complement nota-
tion. For example, ASR #5 is shown in Figure 17.

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4
Instruction Set36

Instruction Set
Figure 17. Arithmetic Shift Right

The form of the shift field which might be expected to give
ASR #0 is used to encode ASR #32. Bit 31 of Rm is again
used as the carry output, and each bit of operand 2 is also
equal to bit 31 of Rm. The result is therefore all ones or all
zeros, according to the value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which “over-
shoot” in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros
used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 18.

Figure 18. Rotate Right

The form of the shift field which might be expected to give
ROR #0 is used to encode a special function of the barrel
shifter, rotate right extended (RRX). This is a rotate right by

one bit position of the 33 bit quantity formed by appending
the CPSR C flag to the most significant end of the contents
of Rm as shown in Figure 19.

Figure 19. Rotate Right Extended

Register specified shift amount
Only the least significant byte of the contents of Rs is used
to determine the shift amount. Rs can be any general regis-
ter other than R15.

If this byte is zero, the unchanged contents of Rm will be
used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

contents of Rm

value of operand 2

31 0

carry out

5 430

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in
37

If the byte has a value between 1 and 31, the shifted result
will exactly match that of an instruction specified shift with
the same value and shift operation.

If the value in the byte is 32 or more, the result will be a log-
ical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of
Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31
of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with and carry
out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal
to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the
same result and carry out as ROR by n-32; there-
fore repeatedly subtract 32 from n until the amount
is in the range 1 to 32 and see above.

Note: The zero in bit 7 of an instruction with a register con-
trolled shift is compulsory; a one in this bit will cause the
instruction to be a multiply or undefined instruction.

Immediate operand rotates
The immediate operand rotate field is a 4 bit unsigned inte-
ger which specifies a shift operation on the 8 bit immediate
value. This value is zero extended to 32 bits, and then sub-
ject to a rotate right by twice the value in the rotate field.
This enables many common constants to be generated, for
example all powers of 2.

Writing to R15
When Rd is a register other than R15, the condition code
flags in the CPSR may be updated from the ALU flags as
described above.

When Rd is R15 and the S flag in the instruction is not set
the result of the operation is placed in R15 and the CPSR is
unaffected.

When Rd is R15 and the S flag is set the result of the oper-
ation is placed in R15 and the SPSR corresponding to the
current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This
form of instruction should not be used in User mode.

Using R15 as an operand
If R15 (the PC) is used as an operand in a data processing
instruction the register is used directly.

The PC value will be the address of the instruction, plus 8
or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the
PC will be 12 bytes ahead.

TEQ, TST, CMP and CMN opcodes
Note: TEQ, TST, CMP and CMN do not write the result of
their operation but do set flags in the CPSR. An assembler
should always set the S flag for these instructions even if
this is not specified in the mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM
processors must not be used: the PSR transfer operations
should be used instead.

The act ion of TEQP in the ARM7TDMI is to move
SPSR_<mode> to the CPSR if the processor is in a privi-
leged mode and to do nothing if in User mode.
Instruction Set38

Instruction Set
Instruction cycle times
Data Processing instructions vary in the number of incre-
mental cycles taken as follows:

S, N and I are as defined in Cycle Types.

Assembler syntax
1. MOV,MVN (single operand instructions.)

<opcode>{cond}{S} Rd,<Op2>

2. CMP,CMN,TEQ,TST (instructions which do not pro-
duce a result.)
<opcode>{cond} Rn,<Op2>

3. AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BI
C
<opcode>{cond}{S} Rd,Rn,<Op2>

where:
<Op2> is Rm{,<shift>} or,<#expression>

{cond} is a two-character condition mnemonic. See Table
6.

{S} set condition codes if S present (implied for CMP, CMN,
TEQ, TST).

Rd, Rn and Rm are expressions evaluating to a register
number.

<#expression> if this is used, the assembler will attempt to
generate a shifted immediate 8-bit field to match the
expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expres-
sion, or RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a
synonym for LSL, they assemble to the same code.)

Examples
ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; test R4 for equality with 3.

 ; (The S is in fact redundant as the
 ; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2; Logical right shift R7 by the number in
 ; the bottom byte of R2, subtract result
 ; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

 ; from SPSR_mode.

Table 8. Incremental Cycle Times

Processing Type Cycles

Normal Data Processing 1S

Data Processing with register specified shift 1S + 1I
Data Processing with PC written 2S + 1N
Data Processing with register specified shift and PC written 2S + 1N + 1I
39

PSR Transfer (MRS, MSR)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6.

The MRS and MSR instructions are formed from a subset
of the Data Processing operations and are implemented
using the TEQ, TST, CMN and CMP instructions without
the S flag set. The encoding is shown in Figure 20.

These instructions allow access to the CPSR and SPSR
registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general regis-
ter. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> regis-
ter.

The MSR instruction also allows an immediate value or
register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without
affecting the control bits. In this case, the top four bits of the
specified register contents or 32 bit immediate value are
written to the top four bits of the relevant PSR.

Operand restrictions
• In User mode, the control bits of the CPSR are protected

from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the
entire CPSR can be changed.

• Note that the software must never change the state of
the T bit in the CPSR. If this happens, the processor will
enter an unpredictable state.

• The SPSR register which is accessed depends on the
mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ
mode.

• You must not specify R15 as the source or destination
register.

• Also, do not attempt to access an SPSR in User mode,
since no such register exists.
Instruction Set40

Instruction Set
Figure 20. PSR Transfer

Cond

0

000000000000RdP00010 s
001111

16 15 12 112228 2131 2327

MRS (transfer PSR contents to a register)

Destination register
Source PSR

Condition field

0=CPSR
1=SPSR_<current mode>

Cond

0

00000000 RmP00010 d 1010011111

4 312 112228 2131 2327

MSR (transfer register contents to PSR)

Source register
Destination PSR

Condition field

0=CPSR

1=SPSR_<current mode>

Cond

0

Source operandP00 d 1010001111

12 112228 2131 2327

MSR (transfer register contents or immdiate value to PSR flag bits only)

Destination PSR

Immediate Operand

0=CPSR
1=SPSR_<current mode>

I 10

11 4 3 0
0=source operand is a register

1=source operand is an immediate value
11 8 7 0

Condition field

00000000

Rotate Imm

Rm

Source register

Unsigned 8 bit immediate value
shift applied to Imm
41

Reserved bits
Only twelve bits of the PSR are defined in ARM7TDMI
(N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure
9 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI
programs and future processors, the following rules should
be observed:

• The reserved bits should be preserved when changing
the value in a PSR.

• Programs should not rely on specific values from the
reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used
when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a gen-
eral register using the MRS instruction, changing only the
relevant bits and then transferring the modified value back
to the PSR register using the MSR instruction.

Example
The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified

; CPSR.
When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag bits without
disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags
; regardless of their
; previous state (does not
; affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot preserve
the reserved bits.

Instruction cycle times
PSR Transfers take 1S incremental cycles, where S is as
defined in Cycle Types.
Instruction Set42

Instruction Set
Assembler syntax
1. MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2. MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

3. MSR - transfer register contents to PSR flag bits
only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are
written to the N,Z,C & V flags respectively.

4. MSR - transfer immediate value to PSR flag bits
only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which
the most significant four bits are written to the N,Z,C and V
flags respectively.

Key:
{cond} two-character condition mnemonic. See Table 6.

Rd and Rm are expressions evaluating to a register num-
ber other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and
CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

<#expression>where this is used, the assembler will
attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give
an error.

Examples
In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000; CPSR[31:28] <- 0xA

;(set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000; CPSR[31:28] <- 0x5

;(set Z,V; clear N,C)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]
MSR SPSR_all,Rm ;SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000; SPSR_<mode>[31:28] <- 0xC

;(set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]
43

Multiply and Multiply-Accumulate (MUL, MLA)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 21.

The multiply and multiply-accumulate instructions use an 8
bit Booth’s algorithm to perform integer multiplication.

Figure 21. Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is
ignored, and should be set to zero for compatibility with
possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn,
which can save an explicit ADD instruction in some circum-
stances.

Both forms of the instruction work on operands which may
be considered as signed (2’s complement) or unsigned
integers.

The results of a signed multiply and of an unsigned multiply
of 32 bit operands differ only in the upper 32 bits - the low
32 bits of the signed and unsigned results are identical. As
these instructions only produce the low 32 bits of a multiply,
they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

If the operands are interpreted as signed
Operand A has the value -10, operand B has the value 20,
and the result is -200 which is correctly represented as
0xFFFFFF38

If the operands are interpreted as unsigned
Operand A has the value 4294967286, operand B has the
value 20 and the result is 85899345720, which is repre-
sented as 0x13FFFFFF38, so the least significant 32 bits
are 0xFFFFFF38.

Operand restrictions
The destination register Rd must not be the same as the
operand register Rm. R15 must not be used as an operand
or as the destination register.

All other register combinations will give correct results, and
Rd, Rn and Rs may use the same register when required.

CPSR flags
Setting the CPSR flags is optional, and is controlled by the
S bit in the instruction. The N (Negative) and Z (Zero) flags
are set correctly on the result (N is made equal to bit 31 of
the result, and Z is set if and only if the result is zero). The
C (Carry) flag is set to a meaningless value and the V
(oVerflow) flag is unaffected.

Instruction cycle times
MUL takes 1S + mI and MLA 1S + (m+1)I cycles to exe-
cute, where S and I are as defined in Cycle Types.

m is the number of 8 bit multiplier array cycles required to
complete the multiply, which is controlled by the value
of the multiplier operand specified by Rs. Its possible
values are as follows

1 if bits [32:8] of the multiplier operand are all zero or
all one.

2 if bits [32:16] of the multiplier operand are all zero
or all one.

3 if bits [32:24] of the multiplier operand are all zero
or all one.

4 in all other cases.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field
Instruction Set44

Instruction Set
Assembler syntax
MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} two-character condition mnemonic. See Table 6.

{S} set condition codes if S present

Rd, Rm, Rs and Rnare expressions evaluating to a regis-
ter number other than R15.

Examples
MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4; Conditionally R1:=R2*R3+R4,

; setting condition codes.
45

Multiply Long and Multiply-Accumulate Long (MULL,MLAL)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 22.

The multiply long instructions perform integer multiplication
on two 32 bit operands and produce 64 bit results. Signed
and unsigned multiplication each with optional accumulate
give rise to four variations.

Figure 22. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit
numbers and multiply them to produce a 64 bit result of the
form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit
result are written to RdLo, the upper 32 bits of the result are
written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take
two 32 bit numbers, multiply them and add a 64 bit number
to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs
+ RdHi,RdLo. The lower 32 bits of the 64 bit number to add
is read from RdLo. The upper 32 bits of the 64 bit number
to add is read from RdHi. The lower 32 bits of the 64 bit
result are written to RdLo. The upper 32 bits of the 64 bit
result are written to RdHi.

The UMULL and UMLAL instructions treat all of their oper-
ands as unsigned binary numbers and write an unsigned
64 bit result. The SMULL and SMLAL instructions treat all
of their operands as two’s-complement signed numbers
and write a two’s-complement signed 64 bit result.

Operand restrictions
• R15 must not be used as an operand or as a destination

register.

• RdHi, RdLo, and Rm must all specify different registers.

CPSR flags
Setting the CPSR flags is optional, and is controlled by the
S bit in the instruction. The N and Z flags are set correctly
on the result (N is equal to bit 63 of the result, Z is set if and
only if all 64 bits of the result are zero). Both the C and V
flags are set to meaningless values.

Instruction cycle times
MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to
execute, where m is the number of 8 bit multiplier array
cycles required to complete the multiply, which is controlled
by the value of the multiplier operand specified by Rs.

Its possible values are as follows:

For signed instructions SMULL, SMLAL:
1 if bits [31:8] of the multiplier operand are all zero or all

one.

2 if bits [31:16] of the multiplier operand are all zero or all
one.

3 if bits [31:24] of the multiplier operand are all zero or all
one.

4 in all other cases.

For unsigned instructions UMULL, UMLAL:
1 if bits [31:8] of the multiplier operand are all zero.

2 if bits [31:16] of the multiplier operand are all zero.

3 if bits [31:24] of the multiplier operand are all zero.

4 in all other cases.

S and I are as defined in Cycle Types.

Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

03478111215161920212223272831

Operand registers
Source destination registers
Set condition code

Accumulate

Unsigned

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

0 = unsigned
1 = signed

Condition Field
Instruction Set46

Instruction Set
Assembler syntax

where:
{cond} two-character condition mnemonic. See Table 6.

{S} set condition codes if S present

RdLo, RdHi, Rm, Rs are expressions evaluating to a regis-
ter number other than R15.

Examples
UMULL R1,R4,R2,R3; R4,R1:=R2*R3
UMLALS R1,R5,R2,R3; R5,R1:=R2*R3+R5,R1 also setting

; condition codes

Table 9. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64
UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64
SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64
SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64
47

Single Data Transfer (LDR, STR)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 23.

The single data transfer instructions are used to load or
store single bytes or words of data. The memory address

used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register.

The result of this calculation may be written back into the
base register if auto-indexing is required.

Figure 23. Single Data Transfer Instructions

Offsets and auto-indexing
The offset from the base may be either a 12 bit unsigned
binary immediate value in the instruction, or a second reg-
ister (possibly shifted in some way). The offset may be
added to (U=1) or subtracted from (U=0) the base register
Rn. The offset modification may be performed either before
(pre-indexed, P=1) or after (post-indexed, P=0) the base is
used as the transfer address.

The W bit gives optional auto increment and decrement
addressing modes. The modified base value may be writ-
ten back into the base (W=1), or the old base value may be
kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since
the old base value can be retained by setting the offset to
zero. Therefore post-indexed data transfers always write
back the modified base. The only use of the W bit in a post-

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm
Instruction Set48

Instruction Set
indexed data transfer is in privileged mode code, where
setting the W bit forces non-privileged mode for the trans-
fer, allowing the operating system to generate a user
address in a system where the memory management hard-
ware makes suitable use of this hardware.

Shifted register offset
The 8 shift control bits are described in the data processing
instructions section. However, the register specified shift
amounts are not available in this instruction class. See
Shifts.

Bytes and words
This instruction class may be used to transfer a byte (B=1)
or a word (B=0) between an ARM7TDMI register and mem-
ory.

The action of LDR(B) and STR(B) instructions is influenced
by the BIGEND control signal. The two possible configura-
tions are described below.

Little endian configuration
A byte load (LDRB) expects the data on data bus inputs 7
through 0 if the supplied address is on a word boundary, on
data bus inputs 15 through 8 if it is a word address plus one
byte, and so on. The selected byte is placed in the bottom 8
bits of the destination register, and the remaining bits of the
register are filled with zeros. Please see Figure 5.

A byte store (STRB) repeats the bottom 8 bits of the source
register four times across data bus outputs 31 through 0.
The external memory system should activate the appropri-
ate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned
address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the
addressed byte occupies bits 0 to 7. This means that half-
words accessed at offsets 0 and 2 from the word boundary
will be correctly loaded into bits 0 through 15 of the register.
Two shift operations are then required to clear or to sign
extend the upper 16 bits. This is illustrated in Figure 24.

Figure 24. Little Endian Offset Addressing

A word store (STR) should generate a word aligned
address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of
the register being stored always appears on data bus out-
put 31.

Big endian configuration
A byte load (LDRB) expects the data on data bus inputs 31
through 24 if the supplied address is on a word boundary,
on data bus inputs 23 through 16 if it is a word address plus

one byte, and so on. The selected byte is placed in the bot-
tom 8 bits of the destination register and the remaining bits
of the register are filled with zeros. Please see Figure 4.

A byte store (STRB) repeats the bottom 8 bits of the source
register four times across data bus outputs 31 through 0.
The external memory system should activate the appropri-
ate byte subsystem to store the data.

A word load (LDR) should generate a word aligned
address. An address offset of 0 or 2 from a word boundary

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2
49

will cause the data to be rotated into the register so that the
addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly
loaded into bits 16 through 31 of the register. A shift opera-
tion is then required to move (and optionally sign extend)
the data into the bottom 16 bits. An address offset of 1 or 3
from a word boundary will cause the data to be rotated into
the register so that the addressed byte occupies bits 15
through 8.

A word store (STR) should generate a word aligned
address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of
the register being stored always appears on data bus out-
put 31.

Use of R15
Write-back must not be specified if R15 is specified as the
base register (Rn). When using R15 as the base register
you must remember it contains an address 8 bytes on from
the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store
(STR) instruction, the stored value will be address of the
instruction plus 12.

Restriction on the use of base register
When configured for late aborts, the following example
code is difficult to unwind as the base register, Rn, gets

updated before the abort handler starts. Sometimes it may
be impossible to calculate the initial value.

After an abort, the following example code is difficult to
unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to
calculate the initial value.

Example:
LDRR0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the
same register as Rn should not be used.

Data aborts
A transfer to or from a legal address may cause problems
for a memory management system. For instance, in a sys-
tem which uses virtual memory the required data may be
absent from main memory. The memory manager can sig-
nal a problem by taking the processor ABORT input HIGH
whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, then
the instruction can be restarted and the original program
continued.

Instruction cycle times
Normal LDR instructions take 1S + 1N + 1I and LDR PC
take 2S + 2N +1I incremental cycles, where S,N and I are
as defined in Cycle Types.

STR instructions take 2N incremental cycles to execute.
Instruction Set50

Instruction Set
Assembler syntax
<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic. See Table 6.

{B} if B is present then byte transfer, otherwise word trans-
fer

{T} if T is present the W bit will be set in a post-indexed
instruction, forcing non-privileged mode for the trans-
fer cycle. T is not allowed when a pre-indexed
addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

Rn and Rm are expressions evaluating to a register num-
ber. If Rn is R15 then the assembler will subtract 8
from the offset value to allow for ARM7TDMI pipelin-
ing. In this case base write-back should not be speci-
fied.

<Address>can be:

1. An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction
using the PC as a base and a corrected immediate off-
set to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed

address. If the address is out of range, an error will be
generated.

2. A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!}
offset of <expression>
bytes

[Rn,{+/-}Rm{,<shift>}]{!}
offset of +/- contents of
index register, shifted by
<shift>

3. A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

[Rn],{+/-}Rm{,<shift>}
offset of +/- contents of
index register, shifted as
by <shift>.

<shift> general shift operation (see data processing
instructions) but you cannot specify the shift amount
by a register.

{!} writes back the base register (set the W bit) if! is
present.

Examples
STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are

 ; registers) and write back address to
; R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back
 ; R2+R4 to R2.

LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but
; don’t write back.

LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQBR1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31
; with zeros.

STR R1,PLACE ; Generate PC relative offset to
; address PLACE.

•
PLACE
51

Halfword and Signed Data Transfer(LDRH/STRH/LDRSB/LDRSH)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Table 25, below, and Figure 26.

These instructions are used to load or store half-words of
data and also load sign-extended bytes or half-words of

data. The memory address used in the transfer is calcu-
lated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written
back into the base register if auto-indexing is required.

Figure 25. Halfword and Signed Data Transfer with Register Offset

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 Rm

034781112151619202122272831

Offset register

Base register

S H

Source/Destination

00 = SWP instruction
01 = Unsigned halfwords

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfwords

register

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56
Instruction Set52

Instruction Set
Figure 26. Halfword and Signed Data Transfer With Immediate Offset

Offsets and auto-indexing
The offset from the base may be either a 8-bit unsigned
binary immediate value in the instruction, or a second reg-
ister. The 8-bit offset is formed by concatenating bits 11 to
8 and bits 3 to 0 of the instruction word, such that bit 11
becomes the MSB and bit 0 becomes the LSB. The offset
may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed
either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement
addressing modes. The modified base value may be writ-
ten back into the base (W=1), or the old base may be kept
(W=0). In the case of post-indexed addressing, the write
back bit is redundant and is always set to zero, since the
old base value can be retained if necessary by setting the
offset to zero. Therefore post-indexed data transfers
always write back the modified base.

The Write-back bit should not be set high (W=1) when post-
indexed addressing is selected.

Halfword load and stores
Setting S=0 and H=1 may be used to transfer unsigned
Half-words between an ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by
the BIGEND control signal. The two possible configurations
are described in the section below.

Signed byte and halfword loads
The S bit controls the loading of sign-extended data. When
S=1 the H bit selects between Bytes (H=0) and Half-words
(H=1). The L bit should not be set low (Store) when Signed
(S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7
to 0 of the destination register and bits 31 to 8 of the desti-
nation register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into
bits 15 to 0 of the destination register and bits 31 to 16 of
the destination register are set to the value of bit 15, the
sign bit.

The action of the LDRSB and LDRSH instructions is influ-
enced by the BIGEND control signal. The two possible con-
figurations are described in the following section.

Cond 0 0 0 P U 1 W L Rn Rd Offset

034781112151619202122272831

Immediate Offset

Base register

S H

Source/Destination

00 = SWP instruction
01 = Unsigned halfwords

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfwords

register

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56

 Offset

Immediate Offset
(High nibble)

(Low nibble)
53

Endianness and byte/halfword selection
Little endian configuration
A signed byte load (LDRSB) expects data on data bus
inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word
address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and
the remaining bits of the register are filled with the sign bit,
bit 7 of the byte. Please see Figure 5

A halfword load (LDRSH or LDRH) expects data on data
bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it
is a halfword boundary, (A[1]=1).The supplied address
should always be on a halfword boundary. If bit 0 of the
supplied address is HIGH then the ARM7TDMI will load an
unpredictable value. The selected halfword is placed in the
bottom 16 bits of the destination register. For unsigned
half-words (LDRH), the top 16 bits of the register are filled
with zeros and for signed half-words (LDRSH) the top 16
bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the
source register twice across the data bus outputs 31
through to 0. The external memory system should activate
the appropriate halfword subsystem to store the data. Note
that the address must be halfword aligned, if bit 0 of the
address is HIGH this will cause unpredictable behaviour.

Big endian configuration
A signed byte load (LDRSB) expects data on data bus
inputs 31 through to 24 if the supplied address is on a word
boundary, on data bus inputs 23 through to 16 if it is a word
address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and
the remaining bits of the register are filled with the sign bit,
bit 7 of the byte. Please see Figure 4.
A halfword load (LDRSH or LDRH) expects data on data
bus inputs 31 through to 16 if the supplied address is on a
word boundary and on data bus inputs 15 through to 0 if it
is a halfword boundary, (A[1]=1). The supplied address
should always be on a halfword boundary. If bit 0 of the
supplied address is HIGH then the ARM7TDMI will load an

unpredictable value. The selected halfword is placed in the
bottom 16 bits of the destination register. For unsigned
half-words (LDRH), the top 16 bits of the register are filled
with zeros and for signed half-words (LDRSH) the top 16
bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the
source register twice across the data bus outputs 31
through to 0. The external memory system should activate
the appropriate halfword subsystem to store the data. Note
that the address must be halfword aligned, if bit 0 of the
address is HIGH this will cause unpredictable behaviour.

Use of R15
Write-back should not be specified if R15 is specified as the
base register (Rn). When using R15 as the base register
you must remember it contains an address 8 bytes on from
the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store
(STRH) instruction, the stored address will be address of
the instruction plus 12.

Data aborts
A transfer to or from a legal address may cause problems
for a memory management system. For instance, in a sys-
tem which uses virtual memory the required data may be
absent from the main memory. The memory manager can
signal a problem by taking the processor ABORT input
HIGH whereupon the Data Abort trap will be taken. It is up
to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original pro-
gram continued.

Instruction cycle times
Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I

LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.

S,N and I are defined in Cycle Types.
STRH instructions take 2N incremental cycles to execute.
Instruction Set54

Instruction Set
Assembler syntax
<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR load from memory into a register

STR Store from a register into memory

{cond} two-character condition mnemonic. See Table 6.

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd is an expression evaluating to a valid register number.

<address> can be:

1. An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction
using the PC as a base and a corrected immediate off-
set to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed

address. If the address is out of range, an error will be
generated.

2. A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression>
bytes

[Rn,{+/-}Rm]{!} offset of +/- contents of
index register

3. A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm offset of +/- contents of index register.

Rn and Rm are expressions evaluating to a register
number. If Rn is R15 then the assembler will subtract 8
from the offset value to allow for ARM7TDMI pipelining.
In this case base write-back should not be specified.

{!} writes back the base register (set the W bit) if ! is
present

Examples
LDRH R1,[R2,-R3]!; Load R1 from the contents of the

; halfword address contained in
; R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14]; Store the halfword in R3 at R14+14
; but don’t write back.

LDRSB R8,[R2],#-223; Load R8 with the sign extended
; contents of the byte address
; contained in R2 and write back
; R2-223 to R2.

LDRNESHR11,[R0]; conditionally load R11 with the sign
; extended contents of the halfword
; address contained in R0.

HERE ; Generate PC relative offset to
; address FRED.
; Store the halfword in R5 at address
; FRED.

STRH R5, [PC, #(FRED-HERE-8)]
.

FRED
55

Block Data Transfer (LDM, STM)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 27.

Block data transfer instructions are used to load (LDM) or
store (STM) any subset of the currently visible registers.
They support all possible stacking modes, maintaining full
or empty stacks which can grow up or down memory, and
are very efficient instructions for saving or restoring con-
text, or for moving large blocks of data around main mem-
ory.

The register list
The instruction can cause the transfer of any registers in
the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register
list is a 16 bit field in the instruction, with each bit corre-
sponding to a register. A 1 in bit 0 of the register field will
cause R0 to be transferred, a 0 will cause it not to be trans-
ferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be
specified. The only restriction is that the register list should
not be empty.

Whenever R15 is stored to memory the stored value is the
address of the STM instruction plus 12.

Figure 27. Block Data Transfer Instructions

Addressing modes
The transfer addresses are determined by the contents of
the base register (Rn), the pre/post bit (P) and the up/down
bit (U). The registers are transferred in the order lowest to
highest, so R15 (if in the list) will always be transferred last.
The lowest register also gets transferred to/from the lowest
memory address. By way of illustration, consider the trans-
fer of R1, R5 and R7 in the case where Rn=0x1000 and
write back of the modified base is required (W=1). Figure
28, Figure 29, Figure 30 and Figure 31 show the sequence
of register transfers, the addresses used, and the value of
Rn after the instruction has completed.

In all cases, had write back of the modified base not been
required (W=0), Rn would have retained its initial value of
0x1000 unless it was also in the transfer list of a load multi-

ple register instruction, when it would have been overwrit-
ten with the loaded value.

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field
Instruction Set56

Instruction Set
Address alignment
The address should normally be a word aligned quantity
and non-word aligned addresses do not affect the instruc-

tion. However, the bottom 2 bits of the address will appear
on A[1:0] and might be interpreted by the memory system.

Figure 28. Post-increment Addressing

Figure 29. Pre-increment Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn
57

Figure 30. Post-decrement Addressing

Figure 31. Pre-decrement Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn
Instruction Set58

Instruction Set
Use of the S bit
When the S bit is set in a LDM/STM instruction its meaning
depends on whether or not R15 is in the transfer list and on
the type of instruction. The S bit should only be set if the
instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode
changes)
If the instruction is a LDM then SPSR_<mode> is trans-
ferred to CPSR at the same time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank
transfer)
The registers transferred are taken from the User bank
rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches.
Base write-back should not be used when this mechanism
is employed.

R15 not in list and S bit set (User bank transfer)
For both LDM and STM instructions, the User bank regis-
ters are transferred rather than the register bank corre-
sponding to the current mode. This is useful for saving the
user state on process switches. Base write-back should not
be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to
read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after
the LDM will ensure safety).

Use of R15 as the base
R15 should not be used as the base register in any LDM or
STM instruction.

Inclusion of the base in the register list
When write-back is specified, the base is written back at
the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the sec-
ond cycle. A STM which includes storing the base, with the
base as the first register to be stored, will therefore store
the unchanged value, whereas with the base second or
later in the transfer order, will store the modified value. A
LDM will always overwrite the updated base if the base is in
the list.

Data aborts
Some legal addresses may be unacceptable to a memory
management system, and the memory manager can indi-
cate a problem with an address by taking the ABORT sig-
nal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if
ARM7TDMI is to be used in a virtual memory system.

Aborts during STM instructions
If the abort occurs during a store multiple instruction,
ARM7TDMI takes little action until the instruction com-
pletes, whereupon it enters the data abort trap. The mem-
ory manager is responsible for preventing erroneous writes
to the memory. The only change to the internal state of the
processor will be the modification of the base register if
write-back was specified, and this must be reversed by
software (and the cause of the abort resolved) before the
instruction may be retried.

Aborts during LDM instructions
When ARM7TDMI detects a data abort during a load multi-
ple instruction, it modifies the operation of the instruction to
ensure that recovery is possible.

1. Overwriting of registers stops when the abort hap-
pens. The aborting load will not take place but ear-
lier ones may have overwritten registers. The PC is
always the last register to be written and so will
always be preserved.

2. The base register is restored, to its modified value if
write-back was requested. This ensures recover-
ability in the case where the base register is also in
the transfer list, and may have been overwritten
before the abort occurred.

The data abort trap is taken when the load multiple has
completed, and the system software must undo any base
modification (and resolve the cause of the abort) before
restarting the instruction.

Instruction cycle times
Normal LDM instructions take nS + 1N + 1I and LDM PC
takes (n+1)S + 2N + 1I incremental cycles, where S,N and I
are as defined in Cycle Types. STM instructions take (n-
1)S + 2N incremental cycleto execute, where n is the num-
ber of words transferred.
59

Assembler syntax
<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB>

Rn{!},<Rlist>{^}

where:

{cond} two character condition mnemonic. See Table 6.

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in
{} (e.g. {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC,
or force transfer of user bank when in privileged mode

Addressing mode names
There are different assembler mnemonics for each of the
addressing modes, depending on whether the instruction is
being used to support stacks or for other purposes. The
equivalence between the names and the values of the bits
in the instruction are shown in the following table

FD, ED, FA, EA define pre/post indexing and the up/down
bit by reference to the form of stack required. The F and E
refer to a “full” or “empty” stack, i.e. whether a pre-index
has to be done (full) before storing to the stack. The A and
D refer to whether the stack is ascending or descending. If
ascending, a STM will go up and LDM down, if descending,
vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being
used for stacks and simply mean Increment After, Incre-
ment Before, Decrement After, Decrement Before.

Table 10. Addressing Mode Names

Name Stack Other L bit P bit U bit
pre-increment load LDMED LDMIB 1 1 1
post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0
post-decrement load LDMFA LDMDA 1 0 0
pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1
pre-decrement store STMFD STMDB 0 1 0
post-decrement store STMED STMDA 0 0 0
Instruction Set60

Instruction Set
Examples
LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 <- (SP),CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).
These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; restore workspace and return.
61

Single Data Swap (SWP)
Figure 32. Swap Instruction

The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 32.

The data swap instruction is used to swap a byte or word
quantity between a register and external memory. This
instruction is implemented as a memory read followed by a
memory write which are “locked” together (the processor
cannot be interrupted until both operations have com-
pleted, and the memory manager is warned to treat them
as inseparable). This class of instruction is particularly use-
ful for implementing software semaphores.

The swap address is determined by the contents of the
base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the
source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The
same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read
and write operations to signal to the external memory man-
ager that they are locked together, and should be allowed
to complete without interruption. This is important in multi-
processor systems where the swap instruction is the only
indivisible instruction which may be used to implement
semaphores; control of the memory must not be removed
from a processor while it is performing a locked operation.

Bytes and words
This instruction class may be used to swap a byte (B=1) or
a word (B=0) between an ARM7TDMI register and mem-
ory. The SWP instruction is implemented as a LDR fol-
lowed by a STR and the action of these is as described in
the section on single data transfers. In particular, the
description of Big and Little Endian configuration applies to
the SWP instruction.

Use of R15
Do not use R15 as an operand (Rd, Rn or Rs) in a SWP
instruction.

Data aborts
If the address used for the swap is unacceptable to a mem-
ory management system, the memory manager can flag
the problem by driving ABORT HIGH. This can happen on
either the read or the write cycle (or both), and in either
case, the Data Abort trap will be taken. It is up to the sys-
tem software to resolve the cause of the problem, then the
instruction can be restarted and the original program con-
tinued.

Instruction cycle times
Swap instructions take 1S + 2N +1I incremental cycles to
execute, where S,N and I are as defined in Cycle Types.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity
Instruction Set62

Instruction Set
Assembler syntax
<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic. See Table 6.

{B} if B is present then byte transfer, otherwise word trans-
fer

Rd,Rm,Rn are expressions evaluating to valid register num-
bers

Examples
SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and

; store R1 at R2.
SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and

; store bits 0 to 7 of R3 at R4.
SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the

; word addressed by R1 with R0.
63

Software Interrupt (SWI)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 37, below.

The software interrupt instruction is used to enter Supervi-
sor mode in a controlled manner. The instruction causes
the software interrupt trap to be taken, which effects the

mode change. The PC is then forced to a fixed value (0x08)
and the CPSR is saved in SPSR_svc. If the SWI vector
address is suitably protected (by external memory manage-
ment hardware) from modification by the user, a fully pro-
tected operating system may be constructed.

Figure 33. Software Interrupt Instruction

Return from the supervisor
The PC is saved in R14_svc upon entering the software
interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to
the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the
supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and
SPSR.

Comment field
The bottom 24 bits of the instruction are ignored by the pro-
cessor, and may be used to communicate information to
the supervisor code. For instance, the supervisor may look

at this field and use it to index into an array of entry points
for routines which perform the various supervisor functions.

Instruction cycle times
Software interrupt instructions take 2S + 1N incremental
cycles to execute, where S and N are as defined in Cycle
Types

Assembler syntax
SWI{cond} <expression>

{cond} two character condition mnemonic, Table 6.

<expression> is evaluated and placed in the comment field
(which is ignored by ARM7TDMI).

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)
Instruction Set64

Instruction Set
Examples
SWI ReadC ; Get next character from read stream.
SWI WriteI+”k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor

; with 0 in comment field.

Supervisor code
The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; addresses of supervisor routines

 DCD ZeroRtn
 DCD ReadCRtn
 DCD WriteIRtn
 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return
; address.

LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.

WriteIRtn ; Enter with character in R0 bits 0-7.

LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,
; restoring processor mode and flags.
65

Coprocessor Data Operations (CDP)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 34.

This class of instruction is used to tell a coprocessor to per-
form some internal operation. No result is communicated

back to ARM7TDMI, and it will not wait for the operation to
complete. The coprocessor could contain a queue of such
instructions awaiting execution, and their execution can
overlap other activity, allowing the coprocessor and
ARM7TDMI to perform independent tasks in parallel.

Figure 34. Coprocessor Data Operation Instruction

The coprocessor fields
Only bit 4 and bits 24 to 31 are significant to ARM7TDMI.
The remaining bits are used by coprocessors. The above
field names are used by convention, and particular copro-
cessors may redefine the use of all fields except CP# as
appropriate. The CP# field is used to contain an identifying
number (in the range 0 to 15) for each coprocessor, and a
coprocessor will ignore any instruction which does not con-
tain its number in the CP# field.

The conventional interpretation of the instruction is that the
coprocessor should perform an operation specified in the
CP Opc field (and possibly in the CP field) on the contents
of CRn and CRm, and place the result in CRd.

Instruction cycle times
Coprocessor data operations take 1S + bI incremental
cycles to execute, where b is the number of cycles spent in
the coprocessor busy-wait loop.

S and I are as defined in Cycle Types.

Assembler syntax
CDP{cond}

p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic. See Table 6.

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the
CP Opc field

cd, cn and cm evaluate to the valid coprocessor register
numbers CRd, CRn and CRm respectively

<expression2> where present is evaluated to a constant
and placed in the CP field

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code
Instruction Set66

Instruction Set
Examples
CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10

; on CR2 and CR3, and put the result
; in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2
; to do operation 5 (type 2) on CR2
; and CR3,and put the result in CR1.
67

Coprocessor Data Transfers (LDC, STC)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 35.

This class of instruction is used to load (LDC) or store
(STC) a subset of a coprocessors’s registers directly to
memory. ARM7TDMI is responsible for supplying the mem-
ory address, and the coprocessor supplies or accepts the
data and controls the number of words transferred.

Figure 35. Coprocessor Data Transfer Instructions

The coprocessor fields
The CP# field is used to identify the coprocessor which is
required to supply or accept the data, and a coprocessor
will only respond if its number matches the contents of this
field.

The CRd field and the N bit contain information for the
coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the regis-
ter to be transferred (or the first register where more than
one is to be transferred), and the N bit is used to choose
one of two transfer length options. For instance N=0 could
select the transfer of a single register, and N=1 could select
the transfer of all the registers for context switching.

Addressing modes
ARM7TDMI is responsible for providing the address used
by the memory system for the transfer, and the addressing
modes available are a subset of those used in single data
transfer instructions. Note, however, that the immediate off-
sets are 8 bits wide and specify word offsets for coproces-
sor data transfers, whereas they are 12 bits wide and
specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and
either added to (U=1) or subtracted from (U=0) the base
register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer
address. The modified base value may be overwritten back
into the base register (if W=1), or the old value of the base
may be preserved (W=0). Note that post-indexed address-
ing modes require explicit setting of the W bit, unlike LDR
and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a
pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one
word (4 bytes) higher than the first transfer, and the
address will be incremented by one word for each subse-
quent transfer.

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer
Instruction Set68

Instruction Set
Address alignment
The base address should normally be a word aligned quan-
tity. The bottom 2 bits of the address will appear on A[1:0]
and might be interpreted by the memory system.

Use of R15
If Rn is R15, the value used will be the address of the
instruction plus 8 bytes. Base write-back to R15 must not
be specified.

Data aborts
If the address is legal but the memory manager generates
an abort, the data trap will be taken. The write-back of the
modified base will take place, but all other processor state
will be preserved. The coprocessor is partly responsible for
ensuring that the data transfer can be restarted after the
cause of the abort has been resolved, and must ensure
that any subsequent actions it undertakes can be repeated
when the instruction is retried.

Instruction cycle times
Coprocessor data transfer instructions take (n-1)S + 2N +
bI incremental cycles to execute, where:

n is the number of words transferred.

b is the number of cycles spent in the coprocessor busy-
wait loop.

S, N and I are as defined in Cycle Types.

Assembler syntax
<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise
perform short transfer (N=0)

{cond} two character condition mnemonic. See Table 6.

p# the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor reg-
ister number that is placed in the CRd field

<Address> can be:

1. An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction
using the PC as a base and a corrected immediate off-
set to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed
address. If the address is out of range, an error will be
generated.

2. A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!}
offset of <expression>
bytes

3. A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

{!} write back the base regis-
ter (set the W bit) if ! is
present

Rn is an expression evaluat-
ing to a valid ARM7TDMI
register number.

Note: If Rn is R15, the assembler will subtract 8 from the
offset value to allow for ARM7TDMI pipelining.

Examples
LDC p1,c2,table; Load c2 of coproc 1 from address

; table, using a PC relative address.
STCEQLp2,c3,[R5,#24]!; Conditionally store c3 of coproc 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to
; store multiple words).

Note: Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler will adjust
the offset appropriately.
69

Coprocessor Register Transfers (MRC, MCR)
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
encoding is shown in Figure 36.

This class of instruction is used to communicate informa-
tion directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer
(MRC) instruction would be a FIX of a floating point value
held in a coprocessor, where the floating point number is
converted into a 32 bit integer within the coprocessor, and
the result is then transferred to ARM7TDMI register. A

FLOAT of a 32 bit value in ARM7TDMI register into a float-
ing point value within the coprocessor illustrates the use of
ARM7TDMI register to coprocessor transfer (MCR).

An important use of this instruction is to communicate con-
trol information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a
comparison of two floating point values within a coproces-
sor can be moved to the CPSR to control the subsequent
flow of execution.

Figure 36. Coprocessor Register Transfer Instructions

The coprocessor fields
The CP# field is used, as for all coprocessor instructions, to
specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the
coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are
allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP
Opc and CP fields specify the operation the coprocessor is
required to perform, CRn is the coprocessor register which
is the source or destination of the transferred information,
and CRm is a second coprocessor register which may be
involved in some way which depends on the particular
operation specified.

Transfers to R15
When a coprocessor register transfer to ARM7TDMI has
R15 as the destination, bits 31, 30, 29 and 28 of the trans-
ferred word are copied into the N, Z, C and V flags respec-
tively. The other bits of the transferred word are ignored,
and the PC and other CPSR bits are unaffected by the
transfer.

Transfers from R15
A coprocessor register transfer from ARM7TDMI with R15
as the source register will store the PC+12.

Instruction cycle times
MRC instructions take 1S + (b+1)I +1C incremental cycles
to execute, where S, I and C are as defined in Cycle
Types.

MCR instructions take 1S + bI +1C incremental cycles to
execute, where b is the number of cycles spent in the
coprocessor busy-wait loop.

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register
Instruction Set70

Instruction Set
Assembler syntax
<MCR|MRC>{cond}

p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC move from coprocessor to ARM7TDMI register (L=1)

MCR move from ARM7TDMI register to coprocessor (L=0)

{cond} two character condition mnemonic. See Table 6.

p# the unique number of the required coprocessor

 <expression1> evaluated to a constant and placed in the
CP Opc field

Rd is an expression evaluating to a valid ARM7TDMI reg-
ister number

cn and cm are expressions evaluating to the valid copro-
cessor register numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant
and placed in the CP field

Examples
MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5

; on c5 and c6, and transfer the (single
; 32 bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

Undefined Instruction
The instruction is only executed if the condition is true. The
various conditions are defined in Table 6. The instruction
format is shown in Figure 37.

Figure 37. Undefined Instruction

If the condition is true, the undefined instruction trap will be
taken.

Note that the undefined instruction mechanism involves
offering this instruction to any coprocessors which may be
present, and all coprocessors must refuse to accept it by
driving CPA and CPB HIGH.

Instruction cycle times
This instruction takes 2S + 1I + 1N cycles, where S, N and I
are as defined in Cycle Types.

Assembler syntax
The assembler has no mnemonics for generating this
instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler.
Until such time, this instruction must not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx
71

Instruction Set Examples
The following examples show ways in which the basic
ARM7TDMI instructions can combine to give efficient code.
None of these methods saves a great deal of execution

time (although they may save some), mostly they just save
code.

Using the conditional instructions
Using conditionals for logical OR
CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try

; other test.
BEQ Label

Absolute value
TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2’s complement if necessary.

Multiplication by 4, 5 or 6 (run time)
MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; test value,
ADDCS Rc,Rc,Ra ; complete multiply by 5,
ADDHI Rc,Rc,Ra ; complete multiply by 6.

Combining discrete and range tests
TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#” ”-1 ; range test
MOVLS Rc,#”.” ; IF Rc<=” ” OR Rc=ASCII(127)

; THEN Rc:=”.”

Division and remainder
A number of divide routines for specific applications are
provided in source form as part of the ANSI C library pro-
vided with the ARM Cross Development Toolkit, available

from your supplier. A short general purpose divide routine
follows.

; Enter with numbers in Ra and Rb.
;

MOV Rcnt,#1 ; Bit to control the division.
Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.

CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1; shift control bit
MOVNE Rb,Rb,LSR#1 ; halve unless finished.
BNE Div2

;
; Divide result in Rc,
Instruction Set72

Instruction Set
; remainder in Ra.

Overflow detection in the ARM7TDMI
1. Overflow in unsigned multiply with a 32 bit result

UMULL Rd,Rt,Rm,Rn ;3 to 6 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32 bit result

SMULL Rd,Rt,Rm,Rn ;3 to 6 cycles
TEQ Rt,Rd ASR#31 ;+1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd, ASR#31 ;+1 cycle and a register
BNE overflow

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ;3 to 6 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ;3 to 6 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;1 cycle and 2 registers

Note: Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow does not
occur in such calculations.

Pseudo-random binary sequence generator
It is often necessary to generate (pseudo-) random num-
bers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic
redundancy check generator. Unfortunately the sequence
of a 32 bit generator needs more than one feedback tap to
be maximal length (i.e. 2^32-1 cycles before repetition), so

this example uses a 33 bit register with taps at bits 33 and
20. The basic algorithm is newbit:=bit 33 eor bit 20, shift left
the 33 bit number and put in newbit at the bottom; this
operation is performed for all the newbits needed (i.e. 32
bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
 Rb (1 bit in Rb lsb), uses Rc.
;

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

; new seed in Ra, Rb as before
73

Multiplication by constant using the barrel shifter
Multiplication by 2^n (1,2,4,8,16,32..)

MOVRa, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADDRa,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSBRa,Ra,Ra,LSL #n

Multiplication by 6

ADDRa,Ra,Ra,LSL #1; multiply by 3

MOVRa,Ra,LSL#1; and then by 2

Multiply by 10 and add in extra number

ADDRa,Ra,Ra,LSL#2; multiply by 5

ADDRa,Rc,Ra,LSL#1; multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:
1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n
2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n
3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n
This is not quite optimal, but close. An example of its
non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:
ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45
Instruction Set74

Instruction Set
Loading a word from an unknown alignment
; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb; combine two halves to get result
75

Instruction Set76

Thumb
Instruction Set
Thumb Instruction Set

This chapter describes the THUMB instruction set.
77

Format Summary
The THUMB instruction set formats are shown in the following figure.

Figure 38. THUMB Instruction Set Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Op Offset5 Rs Rd Move shifted register

2 0 0 0 1 1 I Op Rn/offset3 Rs Rd Add/subtract

3
0 0 1 Op Rd Offset8

Move/compare/add
/subtract immediate

4 0 1 0 0 0 0 Op Rs Rd ALU operations

5
0 1 0 0 0 1 Op H1 H2 Rs/Hs Rd/Hd

Hi register operations
/branch exchange

6 0 1 0 0 1 Rd Word8 PC-relative load

7
0 1 0 1 L B 0 Ro Rb Rd

Load/store with register
offset

8
0 1 0 1 H S 1 Ro Rb Rd

Load/store sign-extended
byte/halfword

9
0 1 1 B L Offset5 Rb Rd

Load/store with immediate
offset

10 1 0 0 0 L Offset5 Rb Rd Load/store halfword

11 1 0 0 1 L Rd Word8 SP-relative load/store

12 1 0 1 0 SP Rd Word8 Load address

13 1 0 1 1 0 0 0 0 S SWord7 Add offset to stack pointer

14 1 0 1 1 L 1 0 R Rlist Push/pop registers

15 1 1 0 0 L Rb Rlist Multiple load/store

16 1 1 0 1 Cond Soffset8 Conditional branch

17 1 1 0 1 1 1 1 1 Value8 Software Interrupt

18 1 1 1 0 0 Offset11 Unconditional branch

19 1 1 1 1 H Offset Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Set78

Instruction Set
Opcode Summary
The following table summarizes the THUMB instruction set. For further information about a particular instruction please
refer to the sections listed in the right-most column.

Notes: 1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.

2. The condition codes are unaffected by the format 5 version of this instruction.

Table 11. THUMB Instruction Set Opcodes

Mnemonic Instruction
Lo register
operand

Hi register
operand

Condition
codes set See Page:

ADC Add with Carry ✔ ✔ 84
ADD Add ✔ ✔ ✔(1) 81, 83, 86, 100, 101
AND AND ✔ ✔ 84

ASR Arithmetic Shift Right ✔ ✔ 80, 84
B Unconditional branch ✔ 108
Bxx Conditional branch ✔ 105

BIC Bit Clear ✔ ✔ 84
BL Branch and Link 109
BX Branch and Exchange ✔ ✔ 86

CMN Compare Negative ✔ ✔ 84
CMP Compare ✔ ✔ ✔ 83, 84, 86

EOR EOR ✔ ✔ 84
LDMIA Load multiple ✔ 104
LDR Load word ✔ 89, 90, 94, 98

LDRB Load byte ✔ 90, 94
LDRH Load halfword ✔ 92, 96
LSL Logical Shift Left ✔ ✔ 80, 84

LDSB Load sign-extended byte ✔ 92
LDSH Load sign-extended half-

word
✔ 92

LSR Logical Shift Right ✔ ✔ 80, 84
MOV Move register ✔ ✔ ✔(2) 83, 86

MUL Multiply ✔ ✔ 84
MVN Move Negative register ✔ ✔ 84
NEG Negate ✔ ✔ 84

ORR OR ✔ ✔ 84
POP Pop registers ✔ 102
PUSH Push registers ✔ 102

ROR Rotate Right ✔ ✔ 84
SBC Subtract with Carry ✔ ✔ 84
STMIA Store Multiple ✔ 104

STR Store word ✔ 90, 94, 98
STRB Store byte ✔ 90
STRH Store halfword ✔ 92, 96

SWI Software Interrupt 107
SUB Subtract ✔ ✔ 81, 83
TST Test bits ✔ ✔ 84
79

Format 1: move shifted register
Figure 39. Format 1

Operation
These instructions move a shifted value between Lo regis-
ters. The THUMB assembler syntax is shown in Table 12.

Note: All instructions in this group set the CPSR condition
codes

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 12. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
LSR R2, R5, #27 ; Logical shift right the contents

; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

0123456789101112131415

Offset5 Rs000

Destination register

Source register

Immediate value

Opcode

Op Rd

0 - LSL
1 - LSR
2 - ASR

Table 12. Summary of Format 1 Instructions

OP THUMB assembler ARM equivalent Action
00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL #Offset5 Shift Rs left by a 5-bit immediate value and store

the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR #Offset5 Perform logical shift right on Rs by a 5-bit immedi-
ate value and store the result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR #Offset5 Perform arithmetic shift right on Rs by a 5-bit
immediate value and store the result in Rd.
Instruction Set80

Instruction Set
Format 2: add/subtract
Figure 40. Format 2

Operation
These instructions allow the contents of a Lo register or a
3-bit immediate value to be added to or subtracted from a
Lo register. The THUMB assembler syntax is shown in
Table 13.

Note: All instructions in this group set the CPSR condition
codes

0123456789101112131415

Rn/Offset3 Rs1000

Destination register

Opcode

Source register

0 - ADD

Register/

1 - SUB

Immediate value

Immediate flag
0 - Register operand
1 - Immediate operand

1 I Op Rd

Table 13. Summary of Format 2 Instructions

Op I THUMB assembler ARM equivalent Action
0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs. Place result

in Rd.
0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, #Offset3 Add 3-bit immediate value to contents of Rs. Place

result in Rd.
1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of Rs. Place

result in Rd.
1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs, #Offset3 Subtract 3-bit immediate value from contents of Rs.

Place result in Rd.
81

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 13. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175

Examples
ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on

; the result.

SUB R6, R2, #6 ; R6 := R2 - 6 and set condition codes.
Instruction Set82

Instruction Set
Format 3: move/compare/add/subtract immediate
Figure 41. Format 3

Operations
The instructions in this group perform operations between a
Lo register and an 8-bit immediate value.

The THUMB assembler syntax is shown in Table 14.

Note: All instructions in this group set the CPSR condition
codes.

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 14. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
MOV R0, #128 ; R0 := 128 and set condition codes

CMP R2, #62 ; Set condition codes on R2 - 62

ADD R1, #255 ; R1 := R1 + 255 and set condition
; codes

SUB R6, #145 ; R6 := R6 - 145 and set condition
; codes

0123456789101112131415

RdOp100 Offset8

Source/destination register
 Immediate value

Opcode
0 - MOV
1 - CMP
2 - ADD
3 SUB

Table 14. Summary of Format 3 Instructions

Op THUMB assembler ARM equivalent Action
00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit immediate value.
10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of Rd and place

the result in Rd.
11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from contents of Rd and

place the result in Rd.
83

Format 4: ALU operations
Figure 42. Format 4

Operation
The following instructions perform ALU operations on a Lo
register pair.

Note: All instructions in this group set the CPSR condition
codes.

0123456789101112131415

Op Rs010

Source/destination

Source register 2

Opcode

Rd

register

0 0 0

Table 15. Summary of Format 4 Instructions

OP THUMB assembler ARM equivalent Action
0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs
0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs
0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs
0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit
0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd - Rs - NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs
1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = -Rs
1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs
1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs
1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs * Rd
1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs
Instruction Set84

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 15. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes

ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes

NEG R5, R3 ; Subtract the contents of R3 from zero,
; store the result in R5. Set condition codes
; ie R5 = -R3

CMP R2, R6 ; Set the condition codes on the result of
; R2 - R6

MUL R0, R7 ; R0 := R7 * R0 and set condition codes
85

Format 5: Hi register operations/branch exchange
Figure 43. Format 5

Operation
There are four sets of instructions in this group. The first
three allow ADD, CMP and MOV operations to be per-
formed between Lo and Hi registers, or a pair of Hi regis-
ters. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state.

The THUMB assembler syntax is shown in Table 16.

Note: In this group only CMP (Op = 01) sets the CPSR
condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01
(CMP) and Op = 10 (MOV) is undefined, and should not be
used

0123456789101112131415

Op010 Rs/Hs

Destination register

Source register

0 0 H1

Opcode

1 H2

Hi operand flag 2

Hi operand flag 1

Rd/Hd

Table 16. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action
00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a register in

the range 0-7.
00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a register in

the range 8-15.
00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15
01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7 with a reg-

ister in the range 8-15. Set the condition code
flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15 with a
register in the range 0-7. Set the condition code
flags on the result.

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range 8-15. Set
the condition code flags on the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the range 8-15
to a register in the range 0-7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the range 0-7 to
a register in the range 8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers in the
range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state change) to
address in a register in the range 0-7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state change) to
address in a register in the range 8-15.
Instruction Set86

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 16. The instruction cycle
times for the THUMB instruction are identical to that of the
equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

The BX instruction
BX performs a Branch to a routine whose start address is
specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on
entry to the routine:

Bit 0 = 0 causes the processor to enter ARM state.

Bit 0 = 1 causes the processor to enter THUMB state.

Note: The action of H1 = 1 for this instruction is undefined,
and should not be used.
87

Examples

Hi register operations

ADD PC, R5 ; PC := PC + R5 but don’t set the
 ; condition codes.

CMP R4, R12 ; Set the condition codes on the
; result of R4 - R12.

MOV R15, R14 ; Move R14 (LR) into R15 (PC)
; but don’t set the condition codes,
; eg. return from subroutine.

Branch and exchange

; Switch from THUMB to ARM state.

ADR R1,outofTHUMB
; Load address of outofTHUMB
; into R1.

MOV R11,R1
BX R11 ; Transfer the contents of R11 into

; the PC.
; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie.
; ARM state here.

 ...
ALIGN
CODE32

outofTHUMB
; Now processing ARM instructions...

Using R15 as an operand
If R15 is used as an operand, the value will be the address
of the instruction + 4 with bit 0 cleared. Executing a BX PC
in THUMB state from a non-word aligned address will result
in unpredictable execution.
Instruction Set88

Instruction Set
Format 6: PC-relative load
Figure 44. Format 6

Operation
This instruction loads a word from an address specified as
a 10-bit immediate offset from the PC.

The THUMB assembler syntax is shown below.

Note: The value specified by #Imm is a full 10-bit address,
but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word8.

Note: The value of the PC will be 4 bytes greater than the
address of this instruction, but bit 1 of the PC is forced to 0
to ensure it is word aligned.

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 17. The instruction cycle
times for the THUMB instruction are identical to that of the
equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
LDR R3,[PC,#844] ; Load into R3 the word found at the

; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

0123456789101112131415

Rd010 Word8

Destination register
 Immediate value

0 1

Table 17. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action
LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm

to the current value of the PC. Load the word from
the resulting address into Rd.
89

Format 7: load/store with register offset
Figure 45. Format 7

Operation
These instructions transfer byte or word values between
registers and memory. Memory addresses are pre-indexed
using an offset register in the range 0-7.

The THUMB assembler syntax is shown in Table 18

0123456789101112131415

Ro RbL010

Source/destination

Base register

Offset register

1 B 0 Rd

Byte/Word flag

Load/Store flag

0 - Transfer word quantity
1 - Transfer byte quantity

0 - Store to memory
1 - Load from memory

register

Table 18. Summary of Format 7 Instructions

L B THUMB assembler ARM equivalent Action
0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:

Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the contents of Rd at the address.
Instruction Set90

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 18. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
STR R3, [R2,R6] ; Store word in R3 at the address

; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding
; R7 to R0.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the byte value in Rd at the result-
ing address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the contents of the address into
Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the byte value at the resulting
address.

Table 18. Summary of Format 7 Instructions (Continued)

L B THUMB assembler ARM equivalent Action
91

Format 8: load/store sign-extended byte/halfword
Figure 46. Format 8

Operation
These instructions load optionally sign-extended bytes or
halfwords, and store halfwords. The THUMB assembler
syntax is shown below.

0123456789101112131415

Ro RbH010

Destination register

Base register

Offset register

H flag

1 S 1 Rd

Sign-extended flag
0 - Operand not sign-extended
1 - Operand sign-extended

Table 19. Summary of Format 8 Instructions

S H THUMB assembler ARM equivalent Action
0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:

Add Ro to base address in Rb. Store bits 0-15 of Rd
at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:
Add Ro to base address in Rb. Load bits 0-15 of Rd
from the resulting address, and set bits 16-31 of Rd
to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:
Add Ro to base address in Rb. Load bits 0-7 of Rd
from the resulting address, and set bits 8-31 of Rd
to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:
Add Ro to base address in Rb. Load bits 0-15 of Rd
from the resulting address, and set bits 16-31 of Rd
to bit 15.
Instruction Set92

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 19. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the

; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding
; R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding
; R2 to R4.
93

Format 9: load/store with immediate offset
Figure 47. Format 9

Operation
These instructions transfer byte or word values between
registers and memory using an immediate 5 or 7-bit offset.

The THUMB assembler syntax is shown in Table 20.

Note: For word accesses (B = 0), the value specified by
#Imm is a full 7-bit address, but must be word-aligned (ie
with bits 1:0 set to 0), since the assembler places #Imm >>
2 in the Offset5 field.

0123456789101112131415

Offset5 RbL110

Source/destination

Base register

Offset value

B Rd

Byte/Word flag

Load/Store flag

0 - Transfer word quantity
1 - Transfer byte quantity

0 - Store to memory
1 - Load from memory

register

Table 20. Summary of Format 9 Instructions

L B THUMB assembler ARM equivalent Action
0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding

together the value in Rb and Imm. Store the
contents of Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load Rd
from the address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store the
byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding
together the value in Rb and Imm. Load the
byte value at the address into Rd.
Instruction Set94

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 20. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
LDR R2, [R5,#116] ; Load into R2 the word found at the

; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.
95

Format 10: load/store halfword
Figure 48. Format 10

Operation
These instructions transfer halfword values between a Lo
register and memory. Addresses are pre-indexed, using a
6-bit immediate value.

The THUMB assembler syntax is shown in Table 21.

Note: #Imm is a full 6-bit address but must be halfword-
aligned (ie with bit 0 set to 0) since the assembler places
#Imm >> 1 in the Offset5 field.

0123456789101112131415

Offset5 RbL001

Source/destination

Base register

Immediate value

0 Rd

register

Load/Store bit
0 - Store to memory
1 - Load from memory

Table 21. Halfword Data Transfer Instructions

L THUMB assembler ARM equivalent Action
0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store bits 0-15 of

Rd at the resulting address.
1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits 0-15 from

the resulting address into Rd and set bits 16-31 to zero.
Instruction Set96

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 21. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at

; the address formed by adding 56
; R1.
; Note that the THUMB opcode will
; contain 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at
; the address formed by adding 4 to R7.
; Note that the THUMB opcode will contain
; 2 as the Offset5 value.
97

Format 11: SP-relative load/store
Figure 49. Format 11

Operation
The instructions in this group perform an SP-relative load
or store.The THUMB assembler syntax is shown in the fol-
lowing table.

Note: The offset supplied in #Imm is a full 10-bit address,
but must always be word-aligned (ie bits 1:0 set to 0), since
the assembler places #Imm >> 2 in the Word8 field.

0123456789101112131415

Rd001 Word8

Destination register
 Immediate value

1 L

Load/Store bit
0 - Store to memory
1 - Load from memory

Table 22. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action
0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm to

the current value of the SP (R7). Store the contents of
Rd at the resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm to
the current value of the SP (R7). Load the word from the
resulting address into Rd.
Instruction Set98

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 22. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
STR R4, [SP,#492] ; Store the contents of R4 at the address

; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.
99

Format 12: load address
Figure 50. Format 12

Operation
These instructions calculate an address by adding an 10-
bit constant to either the PC or the SP, and load the result-
ing address into a register.

The THUMB assembler syntax is shown in the following
table

Note: The value specified by #Imm is a full 10-bit value, but
this must be word-aligned (ie with bits 1:0 set to 0) since
the assembler places #Imm >> 2 in field Word8.

Where the PC is used as the source register (SP = 0), bit 1
of the PC is always read as 0. The value of the PC will be 4
bytes greater than the address of the instruction before bit
1 is forced to 0.

The CPSR condition codes are unaffected by these instruc-
tions.

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 23. The instruction cycle
times for the THUMB instruction are identical to that of the
equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
ADD R2, PC, #572 ; R2 := PC + 572, but don’t set the

; condition codes. bit[1] of PC is
; forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don’t
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word8 value.

0123456789101112131415

Rd101 0 SP Word8

8-bit unsigned constant

Destination register

Source
0 - PC
1 - SP

Table 23. Load Address

SP THUMB assembler ARM equivalent Action
0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the program

counter (PC) and load the result into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack
pointer (SP) and load the result into Rd.
Instruction Set100

Instruction Set
Format 13: add offset to Stack Pointer
Figure 51. Format 13

Operation
This instruction adds a 9-bit signed constant to the stack
pointer. The following table shows the THUMB assembler
syntax.

Note: The offset specified by #Imm can be up to -/+ 508,
but must be word-aligned (ie with bits 1:0 set to 0) since the
assembler converts #Imm to an 8-bit sign + magnitude
number before placing it in field SWord7.

Note: The condition codes are not set by this instruction.

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 24. The instruction cycle
times for the THUMB instruction are identical to that of the
equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175

Examples
ADD SP, #268 ; SP (R13) := SP + 268, but don’t set

; the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don’t set
; the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.

0123456789101112131415

101 1

7-bit immediate value

SWord7 000 0 S

Sign flag
0 -Offset is positive
1 -Offset is negative

Table 24. The ADD SP Instruction

S THUMB assembler ARM equivalent Action
0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).
1 ADD SP, #-Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).
101

Format 14: push/pop registers
Figure 52. Format 14

Operation
The instructions in this group allow registers 0-7 and
optionally LR to be pushed onto the stack, and registers 0-
7 and optionally PC to be popped off the stack.

The THUMB assembler syntax is shown in Table 25.

Note: The stack is always assumed to be Full Descending.

0123456789101112131415

10 0 Rlist

Register list

PC/LR bit

Load/Store bit
0 - Store to memory
1 - Load from memory

1 1 L 1

0 - Do not store LR/load PC
1 - Store LR/Load PC

R

Table 25. PUSH and POP Instructions

L R THUMB assembler ARM equivalent Action
0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto

the stack. Update the stack pointer.
0 1 PUSH { Rlist, LR } STMDB R13!, { Rlist, R14 } Push the Link Register and the registers

specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the registers
specified by Rlist. Update the stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, { Rlist, R15 } Pop values off the stack and load into the
registers specified by Rlist. Pop the PC off
the stack. Update the stack pointer.
Instruction Set102

Instruction Set
Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 25. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175.

Examples
PUSH {R0-R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at

; the stack pointed to by R13 (SP) and
; update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return
; from sub-routine.
103

Format 15: multiple load/store
Figure 53. Format 15

Operation
These instructions allow multiple loading and storing of Lo
registers. The THUMB assembler syntax is shown in the
following table.

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 26. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175

Examples
STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7

; starting at the address specified in
; R0, incrementing the addresses for each
; word.
; Write back the updated value of R0.

0123456789101112131415

Rb011 0 L Rlist

Register list

Base register

Load/Store bit
0 - Store to memory
1 - Load from memory

Table 26. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action
0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist, starting at

the base address in Rb. Write back the new
base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist, starting at
the base address in Rb. Write back the new
base address.
Instruction Set104

Instruction Set
Format 16: conditional branch
Figure 54. Format 16

Operation
The instructions in this group all perform a conditional
Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch

operation, which causes the PC to be 1 word (4 bytes)
ahead of the current instruction.

The THUMB assembler syntax is shown in the following
table.

Note: While label specifies a full 9-bit two’s complement
address, this must always be halfword-aligned (ie with bit 0
set to 0) since the assembler actually places label >> 1 in
field SOffset8.

Note: Cond = 1110 is undefined, and should not be used.
Cond = 1111 creates the SWI instruction: see Format 17:
software interrupt on page 107.

0123456789101112131415

011 1

8-bit signed immediate

Condition

Cond SOffset8

Table 27. The Conditional Branch Instructions

Cond THUMB assembler ARM equivalent Action
0000 BEQ label BEQ label Branch if Z set (equal)
0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)
0011 BCC label BCC label Branch if C clear (unsigned lower)
0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)
0110 BVS label BVS label Branch if V set (overflow)
0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)
1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or

same)
1010 BGE label BGE label Branch if N set and V set, or N clear and V

clear (greater or equal)
1011 BLT label BLT label Branch if N set and V clear, or N clear and V

set (less than)
1100 BGT label BGT label Branch if Z clear, and either N set and V set or

N clear and V clear (greater than)
1101 BLE label BLE label Branch if Z set, or N set and V clear, or N clear

and V set (less than or equal)
105

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 27. The instruction cycle
times for the THUMB instruction are identical to that of the

equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175

Examples
CMP R0, #45 ; Branch to ’over’ if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
... ; the number of halfwords to offset.
...
...

over ... ; Must be halfword aligned.
...
Instruction Set106

Instruction Set
Format 17: software interrupt
Figure 55. Format 17

Operation
The SWI instruction performs a software interrupt. On tak-
ing the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown
below

Note: Value8 is used solely by the SWI handler: it is
ignored by the processor.

Instruction cycle times
All instructions in this format have an equivalent ARM
instruction as shown in Table 28. The instruction cycle

times for the THUMB instruction are identical to that of the
equivalent ARM instruction. For more information on
instruction cycle times, please refer to Instruction Cycle
Operations on page 175

Examples
SWI 18 ; Take the software interrupt exception.

; Enter Supervisor mode with 18 as the
; requested SWI number.

0123456789101112131415

011 1 Value8111 1

Comment field

Table 28. The SWI Instruction

THUMB assembler ARM equivalent Action
SWI Value8 SWI Value8 Perform Software Interrupt:

Move the address of the next instruction into LR, move
CPSR to SPSR, load the SWI vector address (0x8) into the
PC. Switch to ARM state and enter SVC mode.
107

Format 18: unconditional branch
Figure 56. Format 18

Operation
This instruction performs a PC-relative Branch. The
THUMB assembler syntax is shown below. The branch off-
set must take account of the prefetch operation, which

causes the PC to be 1 word (4 bytes) ahead of the current
instruction

Note: The address specified by label is a full 12-bit two’s
complement address, but must always be halfword aligned

(ie bit 0 set to 0), since the assembler places label >> 1 in
the Offset11 field.

Examples
here B here ; Branch onto itself.

; Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to ’jimmy’.
 ... ; Note that the THUMB opcode will

; contain the number of halfwords
; to offset.

jimmy ... ; Must be halfword aligned.

0123456789101112131415

111 Offset11

 Immediate value

0 0

Table 29. Summary of Branch Instruction

THUMB assembler ARM equivalent Action
B label BAL label (halfword offset) Branch PC relative +/- Offset11 << 1, where label is PC +/-

2048 bytes.
Instruction Set108

Instruction Set
Format 19: long branch with link
Figure 57. Format 19

Operation
This format specifies a long branch with link.

The assembler splits the 23-bit two’s complement half-word
offset specifed by the label into two 11-bit halves, ignoring
bit 0 (which must be 0), and creates two THUMB instruc-
tions.

Instruction 1 (H = 0)
In the first instruction the Offset field contains the upper 11
bits of the target address. This is shifted left by 12 bits and
added to the current PC address. The resulting address is
placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit
representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now con-
tains the full 23-bit address, is placed in PC, the address of
the instruction following the BL is placed in LR and bit 0 of
LR is set.

The branch offset must take account of the prefetch opera-
tion, which causes the PC to be 1 word (4 bytes) ahead of
the current instruction

Instruction cycle times
This instruction format does not have an equivalent ARM
instruction. For details of the instruction cycle times, please
refer to Instruction Cycle Operations on page 175.

Examples
BL faraway ; Unconditionally Branch to ’faraway’

next ... ; and place following instruction
; address, ie ’next’, in R14,the Link
; Register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to
; offset.

faraway ... ; Must be Half-word aligned.

0123456789101112131415

111 1 OffsetH

Long branch and link offset high/low

Low/high offset bit
0 - offset high
1 - offset low

Table 30. The BL Instruction

H THUMB assembler ARM equivalent Action
0 BL label none LR := PC + OffsetHigh << 12
1 temp := next instruction address

PC := LR + OffsetLow << 1
LR := temp | 1
109

Instruction Set Examples
The following examples show ways in which the THUMB
instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so
these may be compared.

Multiplication by a constant using shifts and
adds
The following shows code to multiply by various constants
using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use
the built-in MUL instruction rather than using a sequence of
4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n MOV Ra, Rb, LSL #n
MVN Ra, Ra RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

6. Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n

Effectively this is any of the multiplications in 2 to 5 followed by a final shift.

This allows the following additional constants to be multiplied.

6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) (2..5)

LSL Ra, Ra, #n MOV Ra, Ra, LSL #n
Instruction Set110

Instruction Set
General purpose signed divide
This example shows a general purpose signed divide and
remainder routine in both Thumb and ARM code.

Thumb code

signed_divide
; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

; Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

; SUB always sets flag so go & report division by 0 if necessary
; BEQ divide_by_zero

; Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1
; if negative

ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

; Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.

PUSH {R0, R2}

; Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend
(R1 value). To do this shift dividend ; right by 1 and stop as soon as shifted value becomes
>.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l

MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real

; subtract
0 ADC R0, R0 ; Shift result and add 1 if

; subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the ’ones’ value).

111

; Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back

EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = -1
SUB R0, R3

EOR R1, R2 ; Negate remainder if dividend sign = -1
SUB R1, R2

MOV pc, lr

ARM code

signed_divide
; effectively zero a4 as top bit will be shifted out later

ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

; ip bit 31 = sign of result
; ip bit 30 = sign of a2

RSBCS a2, a2, #0

; central part is identical code to udiv
; (without MOV a4, #0 which comes for free as part of signed
; entry sequence)

MOVS a3, a1
BEQ divide_by_zero

just_l
; justification stage shifts 1 bit at a time

CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1

; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l

CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3

TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4

MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0

MOV pc, lr
Instruction Set112

Instruction Set
Division by a constant
The ARM instruction set was designed following a RISC philosophy. One of the consequences of this is that the ARM core
has no divide instruction, so divides must be performed using a subroutine. This means that divides can be quite slow, but
this is not a major issue as divide performance is rarely critical for applications.

It is possible to do better than the general divide in the special case when the divisor is a constant. The divc.c example
shows how the divide-by-constant technique works by generating ARM assembler code for divide-by-constant.

In the special case when dividing by 2^n, a simple right shift is all that is required.

There is a small caveat which concerns the handling of signed and unsigned numbers. For signed numbers, an arithmetic
right shift is required, as this performs sign extension (to handle negative numbers correctly). In contrast, unsigned num-
bers require a 0-filled logical shift right:

 MOV a2, a1, lsr #5 ; unsigned division by 32

 MOV a2, a1, asr #10 ; signed division by 1024

Explanation of divide-by-constant ARM code
The divide-by-constant technique basically does a multiply in place of the divide. Given that:

 x/y == x * (1/y)

consider the underlined portion as a 0.32 fixed-point number (truncating any bits past the most significant 32). 0.32 means
0 bits before the decimal point and 32 after it.

 == (x * (2^32/y)) / 2^32

the underlined portion here is a 32.0 bit fixed-point number:

 == (x * (2^32/y)) >> 32

This is effectively returning the top 32-bits of the 64-bit product of x and (2^32/y).

If y is a constant, then (2^32/y) is also a constant.

For certain y, the reciprocal (2^32/y) is a repeating pattern in binary:

 y (2^32/y)

 2 10000000000000000000000000000000 #

 3 01010101010101010101010101010101 *

 4 01000000000000000000000000000000 #

 5 00110011001100110011001100110011 *

 6 00101010101010101010101010101010 *

 7 00100100100100100100100100100100 *

 8 00100000000000000000000000000000 #

 9 00011100011100011100011100011100 *

 10 00011001100110011001100110011001 *

 11 00010111010001011101000101110100

 12 00010101010101010101010101010101 *

 13 00010011101100010011101100010011

 14 00010010010010010010010010010010 *

 15 00010001000100010001000100010001 *

 16 00010000000000000000000000000000 #

 17 00001111000011110000111100001111 *

 18 00001110001110001110001110001110 *

 19 00001101011110010100001101011110

 20 00001100110011001100110011001100 *

 21 00001100001100001100001100001100 *

 22 00001011101000101110100010111010
113

 23 00001011001000010110010000101100

 24 00001010101010101010101010101010 *

 25 00001010001111010111000010100011

The lines marked with a ’#’ are the special cases 2^n, which have already been dealt with. The lines marked with a ’*’ have
a simple repeating pattern.

Note how regular the patterns are for y=2^n+2^m or y=2^n-2^m (for n>m):

 n m (2^n+2^m) n m (2^n-2^m)

 1 0 3 1 0 1

 2 0 5 2 1 2

 2 1 6 2 0 3

 3 0 9 3 2 4

 3 1 10 3 1 6

 3 2 12 3 0 7

 4 0 17 4 3 8

 4 1 18 4 2 12

 4 2 20 4 1 14

 4 3 24 4 0 15

 5 0 33 5 4 16

 5 1 34 5 3 24

 5 2 36 5 2 28

 5 3 40 5 1 30

 5 4 48 5 0 31

For the repeating patterns, it is a relatively easy matter to calculate the product by using a multiply-by-constant method.

The result can be calculated in a small number of instructions by taking advantage of the repetition in the pattern.

The actual multiply is slightly unusual due to the need to return the top 32 bits of the 64-bit result. It efficient to calculate just
the top 32 bits.

Consider this fragment of the divide-by-ten code (x is the input dividend as used in the above equations):

SUB a1, x, x, lsr #2 ; a1 = x*%0.11000000000000000000000000000000

ADD a1, a1, a1, lsr #4 ; a1 = x*%0.11001100000000000000000000000000

ADD a1, a1, a1, lsr #8 ; a1 = x*%0.11001100110011000000000000000000

ADD a1, a1, a1, lsr #16 ; a1 = x*%0.11001100110011001100110011001100

MOV a1, a1, lsr #3 ; a1 = x*%0.00011001100110011001100110011001
Instruction Set114

Instruction Set
The SUB calculates (for example):

a1 = x - x/4

 = x - x*%0.01

 = x*%0.11

Therefore, just five instructions are needed to perform the multiply.

A small problem is caused by calculating just the top 32 bits, as this ignores any carry from the low 32 bits of the 64-bit
product. Fortunately, this can be corrected. A correct divide would round down, so the remainder can be calculated by:

x - (x/10)*10 = 0..9

By making good use of the ARM’s barrel shifter, it takes just two ARM instructions to perform this multiply-by-10 and sub-
tract. In the case when (x/10) is too small by 1 (if carry has been lost), the remainder will be in the range 10..19, in which
case corrections must be applied. This test would require a compare-with-10 instruction, but this can be combined with
other operations to save an instruction (see below).

When a lost carry is detected, both the quotient and remainder must be fixed up (one instruction each).

The following fragments should explain the full divide-by-10 code.

ARM code
div10
; takes argument in a1
; returns quotient in a1, remainder in a2
; cycles could be saved if only divide or remainder is required
 SUB a2, a1, #10 ; keep (x-10) for later
 SUB a1, a1, a1, lsr #2
 ADD a1, a1, a1, lsr #4
 ADD a1, a1, a1, lsr #8
 ADD a1, a1, a1, lsr #16
 MOV a1, a1, lsr #3
 ADD a3, a1, a1, asl #2
 SUBS a2, a2, a3, asl #1 ; calc (x-10) - (x/10)*10
 ADDPL a1, a1, #1 ; fix-up quotient
 ADDMI a2, a2, #10 ; fix-up remainder
 MOV pc, lr
The optimisation which eliminates the compare-with-10 instruction is to keep (x-10) for use in the subtraction to calculate
the remainder. This means that compare-with-0 is required instead, which is easily achieved by adding an S (to set the
flags) to the SUB opcode. This also means that the subtraction has to be undone if no rounding error occurred (which is
why the ADDMI instruction is used).

THUMB code
udiv10
; takes argument in a1
; returns quotient in a1, remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
115

SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr
Instruction Set116

Memory
Interface
Memory Interface

This chapter describes the ARM7TDMI memory interface.

Overview
ARM7TDMI’s memory interface consists of the following basic elements:

• 32-bit address bus

This specifies to memory the location to be used for the transfer.

• 32-bit data bus

Instructions and data are transferred across this bus. Data may be word, halfword
or byte wide in size.

ARM7TDMI includes a bidirectional data bus, D[31:0], plus separate unidirectional
data busses, DIN[31:0] and DOUT[31:0]. Most of the text in this chapter describes
the bus behaviour assuming that the bidirectional is in use. However, the behaviour
applies equally to the unidirectional busses.

• Control signals

These specify, for example, the size of the data to be transferred, and the direction
of the transfer together with providing privileged information.

This collection of signals allow ARM7TDMI to be simply interfaced to DRAM, SRAM
and ROM. To fully exploit page mode access to DRAM, information is provided on
whether or not the memory accesses are sequential. In general, interfacing to static
memories is much simpler than interfacing to dynamic memory.
117

Cycle Types
All memory transfer cycles can be placed in one of four cat-
egories:

1. Non-sequential cycle. ARM7TDMI requests a trans-
fer to or from an address which is unrelated to the
address used in the preceding cycle.

2. Sequential cycle. ARM7TDMI requests a transfer to
or from an address which is either the same as the
address in the preceding cycle, or is one word or
halfword after the preceding address.

3. Internal cycle. ARM7TDMI does not require a trans-
fer, as it is performing an internal function and no
useful prefetching can be performed at the same
time.

4. Coprocessor register transfer. ARM7TDMI wishes
to use the data bus to communicate with a copro-
cessor, but does not require any action by the mem-
ory system.

These four classes are distinguishable to the memory sys-
tem by inspection of the nMREQ and SEQ control lines

(see Table 31). These control lines are generated during
phase 1 of the cycle before the cycle whose characteristics
they forecast, and this pipelining of the control information
gives the memory system sufficient time to decide whether
or not it can use a page mode access.

Figure 58 shows the pipelining of the control signals, and
suggests how the DRAM address strobes (nRAS and
nCAS) might be timed to use page mode for S-cycles. Note
that the N-cycle is longer than the other cycles. This is to
allow for the DRAM precharge and row access time, and is
not an ARM7TDMI requirement.

Figure 58. ARM Memory Cycle Timing

Table 31. Memory Cycle Types

nMREQ SEQ Cycle type
0 0 Non-sequential (N-cycle)

0 1 Sequential (S-cycle)
1 0 Internal (I-cycle)
1 1 Coprocessor register transfer

(C-cycle)

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

a a+4 a+8

N-cycle S-cycle I-cycle C-cycle
Memory118

Memory
When an S-cycle follows an N-cycle, the address will
always be one word or halfword greater than the address
used in the N-cycle. This address (marked “a” in the above
diagram) should be checked to ensure that it is not the last
in the DRAM page before the memory system commits to
the S-cycle. If it is at the page end, the S-cycle cannot be
performed in page mode and the memory system will have
to perform a full access.

The processor clock must be stretched to match the full
access. When an S-cycle follows an I-cycle, the address
will be the same as that used in the I-cycle. This fact may
be used to start the DRAM access during the preceding
cycle, which enables the S-cycle to run at page mode
speed whilst performing a full DRAM access. This is shown
in Figure 59.

Figure 59. Memory Cycle Optimization

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

S-cycleI-cycle
119

Address Timing
ARM7TDMI’s address bus can operate in one of two con-
figurations - pipelined or depipelined, and this is controlled
by the APE input signal. The configurability is provided to
ease the design in of ARM7TDMI to both SRAM and DRAM
based systems.

It is a requirement SRAMs and ROMs that the address be
held stable throughout the memory cycle. In a system con-

taining SRAM and ROM only, APE may be tied perma-
nently LOW, producing the desired address timing. This is
shown in Figure 60.

Note: APE affects the timing of the address bus A[31:0],
plus nRW, MAS[1:0], LOCK, nOPC and nTRANS.

Figure 60. ARM7TDMI De-Pipelined Addresses

In a DRAM based system, it is desirable to obtain the
address from ARM7TDMI as early as possible. When APE
is HIGH, ARM7TDMI's address becomes valid in the
MCLK high phase before the memory cycle to which it
refers. This timing allows longer for address decoding and
the generation of DRAM control signals. Figure 61 shows
the effect on the timing when APE is HIGH.

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]
Memory120

Memory
Figure 61. ARM7TDMI Pipelined Addresses

Many systems wil l contain a mixture of DRAM and
SRAM/ROM. To cater for the different address timing
requirements, APE may be safely changed during the low
phase of MCLK. Typically, APE would be held at one level
during a burst of sequential accesses to one type of mem-
ory. When a non-sequential access occurs, the timing of
most systems enforce a wait state to allow for address
decoding. As a result of the address decode, APE can be
driven to the correct value for the particular bank of mem-
ory being accessed. The value of APE can be held until

the memory control signals denote another non-sequential
access.

By way of an example, Figure 62 shows a combination of
accesses to a mixed DRAM / SRAM system. Here, the
SRAM has zero wait states, and the DRAM has a 2:1 N-
cycle / S-cycle ratio. A single wait state is inserted for
address decode when a non-sequential access occurs.
Typical, externally generated DRAM control signals are
also shown.

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]
121

Figure 62. Typical System Timing

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

nRW

nWAIT

APE

DBE

A A+4 A+8 B B+4 B+8 C C+4 C+8

SRAM Cycles Decode

S S N

DRAM Cycles

S S

Decode

N
SRAM Cycles

S S
Memory122

Memory
Previous ARM processors included the ALE signal, and
this is retained for backwards compatibility. This signal also
allows the address timing to be modified to achieve the
same results as APE, but in an asynchronous manner. To
obtain clean MCLK low timing of the address bus by this
mechanism, ALE must be driven HIGH with the falling
edge of MCLK, and LOW with the rising edge of MCLK.

ALE can simply be the inverse of MCLK but the delay from
MCLK to ALE must be carefully controlled such that the
Tald timing constraint is achieved. Figure 63 shows how
ALE can be used to achieve SRAM compatible address
timing. Refer to Timing Diagrams on page 189 for details of
the exact timing constraints.

Figure 63. SRAM Compatible AddressTiming

Note: If ALE is to be used to change address timing, then
APE must be tied HIGH. Similarly, if APE is to be used,
ALE must be tied HIGH.

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]

ALE
123

Data Transfer Size
In an ARM7TDMI system, words, halfwords or bytes may
be transferred between the processor and the memory.
The size of the transaction taking place is determined by
the MAS[1:0] pins. These are encoded as follows:

MAS[1:0] 00 Byte
01 halfword
10 word
11 reserved

The processor always produces a byte address, but
instructions are either words (4 bytes) or halfwords (2
bytes), and data can be any size. Note that when word
instructions are fetched from memory, A[1:0] are undefined
and when halfword instructions are fetched, A[0] is unde-
fined. The MAS[1:0] outputs share the same timing as the
address bus and thus can be modified by the use of ALE
and APE as described in Address Timing on page 120.

When a data read of byte or halfword size is performed (eg
LDRB), the memory system may safely ignore the fact that
the request is for a sub-word sized quantity and present the
whole word. ARM7TDMI will always correctly extract the
addressed byte or halfword from the data. The memory
system may also choose just to supply the addressed byte
or halfword. This may be desirable in order to save power
or to simplify the decode logic.

When a byte or halfword wri te occurs (eg STRH),
ARM7TDMI will broadcast the byte or halfword across the
whole of the bus. The memory system must then decode
A[1:0] to enable writing only to the addressed byte or half-
word.

One way of implementing the byte decode in a DRAM sys-
tem is to separate the 32-bit wide block of DRAM into four
byte wide banks, and generate the column address strobes
independently as shown in Figure 64.

When the processor is configured for Little Endian opera-
tion, byte 0 of the memory system should be connected to
data lines 7 through 0 (D[7:0]) and strobed by nCAS0.
nCAS1 drives the bank connected to data lines 15 though
8, and so on. This has the added advantage of reducing the
load on each column strobe driver, which improves the pre-
cision of this time-critical-signal.

In the Big Endian case, byte 0 of the memory system
should be connected to data lines 31 through 24.

Instruction Fetch
ARM7TDMI will perform 32- or 16-bit instruction fetches
depending on whether the processor is in ARM or THUMB
state. The processor state may be determined externally by
the value of the TBIT signal. When this is LOW, the proces-
sor is in ARM state and 32-bit instructions are fetched.
When TBIT is HIGH, the processor is in THUMB state and
16-bit instructions are fetched. The size of the data being
fetched is also indicated on the MAS[1:0] bits, as
described above.

When the processor is in ARM state, 32-bit instructions are
fetched on D[31:0]. When the processor is in THUMB
state, 16-bit instructions are fetched from either the upper,
D[31:16], or the lower D[15:0] half of the bus. This is deter-
mined by the endianism of the memory system, as config-
ured by the BIGEND input, and the state of A[1]. Table 32
shows which half of the data bus is sampled in the different
configurations.

When a 16-bit instruction is fetched, ARM7TDMI ignores
the unused half of the data bus.

Table 32 describes instructions fetched from the bidirec-
tional data bus (i.e. BUSEN is LOW). When the unidirec-
tional data busses are in use (i.e. BUSEN is HIGH), data
will be fetched from the corresponding half of the DIN[31:0]
bus.

Table 32. Endianism Effect on Instruction Position

Endianism
Little
BIGEND = 0

Big
BIGEND = 1

A[1] = 0 D[15:0] D[31:16]
A[1] = 1 D[31:16] D[15:0]
Memory124

M
em

o
ry

F
ig

u
re 64. D

ecoding B
yte A

ccesses to M
em

ory

AS

NCAS0

NCAS1

NCAS2

NCAS3
125

A[0] A[1] MAS[0] MCLK C

G

D Q

Quad
Latch

[1]MAS[0] [1]

Memory Management
The ARM7TDMI address bus may be processed by an
address translation unit before being presented to the
memory, and ARM7TDMI is capable of running a virtual
memory system. The ABORT input to the processor may
be used by the memory manager to inform ARM7TDMI of
page faults. Various other signals enable different page
protection levels to be supported:

1. nRW can be used by the memory manager to pro-
tect pages from being written to.

2. nTRANS indicates whether the processor is in user
or a privileged mode, and may be used to protect
system pages from the user, or to support com-
pletely separate mappings for the system and the
user.

Address translation will normally only be necessary on an
N-cycle, and this fact may be exploited to reduce power
consumption in the memory manager and avoid the trans-
lation delay at other times. The times when translation is
necessary can be deduced by keeping track of the cycle
types that the processor uses.

Locked Operations
The ARM instruction set of ARM7TDMI includes a data
swap (SWP) instruction that allows the contents of a mem-
ory location to be swapped with the contents of a processor
register. This instruction is implemented as an uninterrupt-
able pair of accesses; the first access reads the contents of
the memory, and the second writes the register data to the
memory. These accesses must be treated as a contiguous
operation by the memory controller to prevent another
device from changing the affected memory location before
the swap is completed. ARM7TDMI drives the LOCK signal
HIGH for the duration of the swap operation to warn the
memory controller not to give the memory to another
device.

Stretching Access Times
All memory timing is defined by MCLK, and long access
times can be accommodated by stretching this clock. It is
usual to stretch the LOW period of MCLK, as this allows
the memory manager to abort the operation if the access is
eventually unsuccessful.

Either MCLK can be stretched before it is applied to
ARM7TDMI, or the nWAIT input can be used together with
a free-running MCLK. Taking nWAIT LOW has the same
effect as stretching the LOW period of MCLK, and nWAIT
must only change when MCLK is LOW.

ARM7TDMI does not contain any dynamic logic which
relies upon regular clocking to maintain its internal state.
Therefore there is no limit upon the maximum period for
which MCLK may be stretched, or nWAIT held LOW.
Memory126

Memory
The ARM Data Bus
To ease the connection of ARM7TDMI to sub-word sized
memory systems, input data and instructions may be
latched on a byte by byte basis. This is achieved by use of
the BL[3:0] input signals where BL[3] controls the latching
of the data present on D[31:24] of the data bus and so on.

In a memory system containing word wide memory only,
BL[3:0] may be tied HIGH. For sub word wide memory sys-
tems, BL[3:0] are used to latch the data as it is read out of
memory. For example, a word access to halfword wide
memory must take place in two memory cycles. In the first
cycle, the data for D[15:0] is obtained from the memory
and latched into the processor on the falling edge of MCLK
when BL[1:0] are both HIGH. In the second cycle, the data
for D[31:16] is latched into the processor on the falling
edge of MCLK when BL[3:2] are both HIGH.

A memory access like this is shown in Figure 65. Here, a
word access is performed from halfword wide memory in

two cycles.In the first, the data read is applied to the lower
half of the bus, in the second cycle the read data is applied
to the upper half of the bus. Since two memory cycles were
required, nWAIT is used to stretch the internal processor
clock. However, nWAIT does not effect the operation of the
data latches. In this way, data may be extracted from mem-
ory word, halfword or byte at a time, and the memory may
have as many wait states as required. In any multi-cycle
memory access, nWAIT is held LOW until the final quan-
tum of data is latched.

In this example, BL[3:0] were driven to value 0x3 in the
first cycle so that only the latches on D[15:0] were opened.
In fact, BL[3:0] could have been driven to value 0xF and all
the latches opened. Since in the second cycle, the latches
on D[31:16] were written with the correct data, this would
not have effected the processor’s operation.

Note: BL[3:0] should all be HIGH during store cycles.

Figure 65. Memory Access

MCLK

APE

nMREQ
SEQ

A[31:0]

D[31:0]

nWAIT

D[31:16]

BL[3:0] 0xF 0x2
127

As a further example, a halfword load from 2-wait state byte
wide memory is shown in Figure 66. Here, each memory
access takes two cycles. In the first, access, BL[3:0] are
driven to value 0xF. The correct data is latched from D[7:0]
whilst unknown data is latched from D[31:8]. In the second

access, the byte for D[15:8] is latched and so the halfword
on D[15:0] has been correctly read from the memory. The
fact that internally D[31:16] are unknown does not matter
because internally the processor will extract only the half-
word it is interested in.

Figure 66. Two-Cycle Memory Access

MCLK

APE

nMREQ
SEQ

A[31:0]

D[7:0]

nWAIT

D[15:8]

BL[3:0] 0xF 0x2
Memory128

Memory
The External Data Bus
ARM7TDMI has a bidirectional data bus, D[31:0]. How-
ever, since some ASIC design methodologies prohibit the
use of bidirectional buses, unidirectional data in, DIN[31:0],

and data out, DOUT[31:0], busses are also provided. The
logical arrangement of these buses is shown inFigure 67.

Figure 67. ARM7TDMI External Bus Arrangement

When the bidirectional data bus is being used, the unidirec-
tional busses must be disabled by driving BUSEN LOW.

The timing of the bus for three cycles, load-store-load, is
shown in Figure 68.

Figure 68. Bidirectional Bus Timing

ICEbreaker

ARM7TDMI

G

DIN[31:0]

D[31:0]

DOUT[31:0]

MCLK

APE

Read Cycle Store Cycle Read Cycle
129

The unidirectional data bus
When the unidirectional data busses are being used, (i.e.
when BUSEN is HIGH), the bidirectional bus, D[31:0],
must be left unconnected.

When BUSEN is HIGH, all instructions and input data are
presented on the input data bus, DIN[31:0]. The timing of
this data is similar to that of the bidirectional bus when in
input mode. Data must be set up and held to the falling
edge of MCLK. For the exact timing requirements refer to
Timing Diagrams on page 189.

In this configuration, all output data is presented on
DOUT[31:0]. The value on this bus only changes when the
processor performs a store cycle. Again, the timing of the
data is similar to that of the bidirectional data bus. The

value on DOUT[31:0] changes off the falling edge of
MCLK.

The bus timing of a read-write-read cycle combination is
shown in Figure 69.

When BUSEN is LOW, the buffer between DIN[31:0] and
D[31:0] is disabled. Any data presented on DIN[31:0] is
ignored. Also, when BUSEN is low, the value on
DOUT[31:0] is forced to 0x00000000.

Typically, the unidirectional busses would be used inter-
nally in ASIC embedded applications. Externally, most sys-
tems still require a bidirectional data bus to interface to
external memory. Figure 70 shows how the unidirectional
busses may be joined up at the pads of an ASIC to connect
to an external bidirectional bus.

Figure 69. Unidirectional Bus Timing

Figure 70. External Connection of Unidirectional Busses

MCLK

DIN[31:0]

Read Cycle Store Cycle Read Cycle

D1 D2

DoutDOUT[31:0]

D[31:0] D1 D2Dout

ARM7TDMI

nENOUT

DOUT[31:0]

DIN[31:0]

PAD

XDATA[31:0]
Memory130

Memory
The bidirectional data bus
ARM7TDMI has a bidirectional data bus, D[31:0]. Most of
the time, the ARM reads from memory and so this bus is
configured to input. During write cycles however, the
ARM7TDMI must output data. During phase 2 of the previ-
ous cycle, the signal nRW is driven HIGH to indicate a write
cycle. During the actual cycle, nENOUT is driven LOW to

indicate that the ARM7TDMI is driving D[31:0] as an out-
put. Figure 71 shows this bus timing (DBE has been tied
HIGH in this example). Figure 73 on page 133 shows the
circuit which exists in ARM7TDMI for controlling exactly
when the external bus is driven out.

Figure 71. Data Write Bus Cycle

The ARM7TDMI macrocell has an additional bus control
signal, nENIN, which allows the external system to manu-
ally tristate the bus. In the simplest systems, nENIN can be
tied LOW and nENOUT can be ignored. However, in many
applications when the external data bus is a shared
resource, greater control may be required. In this situation,
nENIN can be used to delay when the external bus is
driven. Note that for backwards compatibility, DBE is also
included. At the macrocell level, DBE and nENIN have
almost identical functionality and in most applications one
can be tied off.

The Section Example system: The ARM7TDMI Testchip on
page 133 describes how ARM7TDMI may be interfaced to
an external data bus, using ARM7TDMI Testchip as an
example.

ARM7TDMI has another output control signal called TBE.
This signal is normally only used during test and must be
tied HIGH when not in use. When driven LOW, TBE forces
all three-stateable outputs to high impedance. It is as if
both DBE and ABE have been driven LOW, causing the
data bus, the address bus, and all other signals normally
controlled by ABE to become high impedance. Note, how-
ever, that there is no scan cell on TBE. Thus, TBE is com-
pletely independent of scan data and may be used to put
the outputs into a high impedance state while scan testing
takes place.

Table 33 below, shows the tri-state control of ARM7TDMI’s
outputs.

Signals without ✔ in the ABE, DBE or TBE column cannot
be driven to the high impedance state:

MCLK

A[31:0]

nRW

nENOUT

D[31:0]

Memory Cycle

Table 33. Output Enable Control Summary

ARM7TDMI output ABE DBE TBE
A[31:0] ✔ ✔

D[31:0] ✔ ✔

nRW ✔ ✔

LOCK ✔ ✔

MAS[1:0] ✔ ✔

nOPC ✔ ✔

nTRANS ✔ ✔

DBGACK
131

Figure 72. ARM7TDMI Data Bus Control Circuit

ECLK

nCPI
nENOUT
nEXEC

nM[4:0]
TBIT
nMREQ

SDOUTMS
SDOUTDATA
SEQ

DOUT[31:0]

Table 33. Output Enable Control Summary

ARM7TDMI output ABE DBE TBE

nENOUT

nENIN

D[31:0]

DBE

TBE

Core Control

Scan
Cell

Scan
Cell

Scan
Cell
Memory132

Memory
Example system: The ARM7TDMI Testchip
Connecting ARM7TDMI’s data bus, D[31:0] to an external
shared bus requires some simple additional logic. This will
vary from application to application. As an example, the fol-
lowing describes how the ARM7TDMI macrocell was con-
nected to the b i -d i rect ional data bus pads of the
ARM7TDMI testchip.

In this application, care must be taken to prevent bus clash
on D[31:0] when the data bus drive changes direction. The
timing of nENIN, and the pad control signals must be
arranged so that when the core starts to drive out, the pad
drive onto D[31:0] switches off before the core starts to

drive. Similarly, when the bus switches back to input, the
core must stop driving before the pad switches on.

All this can be achieved using a simple non-overlapping
clock generator. The actual circuit implemented in the
ARM7TDMI testchip is shown in Figure 73. Note that at the
core level, TBE and DBE are tied HIGH (inactive). This is
because in a packaged part, there is no need to ever man-
ually force the internal buses into a high impedance state.
Note also that at the pad level, the signal EDBE is factored
into the bus control logic. This allows the external memory
controller to arbitrate the bus and asynchronously disable
ARM7TDMI testchip if required.

Figure 73. The ARM7TDMI Testchip Data Bus Circuit

Figure 74 shows how the various control signals interact.
Under normal conditions, when the data bus is configured
as i npu t , nENOUT i s H IGH, nEN1 i s LOW, and
nEN2/nENIN is HIGH. Thus the pads drive XD[31:0] onto
D[31:0].
When a write cycle occurs, nRW is driven HIGH to indicate
a write during phase 2 of the previous cycle, (ie, with the
address). During phase 1 of the actual cycle, nENOUT is
driven LOW to indicate that ARM7TDMI is about to drive

the bus. The falling edge of this signal makes nEN1 go
HIGH, which disables the input half pad from driving
D[31:0]. This in turn makes nEN2 go LOW, which enables
the output half of the pad so that the ARM7TDMI is now
driving the external data bus, XD[31:0]. nEN2 is then buff-
ered and driven back into the core on nENIN, so that finally
the ARM7TDMI macrocell drives D[31:0]. The delay
between all the signals ensures that there is no clash on
the data bus as it changes direction from input to output.

Pad

nENOUT

nENIN

D[31:0]

nEN2

nEN1

XD[31:0]

ARM7TDMI testchip

EDBE

Vdd
DBE

SRL

SRL

SRL

Vdd
TBE

ARM7TDMI
Core
133

Figure 74. Data Bus Control Signal Timing

When the bus turns around to the other direction at the end
of the cycle, the various control signals switch the other
way. Again, the non-overlap ensures that there is never a
bus clash. This time, nENOUT is driven HIGH to denote
that ARM7TDMI no longer needs to drive the bus and the
core’s output is immediately switched off. This causes
nEN2 to disable the output half of the pad which in turn

causes nEN1 to switch on the input half. Thus, the bus is
back to its original input configuration.

Note that the data out time of ARM7TDMI is not directly
determined by nENOUT and nENIN, and so delaying
exactly when the bus is driven will not affect the propaga-
tion delay. Please refer to Timing Diagrams on page 189
for timing details.

nENOUT

nEN1

nEN2/
nENIN

D[31:1]
Memory134

Coprocessor
Interface
Coprocessor Interface

The functionality of the ARM7TDMI instruction set can be extended by adding external
coprocessors. This chapter describes the ARM7TDMI coprocessor interface.

Overview
The functionality of the ARM7TDMI instruction set may be extended by the addition of
up to 16 external coprocessors. When the coprocessor is not present, instructions
intended for it will trap, and suitable software may be installed to emulate its functions.
Adding the coprocessor will then increase the system performance in a software com-
patible way. Note that some coprocessor numbers have already been assigned. Con-
tact ARM Ltd for up-to-date information.
135

Interface Signals
Three dedicated signals control the coprocessor interface,
nCPI, CPA and CPB. The CPA and CPB inputs should be
driven HIGH except when they are being used for hand-
shaking.

Coprocessor present/absent
ARM7TDMI takes nCPI LOW whenever it starts to execute
a coprocessor (or undefined) instruction. (This will not hap-
pen if the instruction fails to be executed because of the
condition codes.) Each coprocessor will have a copy of the
instruction, and can inspect the CP# field to see which
coprocessor it is for. Every coprocessor in a system must
have a unique number and if that number matches the con-
tents of the CP# field the coprocessor should drive the CPA
(coprocessor absent) line LOW. If no coprocessor has a
number which matches the CP# field, CPA and CPB will
remain HIGH, and ARM7TDMI will take the undefined
instruction trap. Otherwise ARM7TDMI observes the CPA
line going LOW, and waits until the coprocessor is not
busy.

Busy-waiting
If CPA goes LOW, ARM7TDMI will watch the CPB (copro-
cessor busy) line. Only the coprocessor which is driving
CPA LOW is allowed to drive CPB LOW, and it should do
so when it is ready to complete the instruction. ARM7TDMI
will busy-wait while CPB is HIGH, unless an enabled inter-
rupt occurs, in which case it will break off from the copro-
cessor handshake to process the interrupt. Normally
ARM7TDMI will return from processing the interrupt to retry
the coprocessor instruction.

When CPB goes LOW, the instruction continues to comple-
tion. This will involve data transfers taking place between
the coprocessor and either ARM7TDMI or memory, except
in the case of coprocessor data operations which complete
immediately the coprocessor ceases to be busy.

All three interface signals are sampled by both ARM7TDMI
and the coprocessor(s) on the rising edge of MCLK. If all
three are LOW, the instruction is committed to execution,

and if transfers are involved they will start on the next cycle.
If nCPI has gone HIGH after being LOW, and before the
instruction is committed, ARM7TDMI has broken off from
the busy-wait state to service an interrupt. The instruction
may be restarted later, but other coprocessor instructions
may come sooner, and the instruction should be discarded.

Pipeline following
In order to respond correctly when a coprocessor instruc-
tion arises, each coprocessor must have a copy of the
instruction. All ARM7TDMI instructions are fetched from
memory via the main data bus, and coprocessors are con-
nected to this bus, so they can keep copies of all instruc-
tions as they go into the ARM7TDMI pipeline. The nOPC
signal indicates when an instruction fetch is taking place,
and MCLK gives the timing of the transfer, so these may be
used together to load an instruction pipeline within the
coprocessor.

Data transfer cycles
Once the coprocessor has gone not-busy in a data transfer
instruction, it must supply or accept data at the ARM7TDMI
bus rate (defined by MCLK). It can deduce the direction of
transfer by inspection of the L bit in the instruction, but must
only drive the bus when permitted to by DBE being HIGH.
The coprocessor is responsible for determining the number
of words to be transferred; ARM7TDMI will continue to
increment the address by one word per transfer until the
coprocessor tells it to stop. The termination condition is
indicated by the coprocessor driving CPA and CPB HIGH.

There is no limit in principle to the number of words which
one coprocessor data transfer can move, but by convention
no coprocessor should allow more than 16 words in one
instruction. More than this would worsen the worst case
ARM7TDMI interrupt latency, as the instruction is not inter-
ruptible once the transfers have commenced. At 16 words,
this instruction is comparable with a block transfer of 16
registers, and therefore does not affect the worst case
latency.
Coprocessor136

Coprocessor
Register Transfer Cycle
The coprocessor register transfer cycle is the one case
when ARM7TDMI requires the data bus without requiring
the memory to be active. The memory system is informed
that the bus is required by ARM7TDMI taking both nMREQ
and SEQ HIGH. When the bus is free, DBE should be
taken HIGH to allow ARM7TDMI or the coprocessor to
drive the bus, and an MCLK cycle times the transfer.

Privileged Instructions
The coprocessor may restrict certain instructions for use in
privileged modes only. To do this, the coprocessor will
have to track the nTRANS output.

As an example of the use of this facility, consider the case
of a floating point coprocessor (FPU) in a multi-tasking sys-
tem. The operating system could save all the floating point
registers on every task switch, but this is inefficient in a typ-
ical system where only one or two tasks will use floating
point operations. Instead, there could be a privileged
instruction which turns the FPU on or off. When a task
switch happens, the operating system can turn the FPU off
without saving its registers. If the new task attempts an
FPU operation, the FPU will appear to be absent, causing
an undefined instruction trap. The operating system will
then realise that the new task requires the FPU, so it will re-
enable it and save FPU registers. The task can then use
the FPU as normal. If, however, the new task never
attempts an FPU operation (as will be the case for most
tasks), the state saving overhead will have been avoided.

Idempotency
A consequence of the implementation of the coprocessor
interface, with the interruptible busy-wait state, is that all
instructions may be interrupted at any point up to the time
when the coprocessor goes not-busy. If so interrupted, the
instruction will normally be restarted from the beginning
after the interrupt has been processed. It is therefore
essential that any action taken by the coprocessor before it
goes not-busy must be idempotent, ie must be repeatable
with identical results.

For example, consider a FIX operation in a floating point
coprocessor which returns the integer result to an
ARM7TDMI register. The coprocessor must stay busy
while it performs the floating point to fixed point conversion,
as ARM7TDMI will expect to receive the integer value on
the cycle immediately following that where it goes not-busy.
The coprocessor must therefore preserve the original float-
ing point value and not corrupt it during the conversion,
because it will be required again if an interrupt arises during
the busy period.

The coprocessor data operation class of instruction is not
generally subject to idempotency considerations, as the
processing activity can take place after the coprocessor
goes not-busy. There is no need for ARM7TDMI to be held
up until the result is generated, because the result is con-
fined to stay within the coprocessor.

Undefined Instructions
Undefined instructions are treated by ARM7TDMI as copro-
cessor instructions. All coprocessors must be absent (ie
CPA and CPB must be HIGH) when an undefined instruc-
tion is presented. ARM7TDMI will then take the undefined
instruction trap. Note that the coprocessor need only look
at bit 27 of the instruction to differentiate undefined instruc-
tions (which all have 0 in bit 27) from coprocessor instruc-
tions (which all have 1 in bit 27)

Note that when in THUMB state, coprocessor instructions
are not supported but undefined instructions are. Thus, all
coprocessors must monitor the state of the TBIT output
from ARM7TDMI. When ARM7TDMI is in THUMB state,
coprocessors must appear absent (ie they must drive CPA
and CPB HIGH) and the instructions seen on the data bus
must be ignored. In this way, coprocessors will not errone-
ously execute THUMB instructions, and all undefined
instructions will be handled correctly.
137

Coprocessor138

Debug Interface
Debug Interface

This chapter describes the ARM7TDMI advanced debug interface.

Overview
The ARM7TDMI debug interface is based on IEEE Std. 1149.1- 1990, “Standard Test
Access Port and Boundary-Scan Architecture”. Please refer to this standard for an
explanation of the terms used in this chapter and for a description of the TAP control-
ler states.

ARM7TDMI contains hardware extensions for advanced debugging features. These
are intended to ease the user’s development of application software, operating sys-
tems, and the hardware itself.

The debug extensions allow the core to be stopped either on a given instruction fetch
(breakpoint) or data access (watchpoint), or asynchronously by a debug-request.
When this happens, ARM7TDMI is said to be in debug state. At this point, the core’s
internal state and the system’s external state may be examined. Once examination is
complete, the core and system state may be restored and program execution
resumed.

ARM7TDMI is forced into debug state either by a request on one of the external
debug interface signals, or by an internal functional unit known as ICEBreaker. Once
in debug state, the core isolates itself from the memory system. The core can then be
examined while all other system activity continues as normal.

ARM7TDMI’s internal state is examined via a JTAG-style serial interface, which allows
instructions to be serially inserted into the core’s pipeline without using the external
data bus. Thus, when in debug state, a store-multiple (STM) could be inserted into the
instruction pipeline and this would dump the contents of ARM7TDMI’s registers. This
data can be serially shifted out without affecting the rest of the system.
139

Debug Systems
The ARM7TDMI forms one component of a debug system
that interfaces from the high-level debugging performed by
the user to the low- leve l in ter face suppor ted by
ARM7TDMI. Such a system typically has three parts:

1. The Debug Host

This is a computer, for example a PC, running a soft-
ware debugger such as ARMSD. The debug host
allows the user to issue high level commands such as
“set breakpoint at location XX”, or “examine the con-
tents of memory from 0x0 to 0x100”.

2. The Protocol Converter

The Debug Host will be connected to the ARM7TDMI
development system via an interface (an RS232, for
example). The messages broadcast over this connec-
tion must be converted to the interface signals of the
ARM7TDMI, and this function is performed by the pro-
tocol converter.

3. ARM7TDMI

ARM7TDMI, with hardware extensions to ease debug-
ging, is the lowest level of the system. The debug
extensions allow the user to stall the core from program
execution, examine its internal state and the state of
the memory system, and then resume program execu-
tion.

Figure 75. Typical Debug System

The anatomy of ARM7TDMI is shown in Figure 77. The
major blocks are:

ARM7TDMI This is the CPU core, with hardware support for
debug.

ICEBreaker This is a set of registers and comparators used
to generate debug exceptions (eg breakpoints). This
unit is described in ICEBreaker Module on page 163.

TAP controller This controls the action of the scan chains
via a JTAG serial interface.

The Debug Host and the Protocol Converter are system
dependent. The rest of this chapter describes the
ARM7TDMI’s hardware debug extensions.

Host computer running ARMSD

Protocol
Converter

Development System
Containing

Debug
Host

Debug
Target

ARM7TDMI
Debug140

Debug
Debug Interface Signals
There are three primary external signals associated with
the debug interface:

• BREAKPT and DBGRQ
with which the system requests ARM7TDMI to enter
debug state.

• DBGACK
which ARM7TDMI uses to flag back to the system that it
is in debug state.

Entry into debug state
ARM7TDMI is forced into debug state after a breakpoint,
watchpoint or debug-request has occurred.

Conditions under which a breakpoint or watchpoint occur
can be programmed using ICEBreaker. Alternatively, exter-

nal logic can monitor the address and data bus, and flag
breakpoints and watchpoints via the BREAKPT pin.

The timing is the same for externally generated breakpoints
and watchpoints. Data must always be valid around the fall-
ing edge of MCLK . If this data is an instruction to be break-
pointed, the BREAKPT signal must be HIGH around the
next rising edge of MCLK . Similarly, if the data is for a load
or store, this can be marked as watchpointed by asserting
BREAKPT around the next rising edge of MCLK .

When a breakpoint or watchpoint is generated, there may
be a delay before ARM7TDMI enters debug state. When it
does, the DBGACK signal is asserted in the HIGH phase
of MCLK . The timing for an externally generated break-
point is shown in Figure 76.

Figure 76. Debug State Entry

Entry into debug state on breakpoint
After an instruction has been breakpointed, the core does
not enter debug state immediately. Instructions are marked
as being breakpointed as they enter ARM7TDMI’s instruc-
tion pipeline.

Thus ARM7TDMI only enters debug state when (and if) the
instruction reaches the pipeline’s execute stage.

A breakpointed instruction may not cause ARM7TDMI to
enter debug state for one of two reasons:

• a branch precedes the breakpointed instruction.

• When the branch is executed, the instruction pipeline is
flushed and the breakpoint is cancelled.

• an exception has occurred.

• Again, the instruction pipeline is flushed and the
breakpoint is cancelled. However, the normal way to exit
from an exception is to branch back to the instruction that
would have executed next. This involves refilling the
pipeline, and so the breakpoint can be re-flagged.

When a breakpointed conditional instruction reaches the
execute stage of the pipeline, the breakpoint is always

MCLK

A[31:0]

D[31:0]

BREAKPT

DBGACK

nMREQ
SEQ

Memory Cycles Internal Cycles
141

taken and ARM7TDMI enters debug state, regardless of
whether the condition was met.

Breakpointed instructions do not get executed: instead,
ARM7TDMI enters debug state. Thus, when the internal
state is examined, the state before the breakpointed
instruction is seen. Once examination is complete, the
breakpoint should be removed and program execution
restarted from the previously breakpointed instruction.

Entry into debug state on watchpoint
Watchpoints occur on data accesses. A watchpoint is
always taken, but the core may not enter debug state
immediately. In all cases, the current instruction will com-
plete. If this is a multi-word load or store (LDM or STM),
many cycles may elapse before the watchpoint is taken.

Watchpoints can be thought of as being similar to data
aborts. The difference is however that if a data abort
occurs, although the instruction completes, all subsequent
changes to ARM7TDMI’s state are prevented. This allows
the cause of the abort to be cured by the abort handler, and
the instruction re-executed. This is not so in the case of a
watchpoint. Here, the instruction completes and all
changes to the core’s state occur (ie load data is written
into the destination registers, and base write-back occurs).
Thus the instruction does not need to be restarted.

Watchpoints are always taken. If an exception is pending
when a watchpoint occurs, the core enters debug state in
the mode of that exception.

Entry into debug state on debug-request
ARM7TDMI may also be forced into debug state on debug
request. This can be done either through ICEBreaker pro-
gramming (see “ICEBreaker Module” on page 163) or be
the assertion of the DBGRQ pin. This pin is an asynchro-
nous input and is thus synchronised by logic inside

ARM7TDMI before it takes effect. Following synchronisa-
tion, the core will normally enter debug state at the end of
the current instruction. However, if the current instruction is
a busy-waiting access to a coprocessor, the instruction ter-
minates and ARM7TDMI enters debug state immediately
(this is similar to the action of nIRQ and nFIQ).

Action of ARM7TDMI in debug state
Once ARM7TDMI is in debug state, nMREQ and SEQ are
forced to indicate internal cycles. This allows the rest of the
memory system to ignore ARM7TDMI and function as nor-
mal. Since the rest of the system continues operation,
ARM7TDMI must be forced to ignore aborts and interrupts.

The BIGEND signal should not be changed by the system
during debug. If it changes, not only will there be a synchro-
nisation problem, but the programmer’s view of ARM7TDMI
will change without the debugger’s knowledge. nRESET
must also be held stable during debug. If the system
applies reset to ARM7TDMI (ie. nRESET is driven LOW)
then ARM7TDMI’s state will change without the debugger’s
knowledge.

The BL[3:0] signals must remain HIGH while ARM7TDMI
is clocked by DCLK in debug state to ensure all of the data
in the scan cells is correctly latched by the internal logic.

When ins t ruc t ions are executed in debug s tate ,
ARM7TDMI outputs (except nMREQ and SEQ) will change
asynchronously to the memory system. For example, every
time a new instruction is scanned into the pipeline, the
address bus will change. Although this is asynchronous it
should not affect the system, since nMREQ and SEQ are
forced to indicate internal cycles regardless of what the rest
of ARM7TDMI is doing. The memory controller must be
designed to ensure that this asynchronous behaviour does
not affect the rest of the system.
Debug142

Debug
Scan Chains and JTAG Interface
There are three JTAG style scan chains inside ARM7TDMI.
These allow testing, debugging and ICEBreaker program-
ming. The scan chains are controlled from a JTAG style
TAP (Test Access Port) controller. For further details of the
JTAG specification, please refer to IEEE Standard 1149.1 -
1990 “Standard Test Access Port and Boundary-Scan
Architecture”. In addition, support is provided for an
optional fourth scan chain. This is intended to be used for
an external boundary scan chain around the pads of a
packaged device. The control signals provided for this scan
chain are described later.

Note: The scan cells are not fully JTAG compliant. The fol-
lowing sections describe the limitations on their use.

Scan limitations
The three scan paths are referred to as scan chain 0, 1 and
2: these are shown in Figure 77.

Scan chain 0
Scan chain 0 allows access to the entire periphery of the
ARM7TDMI core, including the data bus. The scan chain
functions allow inter-device testing (EXTEST) and serial
testing of the core (INTEST).

The order of the scan chain (from SDIN to SDOUTMS) is:
data bus bits 0 through 31, the control signals, followed by
the address bus bits 31 through 0.

Scan chain 1
Scan chain 1 is a subset of the signals that are accessible
through scan chain 0. Access to the core’s data bus
D[31:0], and the BREAKPT signal is available serially.
There are 33 bits in this scan chain, the order being (from
serial data in to out): data bus bits 0 through 31, followed
by BREAKPT.

Scan Chain 2
This scan chain simply allows access to the ICEBreaker
registers. Refer to ICEBreaker Module on page 163 for
details.

Figure 77. ARM7TDMI Scan Chain Arrangement

ARM7TDMI

Processor

ARM7TDMI

ICEbreaker

ARM7TDMI

TAP Controller

•

•

Scan Chain 1

Scan Chain 0

Scan Chain 2
143

The JTAG state machine
The process of serial test and debug is best explained in
conjunction with the JTAG state machine. Figure 78 shows
the state transitions that occur in the TAP controller.

The state numbers are also shown on the diagram. These
are output from ARM7TDMI on the TAPSM[3:0] bits.

Figure 78. Test Access port (TAP) controller state transitions

Select-IR-Scan

Capture-IR

tms=0

Shift-IR

tms=0

Exit1-IR

tms=1

Pause-IR

tms=0

Exit2-IR

tms=1

Update-IR

tms=1

tms=0

tms=0

tms=1

tms=1

tms=0

Select-DR-Scan

Capture-DR

tms=0

Shift-DR

tms=0

Exit1-DR

tms=1

Pause-DR

tms=0

Exit2-DR

tms=1

Update-DR

tms=1

Test-Logic Reset

Run-Test/Idle

tms=0tms=1

tms=0

tms=0

tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1

tms=1 tms=1tms=0 tms=0

0xF

0xC 0x7 0x4

0xE

0xA

0x9

0xB

0x8

0xD0x5

0x0

0x3

0x1

0x2

0x6
Debug144

Debug
Reset
The boundary-scan interface includes a state-machine
controller (the TAP controller). In order to force the TAP
controller into the correct state after power-up of the
device, a reset pulse must be applied to the nTRST signal.
If the boundary scan interface is to be used, nTRST must
be driven LOW, and then HIGH again. If the boundary scan
interface is not to be used, the nTRST input may be tied
permanently LOW. Note that a clock on TCK is not neces-
sary to reset the device.

The action of reset is as follows:

1. System mode is selected (ie the boundary scan
chain cells do not intercept any of the signals pass-
ing between the external system and the core).

2. The IDCODE instruction is selected. If the TAP con-
troller is put into the Shift-DR state and TCK is
pulsed, the contents of the ID register will be
clocked out of TDO.

Pullup Resistors
The IEEE 1149.1 standard effectively requires that TDI and
TMS should have internal pullup resistors. In order to mini-
mise static current draw, these resistors are not fitted to
ARM7TDMI. Accordingly, the 4 inputs to the test interface
(the above 3 signals plus TCK) must all be driven to good
logic levels to achieve normal circuit operation.

Instruction Register
The instruction register is 4 bits in length.

There is no parity bit. The fixed value loaded into the
instruction register during the CAPTURE-IR controller state
is 0001.

Public Instructions
The following public instructions are supported:

In the descriptions that follow, TDI and TMS are sampled
on the rising edge of TCK and all output transitions on TDO
occur as a result of the falling edge of TCK.

EXTEST (0000)
The selected scan chain is placed in test mode by the
EXTEST instruction.

The EXTEST instruction connects the selected scan chain
between TDI and TDO.

When the instruction register is loaded with the EXTEST
instruction, all the scan cells are placed in their test mode
of operation.

In the CAPTURE-DR state, inputs from the system logic
and outputs from the output scan cells to the system are
captured by the scan cells. In the SHIFT-DR state, the pre-
viously captured test data is shifted out of the scan chain
via TDO, while new test data is shifted in via the TDI input.
This data is applied immediately to the system logic and
system pins.

SCAN_N (0010)
This instruction connects the Scan Path Select Register
between TDI and TDO. During the CAPTURE-DR state,
the fixed value 1000 is loaded into the register. During the
SHIFT-DR state, the ID number of the desired scan path is
shifted into the scan path select register. In the UPDATE-
DR state, the scan register of the selected scan chain is
connected between TDI and TDO, and remains connected
until a subsequent SCAN_N instruction is issued. On reset,
scan chain 3 is selected by default. The scan path select
register is 4 bits long in this implementation, although no
finite length is specified.

INTEST (1100)
The selected scan chain is placed in test mode by the
INTEST instruction.

The INTEST instruction connects the selected scan chain
between TDI and TDO.

When the instruction register is loaded with the INTEST
instruction, all the scan cells are placed in their test mode
of operation.

In the CAPTURE-DR state, the value of the data applied
from the core logic to the output scan cells, and the value of
the data applied from the system logic to the input scan
cells is captured.

In the SHIFT-DR state, the previously captured test data is
shifted out of the scan chain via the TDO pin, while new
test data is shifted in via the TDI pin.

Single-step operation is possible using the INTEST instruc-
tion.

Table 34. Public Instructions

Instruction Binary Code
EXTEST 0000

SCAN_N 0010
INTEST 1100
IDCODE 1110

BYPASS 1111
CLAMP 0101
HIGHZ 0111

CLAMPZ 1001
SAMPLE/PRELOAD 0011
RESTART 0100
145

IDCODE (1110)
The IDCODE instruction connects the device identification
register (or ID register) between TDI and TDO. The ID reg-
ister is a 32-bit register that allows the manufacturer, part
number and version of a component to be determined
through the TAP. See ARM7TDMI device identification (ID)
code register on page 147 for the details of the ID register
format.

When the instruction register is loaded with the IDCODE
instruction, all the scan cells are placed in their normal
(system) mode of operation.

In the CAPTURE-DR state, the device identification code is
captured by the ID register. In the SHIFT-DR state, the pre-
viously captured device identification code is shifted out of
the ID register via the TDO pin, while data is shifted in via
the TDI pin into the ID register. In the UPDATE-DR state,
the ID register is unaffected.

BYPASS (1111)
The BYPASS instruction connects a 1 bit shift register (the
BYPASS register) between TDI and TDO.

When the BYPASS instruction is loaded into the instruction
register, all the scan cells are placed in their normal (sys-
tem) mode of operation. This instruction has no effect on
the system pins.

In the CAPTURE-DR state, a logic 0 is captured by the
bypass register. In the SHIFT-DR state, test data is shifted
into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will
be a zero. The bypass register is not affected in the
UPDATE-DR state. Note that all unused instruction codes
default to the BYPASS instruction.

CLAMP (0101)
This instruction connects a 1 bit shift register (the BYPASS
register) between TDI and TDO.

When the CLAMP instruction is loaded into the instruction
register, the state of all the output signals is defined by the
values previously loaded into the currently loaded scan
chain.

Note

This instruction should only be used when scan chain 0 is
the currently selected scan chain.

In the CAPTURE-DR state, a logic 0 is captured by the
bypass register. In the SHIFT-DR state, test data is shifted
into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will
be a zero. The bypass register is not affected in the
UPDATE-DR state.

HIGHZ (0111)
This instruction connects a 1 bit shift register (the BYPASS
register) between TDI and TDO.

When the HIGHZ instruction is loaded into the instruction
register, the Address bus, A[31:0], the data bus, D[31:0],
plus nRW, nOPC, LOCK, MAS[1:0] and nTRANS are all
driven to the high impedance state and the external HIGHZ
signal is driven HIGH. This is as if the signal TBE had been
driven LOW.

In the CAPTURE-DR state, a logic 0 is captured by the
bypass register. In the SHIFT-DR state, test data is shifted
into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will
be a zero. The bypass register is not affected in the
UPDATE-DR state.

CLAMPZ (1001)
This instruction connects a 1 bit shift register (the BYPASS
register) between TDI and TDO.

When the CLAMPZ instruction is loaded into the instruction
register, all the 3-state outputs (as described above) are
placed in their inactive state, but the data supplied to the
outputs is derived from the scan cells. The purpose of this
instruction is to ensure that, during production test, each
output can be disabled when its data value is either a logic
0 or a logic 1.

In the CAPTURE-DR state, a logic 0 is captured by the
bypass register. In the SHIFT-DR state, test data is shifted
into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will
be a zero. The bypass register is not affected in the
UPDATE-DR state.

SAMPLE/PRELOAD (0011)
This instruction is included for production test only, and
should never be used.

RESTART (0100)
This instruction is used to restart the processor on exit from
debug state. The RESTART instruction connects the
bypass register between TDI and TDO and the TAP con-
troller behaves as if the BYPASS instruction had been
loaded. The processor will resynchronise back to the mem-
ory system once the RUN-TEST/IDLE state is entered.
Debug146

Debug
Test Data Registers
There are 6 test data registers which may be connected
between TDI and TDO. They are: Bypass Register, ID
Code Register, Scan Chain Select Register, Scan chain 0,
1 or 2. These are now described in detail.

Bypass register
Purpose: Bypasses the device during scan testing by pro-

viding a path between TDI and TDO.

Length: 1 bit

Operating Mode When the BYPASS instruction is the cur-
rent instruction in the instruction register, serial data is
transferred from TDI to TDO in the SHIFT-DR state

with a delay of one TCK cycle.
There is no parallel output from the bypass register.
A logic 0 is loaded from the parallel input of the bypass
register in the CAPTURE-DR state.

ARM7TDMI device identification (ID) code
register
Purpose: Reads the 32-bit device identification code. No

programmable supplementary identification code is
provided.

Length: 32 bits. The format of the ID register is as follows:

Please contact your supplier for the correct Device Identifi-
cation Code.

Operating mode:
When the IDCODE instruction is current, the ID register is
selected as the serial path between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID
register from its parallel inputs during the CAPTURE-DR
state.

Instruction register
Purpose: Changes the current TAP instruction.

Length: 4 bits

Operating mode: When in the SHIFT-IR state, the instruc-
tion register is selected as the serial path between TDI
and TDO.

During the CAPTURE-IR state, the value 0001 binary is
loaded into this register. This is shifted out during SHIFT-IR
(lsb first), while a new instruction is shifted in (lsb first). Dur-
ing the UPDATE-IR state, the value in the instruction regis-
ter becomes the current instruction. On reset, IDCODE
becomes the current instruction.

Scan chain select register
Purpose: Changes the current active scan chain.

Length: 4 bits

Operating mode: After SCAN_N has been selected as the
current instruction, when in the SHIFT-DR state, the
Scan Chain Select Register is selected as the serial
path between TDI and TDO.

During the CAPTURE-DR state, the value 1000 binary is
loaded into this register. This is shifted out during SHIFT-
DR (lsb first), while a new value is shifted in (lsb first). Dur-
ing the UPDATE-DR state, the value in the register selects
a scan chain to become the currently active scan chain. All
further instructions such as INTEST then apply to that scan
chain.

The currently selected scan chain only changes when a
SCAN_N instruction is executed, or a reset occurs. On
reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is
reflected on the SCREG[3:0] outputs. The TAP controller
may be used to drive external scan chains in addition to
those within the ARM7TDMI macrocell. The external scan
chain must be assigned a number and control signals for it
can be derived from SCREG[3:0], IR[3:0], TAPSM[3:0],
TCK1 and TCK2.

The list of scan chain numbers allocated by ARM are
shown in Table 35. An external scan chain may take any
other number.The serial data stream to be applied to the
external scan chain is made present on SDINBS, the serial
data back from the scan chain must be presented to the
TAP controller on the SDOUTBS input. The scan chain
present between SDINBS and SDOUTBS will be con-
nected between TDI and TDO whenever scan chain 3 is
selected, or when any of the unassigned scan chain num-
bers is selected. If there is more than one external scan
chain, a multiplexor must be built externally to apply the
desired scan chain output to SDOUTBS. The multiplexor
can be controlled by decoding SCREG[3:0]

011112272831

1Manufacturer IdentityPart NumberVersion
147

Scan chains 0,1 and 2
These allow serial access to the core logic, and to ICE-
Breaker for programming purposes. They are described in
detail below.

Scan chain 0 and 1
Purpose: Allows access to the processor core for test and

debug.

Length: Scan chain 0: 105 bits
Scan chain 1: 33 bits

Each scan chain cell is fairly simple, and consists of a serial
register and a multiplexer. The scan cells perform two basic
functions, capture and shift.

For input cells, the capture stage involves copying the
value of the system input to the core into the serial register.
During shift, this value is output serially. The value applied
to the core from an input cell is either the system input or
the contents of the serial register, and this is controlled by
the multiplexer.

Figure 79. Input Scan Cell

For output cells, capture involves placing the value of a
core’s output into the serial register. During shift, this value
is serially output as before. The value applied to the system
from an output cell is either the core output, or the contents
of the serial register.

All the control signals for the scan cells are generated inter-
nally by the TAP controller. The action of the TAP controller
is determined by the current instruction, and the state of the
TAP state machine. This is described below.

There are three basic modes of operation of the scan
chains, INTEST, EXTEST and SYSTEM, and these are
selected by the various TAP controller instructions. In SYS-
TEM mode, the scan cells are idle. System data is applied
to inputs, and core outputs are applied to the system. In
INTEST mode, the core is internally tested. The data seri-
ally scanned in is applied to the core, and the resulting out-
puts are captured in the output cells and scanned out. In

EXTEST mode, data is scanned onto the core's outputs
and applied to the external system. System input data is
captured in the input cells and then shifted out.

Note: The scan cells are not fully JTAG compliant in that
they do not have an Update stage. Therefore, while data is
being moved around the scan chain, the contents of the
scan cell is not isolated from the output. Thus the output
from the scan cell to the core or to the external system
could change on every scan clock.

This does not affect ARM7TDMI since its internal state
does not change until it is clocked. However, the rest of the
system needs to be aware that every output could change
asynchronously as data is moved around the scan chain.
External logic must ensure that this does not harm the rest
of the system.

Table 35. Scan Chain Number Allocation

Scan Chain Number Function
0 Macrocell scan test
1 Debug

2 ICEbreaker programming
3 External boundary scan
4 Reserved

8 Reserved

Shift
Register

Latch

System Data in

SHIFT Clock

Data to Core

Serial Data In

Serial Data Out

CAPTURE
Clock
Debug148

Debug
Scan chain 0
Scan chain 0 is intended primarily for inter-device testing
(EXTEST), and testing the core (INTEST). Scan chain 0 is
selected via the SCAN_N instruction: see SCAN_N (0010)
on page 145.

INTEST allows serial testing of the core. The TAP Control-
ler must be placed in INTEST mode after scan chain 0 has
been selected. During CAPTURE-DR, the current outputs
from the core’s logic are captured in the output cells. Dur-
ing SHIFT-DR, this captured data is shifted out while a new
serial test pattern is scanned in, thus applying known stim-
uli to the inputs. During RUN-TEST/IDLE, the core is
clocked. Normally, the TAP controller should only spend 1
cycle in RUN-TEST/IDLE. The whole operation may then
be repeated.

For details of the core’s clocks during test and debug, see
ARM7TDMI Core Clocks on page 151.

EXTEST allows inter-device testing, useful for verifying the
connections between devices on a circuit board. The TAP
Controller must be placed in EXTEST mode after scan
chain 0 has been selected. During CAPTURE-DR, the cur-
rent inputs to the core's logic from the system are captured
in the input cells. During SHIFT-DR, this captured data is
shifted out while a new serial test pattern is scanned in,
thus applying known values on the core’s outputs. During
UPDATE-DR, the value shifted into the data bus D[31:0]
scan cells appears on the outputs. For all other outputs, the
value appears as the data is shifted round. Note, during
RUN-TEST/IDLE, the core is not clocked. The operation
may then be repeated.

Scan chain 1
The primary use for scan chain 1 is for debugging, although
it can be used for EXTEST on the data bus. Scan chain 1 is
selected via the SCAN_N TAP Controller instruction.
Debugging is similar to INTEST, and the procedure
described above for scan chain 0 should be followed.

Note that this scan chain is 33 bits long - 32 bits for the
data value, plus the scan cell on the BREAKPT core input.
This 33rd bit serves four purposes:

1. Under normal INTEST test conditions, it allows a
known value to be scanned into the BREAKPT
input.

2. During EXTEST test conditions, the value applied to
the BREAKPT input from the system can be cap-
tured.

3. While debugging, the value placed in the 33rd bit
determines whether ARM7TDMI synchronises back
to system speed before executing the instruction.
SeeSystem speed access on page 156 for further
details.

4. After ARM7TDMI has entered debug state, the first
time this bit is captured and scanned out, its value
tells the debugger whether the core entered debug
state due to a breakpoint (bit 33 LOW), or a watch-
point (bit 33 HIGH).
149

Scan chain 2
Purpose: Allows ICEBreaker’s registers to be accessed.

The order of the scan chain, from TDI to TDO is:
read/write, register address bits 4 to 0, followed by
data value bits 31 to 0. See Figure 84.

Length: 38 bits.

To access this serial register, scan chain 2 must first be
selected via the SCAN_N TAP controller instruction. The
TAP controller must then be placed in INTEST mode. No
action is taken during CAPTURE-DR. During SHIFT-DR, a
data value is shifted into the serial register. Bits 32 to 36
specify the address of the ICEBreaker register to be
accessed. During UPDATE-DR, this register is either read
or written depending on the value of bit 37 (0 = read). Refer
to ICEBreaker Module on page 163 for further details.

Scan chain 3
Purpose: Allows ARM7TDMI to control an external bound-

ary scan chain.

Length: User defined.

Scan chain 3 is provided so that an optional external
boundary scan chain may be controlled via ARM7TDMI.
Typically this would be used for a scan chain around the
pad ring of a packaged device. The following control sig-
nals are provided which are generated only when scan
chain 3 has been selected. These outputs are inactive at all
other times.

DRIVEBS This would be used to switch the scan cells from
system mode to test mode. This signal is asserted
whenever either the INTEST, EXTEST, CLAMP or
CLAMPZ instruction is selected.

PCLKBS This is an update clock, generated in the
UPDATE-DR state. Typically the value scanned into a
chain would be transferred to the cell output on the ris-
ing edge of this signal.

ICAPCLKBS, ECAPCLKBS
These are capture clocks used to sample data into the
scan cells during INTEST and EXTEST respectively.
These clocks are generated in the CAPTURE-DR
state.

SHCLKBS, SHCLK2BS
These are non-overlapping clocks generated in the
SHIFT-DR state used to clock the master and slave
element of the scan cells respectively. When the state
machine is not in the SHIFT-DR state, both these
clocks are LOW.

nHIGHZ This signal may be used to drive the outputs of the
scan cells to the high impedance state. This signal is
driven LOW when the HIGHZ instruction is loaded into
the instruction register, and HIGH at all other times.

In addition to these control outputs, SDINBS output and
SDOUTBS input are also provided. When an external scan
chain is in use, SDOUTBS should be connected to the
serial data output and SDINBS should be connected to the
serial data input.
Debug150

Debug
ARM7TDMI Core Clocks
ARM7TDMI has two clocks, the memory clock, MCLK, and
an internally TCK generated clock, DCLK. During normal
operation, the core is clocked by MCLK, and internal logic
holds DCLK LOW. When ARM7TDMI is in the debug state,
the core is clocked by DCLK under control of the TAP state
machine, and MCLK may free run. The selected clock is
output on the signal ECLK for use by the external system.
Note that when the CPU core is being debugged and is
running from DCLK, nWAIT has no effect.

There are two cases in which the clocks switch: during
debugging and during testing.

Clock switch during debug
When ARM7TDMI enters debug state, it must switch from
MCLK to DCLK. This is handled automatically by logic in
the ARM7TDMI. On entry to debug state, ARM7TDMI
asserts DBGACK in the HIGH phase of MCLK. The switch
between the two clocks occurs on the next falling edge of
MCLK. This is shown in Figure 80.

Figure 80. Clock Switching on Entry to Debug State

ARM7TDMI is forced to use DCLK as the primary clock
until debugging is complete. On exit from debug, the core
must be allowed to synchronise back to MCLK. This must
be done in the following sequence. The final instruction of
the debug sequence must be shifted into the data bus scan
chain and clocked in by asserting DCLK. At this point,
BYPASS must be clocked into the TAP instruction register.
ARM7TDMI will now automatically resynchronise back to
MCLK and start fetching instructions from memory at
MCLK speed. Please refer also to Exit from debug state on
page 153.

Clock switch during test
When under serial test conditions—ie when test patterns
are being applied to the ARM7TDMI core through the JTAG
interface—ARM7TDMI must be clocked using DCLK. Entry

into test is less automatic than debug and some care must
be taken.

On the way into test, MCLK must be held LOW. The TAP
controller can now be used to serially test ARM7TDMI. If
scan chain 0 and INTEST are selected, DCLK is generated
while the state machine is in the RUN-TEST/IDLE state.
During EXTEST, DCLK is not generated.

On exit from test, BYPASS must be selected as the TAP
controller instruction. When this is done, MCLK can be
allowed to resume. After INTEST testing, care should be
taken to ensure that the core is in a sensible state before
switching back. The safest way to do this is to either select
BYPASS and then cause a system reset, or to insert MOV
PC, #0 into the instruction pipeline before switching back.

MCLK

DBGACK

DCLK
151

Determining the Core and System State
When ARM7TDMI is in debug state, the core and system’s
state may be examined. This is done by forcing load and
store multiples into the instruction pipeline.

Before the core and system state can be examined, the
debugger must first determine whether the processor was
in THUMB or ARM state when it entered debug. This is
achieved by examining bit 4 of ICEbreaker’s Debug Status
Register. If this is HIGH, the core was in THUMB state
when it entered debug.

Determining the core’s state
If the processor has entered debug state from THUMB
state, the simplest course of action is for the debugger to
force the core back into ARM state. Once this is done, the
debugger can always execute the same sequence of
instructions to determine the processor’s state.

To force the processor into ARM state, the following
sequence of THUMB instructions should be executed on
the core:

STR R0, [R0] ; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R0] ; Now save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP
MOV R8, R8 ; NOP

Note: Since all THUMB instructions are only 16 bits long,
the simplest course of action when shifting them into Scan
Chain 1 is to repeat the instruction twice. For example, the
encoding for BX R0 is 0x4700. Thus if 0x47004700 is
shifted into scan chain 1, the debugger does not have to
keep track of which half of the bus the processor expects to
read the data from.

From this point on, the processor’s state can be determined
by the sequences of ARM instructions described below.

Once the processor is in ARM state, typically the first
instruction executed would be:

STM R0, {R0-R15}

This causes the contents of the registers to be made visible
on the data bus. These values can then be sampled and
shifted out.

Note: The above use of R0 as the base register for the
STM is for illustration only, any register could be used.

After determining the values in the current bank of regis-
ters, it may be desirable to access the banked registers.
This can only be done by changing mode. Normally, a
mode change may only occur if the core is already in a priv-
ileged mode. However, while in debug state, a mode
change from any mode into any other mode may occur.
Note that the debugger must restore the original mode
before exiting debug state.

For example, assume that the debugger had been asked to
return the state of the USER mode and FIQ mode regis-
ters, and debug state was entered in supervisor mode.

The instruction sequence could be:

STM R0, {R0-R15}; Save current registers
MRS R0, CPSR
STR R0, R0 ; Save CPSR to determine current mode
BIC R0, 0x1F ; Clear mode bits
ORR R0, 0x10 ; Select user mode
MSR CPSR, R0 ; Enter USER mode
STM R0, {R13,R14}; Save register not previously visible
ORR R0, 0x01 ; Select FIQ mode
MSR CPSR, R0 ; Enter FIQ mode
STM R0, {R8-R14}; Save banked FIQ registers
Debug152

Debug
All these instructions are said to execute at debug speed.
Debug speed is much slower than system speed since
between each core clock, 33 scan clocks occur in order to
shift in an instruction, or shift out data. Executing instruc-
tions more slowly than usual is fine for accessing the core’s
state since ARM7TDMI is fully static. However, this same
method cannot be used for determining the state of the rest
of the system.

While in debug state, only the following instructions may
legally be scanned into the instruction pipeline for execu-
tion:

• all data processing operations, except TEQP

• all load, store, load multiple and store multiple
instructions

• MSR and MRS

Determining system state
In order to meet the dynamic timing requirements of the
memory system, any attempt to access system state must
occur synchronously to it. Thus, ARM7TDMI must be
forced to synchronise back to system speed. This is con-
trolled by the 33rd bit of scan chain 1.

Any instruction may be placed in scan chain 1 with bit 33
(the BREAKPT bit) LOW. This instruction will then be exe-
cuted at debug speed. To execute an instruction at system
speed, the instruction prior to it must be scanned into scan
chain 1 with bit 33 set HIGH.

After the system speed instruction has been scanned into
the data bus and clocked into the pipeline, the BYPASS
instruction must be loaded into the TAP controller. This will
cause ARM7TDMI to automatically synchronise back to
MCLK (the system clock), execute the instruction at sys-
tem speed, and then re-enter debug state and switch itself
back to the internally generated DCLK. When the instruc-
tion has completed, DBGACK will be HIGH and the core
will have switched back to DCLK. At this point, INTEST can
be selected in the TAP controller, and debugging can
resume.

In order to determine that a system speed instruction has
completed, the debugger must look at both DBGACK and
nMREQ. In order to access memory, ARM7TDMI drives
nMREQ LOW after it has synchronised back to system
speed. This transition is used by the memory controller to
arbitrate whether ARM7TDMI can have the bus in the next
cycle. If the bus is not available, ARM7TDMI may have its
clock stalled indefinitely. Therefore, the only way to tell that
the memory access has completed, is to examine the state
of both nMREQ and DBGACK. When both are HIGH, the
access has completed. Usually, the debugger would be
using ICEBreaker to control debugging, and by reading
ICEBreaker's status register, the state of nMREQ and
DBGACK can be determined. Refer to ICEBreaker Module
on page 163 for more details.

By the use of system speed load multiples and debug
speed store multiples, the state of the system’s memory
can be fed back to the debug host.

There are restrictions on which instructions may have the
33rd bit set. The only valid instructions on which to set this
bit are loads, stores, load multiple and store multiple. See
also <Reference><body> Exit from debug state<body>.
When ARM7TDMI returns to debug state after a system
speed access, bit 33 of scan chain 1 is set HIGH. This
gives the debugger information about why the core entered
debug state the first time this scan chain is read.

Exit from debug state
Leaving debug state involves restoring ARM7TDMI’s inter-
nal state, causing a branch to the next instruction to be
executed, and synchronising back to MCLK. After restoring
internal state, a branch instruction must be loaded into the
pipeline. See The PC’s Behaviour During Debug on page
155 for details on calculating the branch.

Bit 33 of scan chain 1 is used to force ARM7TDMI to resyn-
chronise back to MCLK. The penultimate instruction of the
debug sequence is scanned in with bit 33 set HIGH. The
final instruction of the debug sequence is the branch, and
this is scanned in with bit 33 LOW. The core is then clocked
to load the branch into the pipeline. Now, the RESTART
instruction is selected in the TAP controller. When the state
machine enters the RUN-TEST/IDLE state, the scan chain
will revert back to system mode and clock resynchronisa-
tion to MCLK will occur within ARM7TDMI. ARM7TDMI will
then resume normal operation, fetching instructions from
memory. This delay, until the state machine is in the RUN-
TEST/IDLE state, allows conditions to be set up in other
devices in a multiprocessor system without taking immedi-
ate effect. Then, when the RUN-TEST/IDLE state is
entered, all the processors resume operation simulta-
neously.

The function of DBGACK is to tell the rest of the system
when ARM7TDMI is in debug state. This can be used to
inhibit peripherals such as watchdog timers which have
real time characteristics. Also, DBGACK can be used to
mask out memory accesses which are caused by the
debugging process. For example, when ARM7TDMI enters
debug state after a breakpoint, the instruction pipeline con-
tains the breakpointed instruction plus two other instruc-
tions which have been prefetched. On entry to debug state,
the pipeline is flushed. Therefore, on exit from debug state,
the pipeline must be refilled to its previous state. Thus,
because of the debugging process, more memory
accesses occur than would normally be expected. Any sys-
tem peripheral which may be sensitive to the number of
memory accesses can be inhibited through the use of
DBGACK.
153

For example, imagine a fictitious peripheral that simply
counts the number of memory cycles. This device should
return the same answer after a program has been run both

with and without debugging. Figure 81 shows the behav-
iour of ARM7TDMI on exit from the debug state.

Figure 81. Debug Exit Sequence

It can be seen from Figure 76 that the final memory access
occurs in the cycle after DBGACK goes HIGH, and this is
the point at which the cycle counter should be disabled.
Figure 81 shows that the first memory access that the cycle
counter has not seen before occurs in the cycle after
DBGACK goes LOW, and so this is the point at which the
counter should be re-enabled.

Note that when a system speed access from debug state
occurs, ARM7TDMI temporarily drops out of debug state,
and so DBGACK can go LOW. If there are peripherals
which are sensitive to the number of memory accesses,
they must be led to believe that ARM7TDMI is still in debug
state. By programming the ICEBreaker control register, the
value on DBGACK can be forced to be HIGH. See ICE-
Breaker Module on page 163 for more details.

ECLK

nMREQ
SEQ

A[31:0]

D[31:0]

DBGACK

Internal Cycles N S S

Ab Ab+4 Ab+8
Debug154

Debug
The PC’s Behaviour During Debug
In order that ARM7TDMI may be forced to branch back to
the place at which program flow was interrupted by debug,
the debugger must keep track of what happens to the PC.
There are five cases: breakpoint, watchpoint, watchpoint
when another exception occurs, debug request and system
speed access.

Breakpoint
Entry to the debug state from a breakpoint advances the
PC by 4 addresses, or 16 bytes. Each instruction executed
in debug state advances the PC by 1 address, or 4 bytes.
The normal way to exit from debug state after a breakpoint
is to remove the breakpoint, and branch back to the previ-
ously breakpointed address.

For example, if ARM7TDMI entered debug state from a
breakpoint set on a given address and 2 debug speed
instructions were executed, a branch of -7 addresses must
occur (4 for debug entry, +2 for the instructions, +1 for the
final branch). The following sequence shows the data
scanned into scan chain 1. This is msb first, and so the first
digit is the value placed in the BREAKPT bit, followed by
the instruction data.

0 E0802000; ADD R2, R0, R0

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2’s complement)

Note that once in debug state, a minimum of two instruc-
tions must be executed before the branch, although these
may both be NOPs (MOV R0, R0). For small branches, the
final branch could be replaced with a subtract with the PC
as the destination (SUB PC, PC, #28 in the above exam-
ple).

Watchpoints
Returning to program execution after entering debug state
from a watchpoint is done in the same way as the proce-
dure described above. Debug entry adds 4 addresses to
the PC, and every instruction adds 1 address. The differ-
ence is that since the instruction that caused the watch-
point has executed, the program returns to the next
instruction.

Watchpoint with another exception
If a watchpointed access simultaneously causes a data
abort, ARM7TDMI will enter debug state in abort mode.
Entry into debug is held off until the core has changed into
abort mode, and fetched the instruction from the abort vec-
tor.

A similar sequence is followed when an interrupt, or any
other exception, occurs during a watchpointed memory
access. ARM7TDMI will enter debug state in the excep-
tion’s mode, and so the debugger must check to see
whether this happened. The debugger can deduce whether
an exception occurred by looking at the current and previ-
ous mode (in the CPSR and SPSR), and the value of the
PC. If an exception did take place, the user should be given
the choice of whether to service the exception before
debugging.

Exiting debug state if an exception occurred is slightly dif-
ferent from the other cases. Here, entry to debug state
causes the PC to be incremented by 3 addresses rather
than 4, and this must be taken into account in the return
branch calculation. For example, suppose that an abort
occurred on a watchpointed access and 10 instructions had
been executed to determine this. The following sequence
could be used to return to program execution.

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFF0; B -16

This will force a branch back to the abort vector, causing
the instruction at that location to be refetched and exe-
cuted. Note that after the abort service routine, the instruc-
tion which caused the abort and watchpoint wil l be
reexecuted. This will cause the watchpoint to be generated
and hence ARM7TDMI will enter debug state again.
155

Debug request
Entry into debug state via a debug request is similar to a
breakpoint. However, unlike a breakpoint, the last instruc-
tion will have completed execution and so must not be
refetched on exit from debug state. Therefore, it can be
thought that entry to debug state adds 3 addresses to the
PC, and every instruction executed in debug state adds 1.

For example, suppose that the user has invoked a debug
request, and decides to return to program execution
straight away. The following sequence could be used:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFFA; B -6

This restores the PC, and restarts the program from the
next instruction.

System speed access
If a system speed access is performed during debug state,
the value of the PC is increased by 3 addresses. Since sys-
tem speed instructions access the memory system, it is
possible for aborts to take place. If an abort occurs during a
system speed memory access, ARM7TDMI enters abort
mode before returning to debug state.

This is similar to an aborted watchpoint except that the
problem is much harder to fix, because the abort was not
caused by an instruction in the main program, and the PC
does not point to the instruction which caused the abort. An
abort handler usually looks at the PC to determine the
instruction which caused the abort, and hence the abort
address. In this case, the value of the PC is invalid, but the
debugger should know what location was being accessed.
Thus the debugger can be written to help the abort handler
fix the memory system.

Summary of return address calculations
The calculation of the branch return address can be sum-
marised as follows:

• For normal breakpoint and watchpoint, the branch is:
- (4 + N + 3S)

• For entry through debug request (DBGRQ), or
watchpoint with exception, the branch is:
- (3 + N + 3S)

where N is the number of debug speed instructions exe-
cuted (including the final branch), and S is the number of
system speed instructions executed.
Debug156

Debug
Priorities / Exceptions
Because the normal program flow is broken when a break-
point or a debug request occurs, debug can be thought of
as being another type of exception. Some of the interaction
with other exceptions has been described above. This sec-
tion summarises the priorities.

Breakpoint with prefetch abort
When a breakpointed instruction fetch causes a prefetch
abort, the abort is taken and the breakpoint is disregarded.
Normally, prefetch aborts occur when, for example, an
access is made to a virtual address which does not physi-
cally exist, and the returned data is therefore invalid. In
such a case the operating system’s normal action will be to
swap in the page of memory and return to the previously
invalid address. This time, when the instruction is fetched,
and providing the breakpoint is activated (it may be data
dependent), ARM7TDMI will enter debug state.

Thus the prefetch abort takes higher priority than the break-
point.

Interrupts
When ARM7TDMI enters debug state, interrupts are auto-
matically disabled. If interrupts are disabled during debug,

ARM7TDMI will never be forced into an interrupt mode.
Interrupts only have this effect on watchpointed accesses.
They are ignored at all times on breakpoints.

If an interrupt was pending during the instruction prior to
entering debug state, ARM7TDMI will enter debug state in
the mode of the interrupt. Thus, on entry to debug state, the
debugger cannot assume that ARM7TDMI will be in the
expected mode of the user’s program. It must check the
PC, the CPSR and the SPSR to fully determine the reason
for the exception.

Thus, debug takes higher priority than the interrupt,
although ARM7TDMI remembers that an interrupt has
occurred.

Data aborts
As described above, when a data abort occurs on a watch-
pointed access, ARM7TDMI enters debug state in abort
mode. Thus the watchpoint has higher priority than the
abort, although, as in the case of interrupt, ARM7TDMI
remembers that the abort happened.
157

Scan Interface Timing
Figure 82. Scan General Timing

Notes:

1. For correct data latching, the I/O signals (from the
core and the pads) must be setup and held with
respect to the rising edge of TCK in the CAPTURE-
DR state of the INTEST and EXTEST instructions.

2. Assumes that the data outputs are loaded with the
AC test loads (see AC parameter specification).

All delays are provisional and assume a process which
achieves 33MHz MCLK maximum operating frequency.

In the above table all units are ns.

TCK

TMS
TDI

TDO

Data In

Data Out

Tbscl Tbsch

Tbsis Tbsih

Tbsoh
Tbsod

Tbsss Tbssh

Tbsdh
Tbsdd

Tbsdh
Tbsdd

Table 36. ARM7TDMI Scan Interface Timing

Symbol Parameter Min Typ Max Notes
Tbscl TCK low period 15.1

Tbsch TCK high period 15.1
Tbsis TDI,TMS setup to [TCr] 0
Tbsih TDI,TMS hold from [TCr] 0.9

Tbsoh TDO hold time 2.4 2
Tbsod TCr to TDO valid 16.4 2
Tbsss I/O signal setup to [TCr] 3.6 1

Tbssh I/O signal hold from [TCr] 7.6 1
Tbsdh data output hold time 2.4 2

Tbsdd TCf to data output valid 17.1 2
Tbsr Reset period 25
Tbse Output Enable time 16.4 2

Tbsz Output Disable time 14.7 2
Debug158

Debug
Table 37. Macrocell Scan Signals and Pins

No Signal Type
1 D[0] I/O
2 D[1] I/O
3 D[2] I/O

4 D[3] I/O
5 D[4] I/O
6 D[5] I/O

7 D[6] I/O
8 D[7] I/O
9 D[8] I/O

10 D[9] I/O
11 D[10] I/O
12 D[11] I/O

13 D[12] I/O
14 D[13] I/O
15 D[14] I/O

16 D[15] I/O
17 D[16] I/O
18 D[17] I/O

19 D[18] I/O
20 D[19] I/O
21 D[20] I/O

22 D[21] I/O
23 D[22] I/O
24 D[23] I/O

25 D[24] I/O
26 D[25] I/O
27 D[26] I/O

28 D[27] I/O
29 D[28] I/O
30 D[29] I/O

31 D[30] I/O
32 D[31] I/O
33 BREAKPT I

34 NENIN I
35 NENOUT O
36 LOCK O

37 BIGEND I
38 DBE I
39 MAS[0] O

40 MAS[1] O
41 BL[0] I
42 BL[1] I

43 BL[2] I
44 BL[3] I
45 DCTL ** O

46 nRW O
47 DBGACK O

48 CGENDBGACK O
49 nFIQ I
50 nIRQ I

51 nRESET I
52 ISYNC I
53 DBGRQ I

54 ABORT I
55 CPA I
56 nOPC O

57 IFEN I
58 nCPI O
59 nMREQ O

60 SEQ O
61 nTRANS O
62 CPB I

63 nM[4] O
64 nM[3] O
65 nM[2] O

66 nM[1] O
67 nM[0] O
68 nEXEC O

69 ALE I
70 ABE I
71 APE I

72 TBIT O
73 nWAIT I
74 A[31] O

75 A[30] O
76 A[29] O
77 A[28] O

78 A[27] O
79 A[26] O
80 A[25] O

81 A[24] O
82 A[23] O
83 A[22] O

84 A[21] O
85 A[20] O
86 A[19] O

87 A[18] O
88 A[17] O
89 A[16] O

90 A[15] O
91 A[14] O
92 A[13] O

93 A[12] O
94 A[11] O

Table 37. Macrocell Scan Signals and Pins

No Signal Type
159

KeyI - Input

O - Output

I/O - Input/Output

Note: DCTL is not described in this datasheet. DCTL is an
output from the processor used to control the unidirectional
data out latch, DOUT[31:0]. This signal is not visible from
the periphery of ARM7TDMI.

95 A[10] O
96 A[9] O
97 A[8] O

98 A[7] O
99 A[6] O
100 A[5] O

101 A[4] O
102 A[3] O
103 A[2] O

104 A[1] O
105 A[0] O

Table 37. Macrocell Scan Signals and Pins

No Signal Type
Debug160

Debug
Debug Timing

Notes:
• All delays are provisional and assume a process which

achieves 33MHz MCLK maximum operating frequency.

• Assumes that the data outputs are loaded with the AC
test loads (see AC parameter specification).

• All units are ns.

Table 38. ARM7TDMI debug interface timing

Symbol Parameter Min Max
Ttdbgd TCK falling to DBGACK, DBGRQI changing 13.3
Ttpfd TCKf to TAP outputs 10.0

Ttpfh TAP outputs hold time from TCKf 2.4
Ttprd TCKr to TAP outputs 8.0
Ttprh TAP outputs hold time from TCKr 2.4

Ttckr TCK to TCK1, TCK2 rising 7.8
Ttckf TCK to TCK1, TCK2 falling 6.1
Tecapd TCK to ECAPCLK changing 8.2

Tdckf DCLK induced: TCKf to various outputs valid 23.8
Tdckfh DCLK induced: Various outputs hold from TCKf 6.0
Tdckr DCLK induced: TCKr to various outputs valid 26.6

Tdckrh DCLK induced: Various outputs hold from TCKr 6.0
Ttrstd nTRSTf to TAP outputs valid 8.5
Ttrsts nTRSTr setup to TCKr 2.3

Tsdtd SDOUTBS to TDO valid 10.0
Tclkbs TCK to Boundary Scan Clocks 8.2
Tshbsr TCK to SHCLKBS, SHCLK2BS rising 5.7

Tshbsf TCK to SHCLKBS, SHCLK2BS falling 4.0
161

Debug162

ICEBreaker
Module
ICEBreaker Module

This chapter describes the ARM7TDMI ICEBreaker module.

Note: The name ICEbreaker has changed. It is now known as the EmbeddedICE
macrocell. Future versions of the datasheet will reflect this change.
163

Overview
The ARM7TDMI-ICEBreaker module, hereafter referred to
simply as ICEBreaker, provides integrated on-chip debug
support for the ARM7TDMI core.

ICEBreaker is programmed in a serial fashion using the
ARM7TDMI TAP controller. It consists of two real-time
watchpoint units, together with a control and status register.
One or both of the watchpoint units can be programmed to
halt the execution of instructions by the ARM7TDMI core via
its BREAKPT signal. Execution is halted when a match
occurs between the values programmed into ICEBreaker
and the values currently appearing on the address bus, data
bus and various control signals. Any bit can be masked so
that its value does not affect the comparison.

Figure 83 shows the relationship between the core, ICE-
Breaker and the TAP controller. Either watchpoint unit can
be configured to be a watchpoint (monitoring data
accesses) or a breakpoint (monitoring instruction fetches).
Watchpoints and breakpoints can be made to be data-
dependent.

Two independent registers, Debug Control and Debug Sta-
tus, provide overall control of ICEBreaker’s operation.

Note: Only those signals that are pertinent to ICEBreaker
are shown.

Figure 83. ARM7TDMI Block Diagram

MAS[1:0]

A[31:0]

D[31:0]

nOPC

nRW

nTRANS

DBGACKI

BREAKPTI

DBGRQI

IFEN

ECLK

nMREQ

EXTERN1

EXTERN0

BREAKPT

DBGRQ

DBGACK

TCK

DBGEN

TAP

ICEBreakerProcessor

TMS

TDI
TDO

SDIN SDOUT

nTRST

TBIT

RANGEOUT0

RANGEOUT1
ICEBreaker164

ICEBreaker
The Watchpoint Registers
The two watchpoint units, known as Watchpoint 0 and
Watchpoint 1, each contain three pairs of registers:

1. Address Value and Address Mask

2. Data Value and Data Mask

3. Control Value and Control Mask

Each register is independently programmable, and has its
own address: see Table 39.

Table 39. Function and Mapping of ICEBreaker Registers

Address Width Function
00000 3 Debug Control
00001 5 Debug Status

00100 6 Debug Comms Control Register
00101 32 Debug Comms Data Register
01000 32 Watchpoint 0 Address Value

01001 32 Watchpoint 0 Address Mask
01010 32 Watchpoint 0 Data Value
01011 32 Watchpoint 0 Data Mask

01100 9 Watchpoint 0 Control Value
01101 8 Watchpoint 0 Control Mask

10000 32 Watchpoint 1Address Value
10001 32 Watchpoint 1 Address Mask
10010 32 Watchpoint 1 Data Value

10011 32 Watchpoint 1 Data Mask
10100 9 Watchpoint 1 Control Value
10101 8 Watchpoint 1 Control Mask
165

Programming and reading watchpoint registers
A register is programmed by scanning data into the ICE-
Breaker scan chain (scan chain 2). The scan chain consists
of a 38-bit shift register comprising a 32-bit data field, a 5-

bit address field and a read/write bit. This is shown in Fig-
ure 84.

Figure 84. ICEBreaker Block Diagram

The data to be written is scanned into the 32-bit data field,
the address of the register into the 5-bit address field and a
1 into the read/write bit.

A register is read by scanning its address into the address
field and a 0 into the read/write bit. The 32-bit data field is
ignored.

The register addresses are shown in Table 39.

Note: A read or write actually takes place when the TAP
controller enters the UPDATE-DR state.

Setting the mask bit to 0 means that the comparator will only
match if the input value matches the value programmed into
the value register.

Using the mask registers
For each Value register in a register pair, there is a Mask
register of the same format. Setting a bit to 1 in the Mask
register has the effect of making the corresponding bit in
the Value register disregarded in the comparison.

For example, if a watchpoint is required on a particular
memory location but the data value is irrelevant, the Data
Mask register can be programmed to 0xFFFFFFFF (all bits
set to 1) to make the entire Data Bus field ignored.

Note: The mask is an XNOR mask rather than a conven-
tional AND mask: when a mask bit is set to 1, the compara-
tor for that bit position will always match, irrespective of the
value register or the input value.

Address

Data

Address
Decoder

Update

32

r/w

TDI TDO

A[31:0]
D[31:0]

+

Watchpoint

BREAKPOINT

0

31

0

4

Control

Scan Chain Register

Registers and Comparators

C
om

pa
ra

to
r

V
al

ue

M
as

k

ICEBreaker166

ICEBreaker
The control registers
The Control Value and Control Mask registers are mapped
identically in the lower eight bits, as shown below. Bit 8 of
the control value register is the ENABLE bit, which cannot
be masked.

Figure 85. Watchpoint Control Value and Mask Format

The bits have the following functions:

nRW compares against the not read/write signal from the
core in order to detect the direction of bus activity.
nRW is 0 for a read cycle and 1 for a write cycle.

MAS[1:0] compares against the MAS[1:0] signal from the
core in order to detect the size of bus activity.

The encoding is shown in the following table.

nOPC is used to detect whether the current cycle is an
instruction fetch (nOPC = 0) or a data access (nOPC
= 1).

nTRANS compares against the not translate signal from
the core in order to distinguish between User mode
(nTRANS = 0) and non-User mode (nTRANS = 1)
accesses.

EXTERN is an external input to ICEBreaker which allows
the watchpoint to be dependent upon some external
condition. The EXTERN input for Watchpoint 0 is
labelled EXTERN0 and the EXTERN input for Watch-
point 1 is labelled EXTERN1.

CHAIN can be connected to the chain output of another
watchpoint in order to implement, for example, debug-
ger requests of the form “breakpoint on address YYY
only when in process XXX”.

In the ARM7TDMI-ICEBreaker, the CHAINOUT output
of Watchpoint 1 is connected to the CHAIN input of
Watchpoint 0. The CHAINOUT output is derived from
a latch; the address/control field comparator drives the
write enable for the latch and the input to the latch is
the value of the data field comparator. The CHAIN-
OUT latch is cleared when the Control Value register
is written or when nTRST is LOW.

RANGE can be connected to the range output of another
watchpoint register. In the ARM7TDMI-ICEBreaker,
the RANGEOUT output of Watchpoint 1 is connected
to the RANGE input of Watchpoint 0. This allows the
two watchpoints to be coupled for detecting conditions
that occur simultaneously, eg for range-checking.

ENABLE If a watchpoint match occurs, the BREAKPT sig-
nal will only be asserted when the ENABLE bit is set.
This bit only exists in the value register: it cannot be
masked.

For each of the bits 8:0 in the Control Value register, there
is a corresponding bit in the Control Mask register. This
removes the dependency on particular signals.

Table 40. MAS [1:0] Signal Encoding

bit 1 bit 0 Data size
0 0 byte
0 1 halfword
1 0 word

1 1 (reserved)

ENABLE RANGE CHAIN EXTERN nTRANS nOPC MAS[0] nRW

012345678

MAS[1]
167

Programming Breakpoints
Breakpoints can be classified as hardware breakpoints or
software breakpoints.

Hardware breakpoints:
Typically monitor the address value and can be set in any
code, even in code that is in ROM or code that is self-modi-
fying.

Software breakpoints:
Monitor a particular bit pattern being fetched from any
address. One ICEBreaker watchpoint can thus be used to
support any number of software breakpoints. Software
breakpoints can normally only be set in RAM because an
instruction has to be replaced by the special bit pattern
chosen to cause a software breakpoint.

Hardware breakpoints
To make a watchpoint unit cause hardware breakpoints (ie
on instruction fetches):

1. Program its Address Value register with the address
of the instruction to be breakpointed.

2. For a breakpoint in ARM state, program bits [1:0] of
the Address Mask register to 1. For a breakpoint in
THUMB state, program bit 0 of the Address Mask to
1. In both cases the remaining bits are set to 0.

3. Program the Data Value register only if you require
a data-dependent breakpoint: ie only if the actual
instruction code fetched must be matched as well
as the address. If the data value is not required, pro-
gram the Data Mask register to 0xFFFFFFFF (all
bits to1), otherwise program it to0x00000000.

4. Program the Control Value register with nOPC = 0.

5. Program the Control Mask register with nOPC =0,
all other bits to 1.

6. If you need to make the distinction between user
and non-user mode instruction fetches, program the
nTRANS Value and Mask bits as above.

7. If required, program the EXTERN, RANGE and
CHAIN bits in the same way.

Software breakpoints
To make a watchpoint unit cause software breakpoints (ie
on instruction fetches of a particular bit pattern):

1. Program its Address Mask register to 0xFFFFFFFF
(all bits set to 1) so that the address is disregarded.

2. Program the Data Value register with the particular
bit pattern that has been chosen to represent a soft-
ware breakpoint.

If a THUMB software breakpoint is being programmed,
the 16-bit pattern must be repeated in both halves of
the Data Value register. For example, if the bit pattern
is 0xDFFF, then 0xDFFFDFFF must be programmed.
When a 16-bit instruction is fetched, ICEbreaker only
compares the valid half of the data bus against the con-
tents of the Data Value register. In this way, a single
Watchpoint register can be used to catch software
breakpoints on both the upper and lower halves of the
data bus.

3. Program the Data Mask register to 0x00000000.

4. Program the Control Value register with nOPC = 0.

5. Program the Control Mask register with nOPC = 0,
all other bits to 1.

6. If you wish to make the distinction between user
and non-user mode instruction fetches, program the
nTRANS bit in the Control Value and Control Mask
registers accordingly.

7. If required, program the EXTERN, RANGE and
CHAIN bits in the same way.

Note: The address value register need not be pro-
grammed.

Setting the breakpoint
To set the software breakpoint:

1. Read the instruction at the desired address and
store it away.

2. Write the special bit pattern representing a software
breakpoint at the address.

Clearing the breakpoint
To clear the software breakpoint, restore the instruction to
the address.
ICEBreaker168

ICEBreaker
Programming Watchpoints
To make a watchpoint unit cause watchpoints (ie on data
accesses):

1. Program its Address Value register with the address
of the data access to be watchpointed.

2. Program the Address Mask register to 0x00000000.

3. Program the Data Value register only if you require
a data-dependent watchpoint; i.e. only if the actual
data value read or written must be matched as well
as the address. If the data value is irrelevant, pro-
gram the Data Mask register to 0xFFFFFFFF (all
bits set to 1) otherwise program it to 0x00000000.

4. Program the Control Value register with nOPC = 1,
nRW = 0 for a read or nRW = 1 for a write,
MAS[1:0] with the value corresponding to the
appropriate data size.

5. Program the Control Mask register with nOPC = 0,
nRW = 0, MAS[1:0] = 0, all other bits to 1. Note that
nRW or MAS[1:0] may be set to 1 if both reads and
writes or data size accesses are to be watchpointed
respectively.

6. If you wish to make the distinction between user
and non-user mode data accesses, program the
nTRANS bit in the Control Value and Control Mask
registers accordingly.

7. If required, program the EXTERN, RANGE and
CHAIN bits in the same way.

Note: The above are just examples of how to program the
watchpoint register to generate breakpoints and watch-
points; many other ways of programming the registers are
possible. For instance, simple range breakpoints can be
provided by setting one or more of the address mask bits.

The Debug Control Register
The Debug Control Register is 3 bits wide. If the register is
accessed for a write (with the read/write bit HIGH), the con-
trol bits are written. If the register is accessed for a read
(with the read/write bit LOW), the control bits are read.

The function of each bit in this register is as follows:

Figure 0-1. Debug Control Register Format

Bits 1 and 0 allow the values on DBGRQ and DBGACK to
be forced.

As shown in Figure 87, the value stored in bit 1 of the con-
trol register is synchronised and then ORed with the exter-
nal DBGRQ before being applied to the processor. The
output of this OR gate is the signal DBGRQI which is
brought out externally from the macrocell.

The synchronisation between control bit 1 and DBGRQI is
to assist in multiprocessor environments. The synchronisa-
tion latch only opens when the TAP controller state
machine is in the RUN-TEST/IDLE state. This allows an
enter debug condition to be set up in all the processors in
the system while they are still running. Once the condition
is set up in all the processors, it can then be applied to
them simultaneously by entering the RUN-TEST/IDLE
state.

In the case of DBGACK, the value of DBGACK from the
core is ORed with the value held in bit 0 to generate the
external value of DBGACK seen at the periphery of
ARM7TDMI. This allows the debug system to signal to the
rest of the system that the core is still being debugged even
when system-speed accesses are being performed (in
which case the internal DBGACK signal from the core will
be LOW).

If Bit 2 (INTDIS) is asserted, the interrupt enable signal
(IFEN) of the core is forced LOW. Thus all interrupts (IRQ
and FIQ) are disabled during debugging (DBGACK =1) or if
the INTDIS bit is asserted. The IFEN signal is driven
according to the following table:

Table 41. IFEN Signal Control

DBGACK INTDIS IFEN
0 0 1

1 x 0
x 1 0

INTDIS DBGRQ DBGACK

012
169

Debug Status Register
The Debug Status Register is 5 bits wide. If it is accessed
for a write (with the read/write bit set HIGH), the status bits
are written. If it is accessed for a read (with the read/write
bit LOW), the status bits are read.

Figure 86. Debug Status Register Format

The function of each bit in this register is as follows:

Bits 1 and 0 allow the values on the synchronised versions
of DBGRQ and DBGACK to be read.

Bit 2 allows the state of the core interrupt enable signal
(IFEN) to be read. Since the capture clock for the scan
chain may be asynchronous to the processor clock,
the DBGACK output from the core is synchronised
before being used to generate the IFEN status bit.

Bit 3 allows the state of the NMREQ signal from the core
(synchronised to TCK) to be read. This allows the
debugger to determine that a memory access from the
debug state has completed.

Bit 4 allows TBIT to be read. This enables the debugger to
determine what state the processor is in, and hence
which instructions to execute.

The structure of the debug status register bits is shown in
Figure 87.

Figure 87. Structure of TBIT, NMREQ, DBGACK, DBGRQ and INTDIS Bits

IFEN DBGRQ DBGACK

0123

nMREQ

4

TBIT

DBGRQ
DBGRQ

DBGACK
DBGACK

Bit 1

Bit 1

Debug Control
Register

Debug Status
Register

(from ARM7TDMI
input)

(to ARM7TDMI output)

(to core and

(from core)

+

Bit 0

+

Bit 2 Bit 2

+ IFEN
(to core)

DBGACK
(from core)

Synch

Bit 0

Synch

+

Bit 3SynchnMREQ
(from core)

Bit 4SynchTBIT
(from core)

Synch

ARM7TDMI output)
ICEBreaker170

ICEBreaker
Coupling Breakpoints and Watchpoints
Watchpoint units 1 and 0 can be coupled together via the
CHAIN and RANGE inputs. The use of CHAIN enables
watchpoint 0 to be triggered only if watchpoint 1 has previ-
ously matched. The use of RANGE enables simple range
checking to be performed by combining the outputs of both
watchpoints.

Example
Let

Av[31:0]be the value in the Address Value Register

Am[31:0]be the value in the Address Mask Register

A[31:0]be the Address Bus from the ARM7TDMI

Dv[31:0]be the value in the Data Value Register

Dm[31:0]be the value in the Data Mask Register

D[31:0]be the Data Bus from the ARM7TDMI

Cv[8:0]be the value in the Control Value Register

Cm[7:0]be the value in the Control Mask Register

C[9:0]be the combined Control Bus from the ARM7TDMI,
other watchpoint registers and the EXTERN signal.

CHAINOUT signal
The CHAINOUT signal is then derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR
{A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}
== 0xFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR
{D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]})
== 0x7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 provides
the CHAIN input to Watchpoint 0. This allows for quite com-
plicated configurations of breakpoints and watchpoints.

Take for example the request by a debugger to breakpoint
on the instruction at location YYY when running process
XXX in a multiprocess system.

If the current process ID is stored in memory, the above
function can be implemented with a watchpoint and break-
point chained together. The watchpoint address is set to a
known memory location containing the current process ID,
the watchpoint data is set to the required process ID and
the ENABLE bit is set to “off”.

The address comparator output of the watchpoint is used to
drive the write enable for the CHAINOUT latch, the input to
the latch being the output of the data comparator from the
same watchpoint. The output of the latch drives the CHAIN
input of the breakpoint comparator. The address YYY is
stored in the breakpoint register and when the CHAIN input
is asserted, and the breakpoint address matches, the
breakpoint triggers correctly.

RANGEOUT signal
The RANGEOUT signal is then derived as follows:

RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR
{A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]})
== 0xFFFFFFFFF) AND ((({Dv[31:0],Cv[7:5]}
XNOR {D[31:0],C[7:5]}) OR
{Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides
the RANGE input to watchpoint register 0. This allows two
breakpoints to be coupled together to form range break-
points. Note that selectable ranges are restricted to being
powers of 2. This is best illustrated by an example.

Example
If a breakpoint is to occur when the address is in the first
256 bytes of memory, but not in the first 32 bytes, the
watchpoint registers should be programmed as follows:

1. Watchpoint 1 is programmed with an address value
of 0x00000000 and an address mask of
0x0000001F. The ENABLE bit is cleared. All other
Watchpoint 1 registers are programmed as normal
for a breakpoint. An address within the first 32 bytes
will cause the RANGE output to go HIGH but the
breakpoint will not be triggered.

2. Watchpoint 0 is programmed with an address value
of 0x00000000 and an address mask of
0x000000FF. The ENABLE bit is set and the
RANGE bit programmed to match a 0. All other
Watchpoint 0 registers are programmed as normal
for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (ie the
RANGE input to Watchpoint 0 is 0), the breakpoint will be
171

Disabling ICEBreaker
ICEBreaker may be disabled by wiring the DBGEN input
LOW.

When DBGEN is LOW, BREAKPT and DBGRQ to the
core are forced LOW, DBGACK from the ARM7TDMI is
also forced LOW and the IFEN input to the core is forced
HIGH, enabling interrupts to be detected by ARM7TDMI.

When DBGEN is LOW, ICEBreaker is also put into a low-
power mode.

ICEBreaker Timing
The EXTERN1 and EXTERN0 inputs are sampled by ICE-
Breaker on the falling edge of ECLK. Sufficient set-up and
hold time must therefore be allowed for these signals.

Programming Restriction
The ICEBreaker watchpoint units should only be pro-
grammed when the clock to the core is stopped. This can
be achieved by putting the core into the debug state.

The reason for this restriction is that if the core continues to
run at ECLK rates when ICEBreaker is being programmed
at TCK rates, it is possible for the BREAKPT signal to be
asserted asynchronously to the core.

This restriction does not apply if MCLK and TCK are driven
from the same clock, or if it is known that the breakpoint or
watchpoint condition can only occur some time after ICE-
Breaker has been programmed.

Note: This restriction does not apply in any event to the
Debug Control or Status Registers.
ICEBreaker172

ICEBreaker
Debug Communications Channel
ARM7TDMI’s ICEbreaker contains a communication chan-
nel for passing information between the target and the host
debugger. This is implemented as coprocessor 14.

The communications channel consists of a 32-bit wide
Comms Data Read register, a 32-bit wide Comms Data
Write Register and a 6-bit wide Comms Control Register for
synchronised handshaking between the processor and the
asynchronous debugger. These registers live in fixed loca-
tions in ICEbreaker’s memory map (as shown in Table 39)
and are accessed from the processor via MCR and MRC
instructions to coprocessor 14.

Debug comms channel registers
The Debug Comms Control register is read only and allows
synchronised hanshaking between the processor and the
debugger

Figure 88. Debug Comms Control Register

The function of each register bit is described below:

Bits 31:28 contain a fixed pattern which denote the ICE-
breaker version number, in this case 0001.

Bit 1 denotes whether the Comms Data Write register
(from the processor’s point of view) is free. From the
processor’s point of view, if the Comms Data Write
register is free (W=0) then new data may be written. If
it is not free (W=1), then the processor must poll until
W=0. From the debugger’s point of view, if W=1 then
some new data has been written which may then be
scanned out.

Bit 0 denotes whether there is some new data in the
Comms Data Read register. From the processor’s
point of view, if R=1, then there is some new data
which may be read via an MRC instruction. From the
debugger’s point of view, if R=0 then the Comms Data
Read register is free and new data may be placed
there through the scan chain. If R=1, then this denotes
that data previously placed there through the scan
chain has not been collected by the processor and so
the debugger must wait.

From the debugger’s point of view, the registers are
accessed via the scan chain in the usual way. From the
processor, these registers are accessed via coprocessor
register transfer instructions.

The following instructions should be used:

MRC CP14, 0, Rd, C0, C0

Returns the Debug Comms Control register into Rd

MCR CP14, 0, Rn, C1, C0

Writes the value in Rn to the Comms Data Write regis-
ter

MRC CP14, 0, Rd, C1, C0

Returns the Debug Data Read register into Rd

Since the THUMB instruction set does not contain copro-
cessor instructions, it is recommended that these are
accessed via SWI instructions when in THUMB state.

Communications via the comms channel
Communication between the debugger and the processor
occurs as follows. When the processor wishes to send a
message to ICEbreaker, it first checks that the Comms
Data Write register is free for use. This is done by reading
the Debug Comms Control register to check that the W bit
is clear. If it is clear then the Comms Data Write register is
empty and a message is written by a register transfer to the
coprocessor. The action of this data transfer automatically
sets the W bit. If on reading the W bit it is found to be set,
then this implys that previously written data has not been
picked up by the debugger and thus the processor must
poll until the W bit is clear.

As the data transfer occurs from the processor to the
Comms Data Write register, the W bit is set in the Debug
Comms Control register. When the debugger polls this reg-
ister it sees a synchronised version of both the R and W bit.
When the debugger sees that the W bit is set it can read
the Comms Data Write register and scan the data out. The
action of reading this data register clears the W bit of the
Debug Comms Control register. At this point, the communi-
cations process may begin again.

Message transfer from the debugger to the processor is
carried out in a similar fashion. Here, the debugger polls
the R bit of the Debug Comms Control register. If the R bit
is low then the Data Read register is free and so data can
be placed there for the processor to read. If the R bit is set,
then previously deposited data has not yet been collected
and so the debugger must wait.

When the Comms Data Read register is free, data is written
there via the scan chain. The action of this write sets the R
bit in the Debug Comms Control register. When the proces-
sor polls this register, it sees an MCLK synchronised ver-
sion. If the R bit is set then this denotes that there is data
waiting to be collected, and this can be read via a CPRT
load. The action of this load clears the R bit in the Debug
Comms Control register. When the debugger polls this reg-
ister and sees that the R bit is clear, this denotes that the
data has been taken and the process may now be
repeated.

31

0

30

0

29

0

28

1

0

R

1

W

...

...
173

ICEBreaker
174

Instruction
Cycle
Operations
Instruction Cycle Operations

This chapter describes the ARM7TDMI instruction cycle operations.
175

Introduction
In the following tables nMREQ and SEQ (which are pipe-
lined up to one cycle ahead of the cycle to which they
apply) are shown in the cycle in which they appear, so they
predict the type of the next cycle. The address, MAS[1:0],
nRW, nOPC, nTRANS and TBIT (which appear up to half
a cycle ahead) are shown in the cycle to which they apply.
The address is incremented for prefetching of instructions
in most cases. Since the instruction width is 4 bytes in ARM
state and 2 bytes in THUMB state, the increment will vary
accordingly. Hence the letter L is used to indicate instruc-
tion length (4 bytes in ARM state and 2 bytes in THUMB
state). Similarly, MAS[1:0] will indicate the width of the
instruction fetch, i=2 in ARM state and i=1 in THUMB state
representing word and halfword accesses respectively.

Branch and Branch with Link
A branch instruction calculates the branch destination in
the first cycle, whilst performing a prefetch from the current
PC. This prefetch is done in all cases, since by the time the
decision to take the branch has been reached it is already
too late to prevent the prefetch.

During the second cycle a fetch is performed from the
branch destination, and the return address is stored in reg-
ister 14 if the link bit is set.

The third cycle performs a fetch from the destination + L,
refilling the instruction pipeline, and if the branch is with link
R14 is modified (4 is subtracted from it) to simplify return
from SUB PC,R14,#4 to MOV PC,R14. This makes the
STM..{R14} LDM..{PC} type of subroutine work cor-
rectly. The cycle timings are shown below in Table 42.

pc is the address of the branch instruction

alu is an address calculated by ARM7TDMI

(alu) are the contents of that address

Note: This applies to branches in ARM and THUMB state,
and to Branch with Link in ARM state only.

Table 42. Branch Instruction Cycle Operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
1 pc+2L i 0 (pc + 2L) 0 0 0
2 alu i 0 (alu) 0 1 0

3 alu+L i 0 (alu + L) 0 1 0
alu+2L
Operations176

Operations
THUMB Branch with Link
A THUMB Branch with Link operation consists of two con-
secutive THUMB instructions, see Format 19: long branch
with link .

The first instruction acts like a simple data operation, taking
a single cycle to add the PC to the upper part of the offset,
storing the result in Register 14 (LR).

The second instruction acts in a similar fashion to the ARM
Branch with Link instruction, thus its first cycle calculates
the final branch destination whilst performing a prefetch
from the current PC.

The second cycle of the second instruction performs a
fetch from the branch destination and the return address is
stored in R14.

The third cycle of the second instruction performs a fetch
from the destination +2, refilling the instruction pipeline and
R14 is modified (2 subtracted from it) to simplify the return
to MOV PC, R14. This makes the PUSH {..,LR} ; POP
{..,PC} type of subroutine work correctly.

The cycle timings of the complete operation are shown in
Table 43.

pcis the address of the first instruction of the operation.

Branch and Exchange (BX)
A Branch and Exchange operation takes 3 cycles and is
similar to a Branch.

In the first cycle, the branch destination and the new core
state are extracted from the register source, whilst perform-
ing a prefetch from the current PC. This prefetch is per-
formed in all cases, since by the time the decision to take
the branch has been reached, it is already too late to pre-
vent the prefetch.

During the second cycle, a fetch is performed from the
branch destination using the new instruction width, depen-
dent on the state that has been selected.

The third cycle performs a fetch from the destination +2 or
+4 dependent on the new specified state, refilling the
instruction pipeline. The cycle timings are shown in Table
44.

Notes:
1. W and w represent the instruction width before and

after the BX respectively. In ARM state the width
equals 4 bytes and in THUMB state the width
equals 2 bytes. For example, when changing from
ARM to THUMB state, W would equal 4 and w
would equal 2.

2. I and i represent the memory access size before
and after the BX respectively. In ARM state, the
MAS[1:0] is 2 and in THUMB state MAS[1:0] is 1.

When changing from THUMB to ARM state, I would
equal 1 and i would equal 2.

3. T and t represent the state of the TBIT before and
after the BX respectively. In ARM state TBIT is 0
and in THUMB state TBIT is 1. When changing from
ARM to THUMB state, T would equal 0 and t would
equal 1.

Table 43. THUMB Long Branch with Link

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
1 pc + 4 1 0 (pc + 4) 0 1 0

2 pc + 6 1 0 (pc + 6) 0 0 0
3 alu 1 0 (alu) 0 1 0
4 alu + 2 1 0 (alu + 2) 0 1 0

alu + 4

Table 44. Branch and Exchange Instruction Cycle Operations

Cycle Address MAS [1:0] nRW Data nMREQ SEQ noPC TBIT
1 pc + 2W I 0 (pc + 2W) 0 0 0 T
2 alu i 0 (alu) 0 1 0 t

3 alu+w i 0 (alu+w) 0 1 0 t
alu + 2w
177

Data Operations
A data operation executes in a single datapath cycle except
where the shift is determined by the contents of a register.
A register is read onto the A bus, and a second register or
the immediate field onto the B bus. The ALU combines the
A bus source and the shifted B bus source according to the
operation specified in the instruction, and the result (when
required) is written to the destination register. (Compares
and tests do not produce results, only the ALU status flags
are affected.)

An instruction prefetch occurs at the same time as the
above operation, and the program counter is incremented.

When the shift length is specified by a register, an addi-
tional datapath cycle occurs before the above operation to
copy the bottom 8 bits of that register into a holding latch in
the barrel shifter. The instruction prefetch will occur during
this first cycle, and the operation cycle will be internal (ie

will not request memory). This internal cycle can be
merged with the following sequential access by the mem-
ory manager as the address remains stable through both
cycles.

The PC may be one or more of the register operands.
When it is the destination, external bus activity may be
affected. If the result is written to the PC, the contents of
the instruction pipeline are invalidated, and the address for
the next instruction prefetch is taken from the ALU rather
than the address incrementer. The instruction pipeline is
refilled before any further execution takes place, and during
this time exceptions are locked out.

PSR Transfer operations exhibit the same timing character-
istics as the data operations except that the PC is never
used as a source or destination register. The cycle timings
are shown below Table 45.

Note: Shifted register with destination equals PC is not
possible in THUMB state.

Table 45. Data Operation Instruction Cycle Operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
normal 1 pc+2L i 0 (pc+2L) 0 1 0

pc+3L

dest=pc 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu i 0 (alu) 0 1 0
3 alu+L i 0 (alu+L) 0 1 0

alu+2L

shift(Rs) 1 pc+2L i 0 (pc+2L) 1 0 0
2 pc+3L i 0 - 0 1 1

pc+3L

shift(Rs) 1 pc+8 2 0 (pc+8) 1 0 0

dest=pc 2 pc+12 2 0 - 0 0 1
3 alu 2 0 (alu) 0 1 0
4 alu+4 2 0 (alu+4) 0 1 0

alu+8
Operations178

Operations
Multiply and Multiply Accumulate
The multiply instructions make use of special hardware
which implements integer multiplication with early termina-
tion. All cycles except the first are internal.

The cycle timings are shown in the following four tables,
where m is the number of cycles required by the multiplica-
tion algorithm; see Instruction Speed Summary on page
188.

Note: Multiply-Accumulate is not possible in THUMB state.

Table 46. Multiply Instruction Cycle Operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+2L 0 i (pc+2L) 1 0 0

2 pc+3L 0 i - 1 0 1
• pc+3L 0 i - 1 0 1
m pc+3L 0 i - 1 0 1

m+1 pc+3L 0 i - 0 1 1
 pc+3L

Table 47. Multiply-Accumulate Instruction Cycle Operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 2 (pc+8) 1 0 0
2 pc+8 0 2 - 1 0 1

• pc+12 0 2 - 1 0 1
m pc+12 0 2 - 1 0 1
m+1 pc+12 0 2 - 1 0 1

m+2 pc+12 0 2 - 0 1 1
 pc+12

Table 48. Multiply Long Instruction Cycle Operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+2L 0 i (pc+2L) 1 0 0
2 pc+3L 0 i - 1 0 1

• pc+3L 0 i - 1 0 1
m pc+3L 0 i - 1 0 1
m+1 pc+3L 0 i - 1 0 1

m+2 pc+3L 0 i - 0 1 1
 pc+3L

Table 49. Multiply-Accumulate Long Instruction Cycle Operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 2 (pc+8) 1 0 0
2 pc+8 0 2 - 1 0 1

• pc+12 0 2 - 1 0 1
m pc+12 0 2 - 1 0 1
m+1 pc+12 0 2 - 1 0 1

m+2 pc+12 0 2 - 1 0 1
m+3 pc+12 0 2 - 0 1 1
 pc+12
179

Load Register
The first cycle of a load register instruction performs the
address calculation. The data is fetched from memory dur-
ing the second cycle, and the base register modification is
performed during this cycle (if required). During the third
cycle the data is transferred to the destination register, and
external memory is unused. This third cycle may normally

be merged with the following prefetch to form one memory
N-cycle. The cycle timings are shown below in Table 50.

Either the base or the destination (or both) may be the PC,
and the prefetch sequence will be changed if the PC is
affected by the instruction.

The data fetch may abort, and in this case the destination
modification is prevented.

b, h and w are byte, halfword and word as defined in Table
40.

c represents current mode-dependent value.

d will either be 0 if the T bit has been specified in the
instruction (eg. LDRT), or c at all other times.

Note: Destination equals PC is not possible in THUMB
state.

Store Register
The first cycle of a store register is similar to the first cycle
of load register. During the second cycle the base modifica-

tion is performed, and at the same time the data is written
to memory. There is no third cycle.

The cycle timings are shown below in Table 51.

b, h and w are byte, halfword and word as defined in Table
40.

c represents current mode-dependent value

d will either be 0 if the T bit has been specified in the
instruction (eg. SDRT), or c at all other times.

Table 50. Load Register Instruction Cycle Operations

 Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS
 normal 1 pc+2L i 0 (pc+2L) 0 0 0 c

2 alu b/h/w 0 (alu) 1 0 1 d
3 pc+3L i 0 - 0 1 1 c

 pc+3L

dest=pc 1 pc+8 2 0 (pc+8) 0 0 0 c

2 alu 0 pc’ 1 0 1 d
3 pc+12 2 0 - 0 0 1 c
4 pc’ 2 0 (pc’) 0 1 0 c

 5 pc’+4 2 0 (pc’+4) 0 1 0 c
pc’+8

Table 51. Store Register Instruction Cycle Operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS
1 pc+2L i 0 (pc+2L) 0 0 0 c
2 alu b/h/w 1 Rd 0 0 1 d

 pc+3L
Operations180

Operations
Load Multiple Registers
The first cycle of LDM is used to calculate the address of
the first word to be transferred, whilst performing a prefetch
from memory. The second cycle fetches the first word, and
performs the base modification. During the third cycle, the
first word is moved to the appropriate destination register
while the second word is fetched from memory, and the
modified base is latched internally in case it is needed to
patch up after an abort. The third cycle is repeated for sub-
sequent fetches unt il the last data word has been
accessed, then the final (internal) cycle moves the last
word to its destination register. The cycle timings are
shown in Table 52.

The last cycle may be merged with the next instruction
prefetch to form a single memory N-cycle.

If an abort occurs, the instruction continues to completion,
but all register writing after the abort is prevented. The final
cycle is altered to restore the modified base register (which
may have been overwritten by the load activity before the
abort occurred).

When the PC is in the list of registers to be loaded the cur-
rent instruction pipeline must be invalidated.

Note: The PC is always the last register to be loaded, so an
abort at any point will prevent the PC from being overwrit-
ten.

Note: LDM with destination = PC cannot be executed in
THUMB state. However POP{Rlist,PC} equates to an
LDM with destination=PC.

Table 52. Load Multiple Registers Instruction Cycle Operations

 Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
1 register 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 0 (alu) 1 0 1

3 pc+3L i 0 - 0 1 1
 pc+3L

1 register 1 pc+2L i 0 (pc+2L) 0 0 0
dest=pc 2 alu 2 0 pc’ 1 0 1

3 pc+3L i 0 - 0 0 1

4 pc’ i 0 (pc’) 0 1 0
 5 pc’+L i 0 (pc’+L) 0 1 0

pc’+2L

n registers 1 pc+2L i 0 (pc+2L) 0 0 0
(n>1) 2 alu 2 0 (alu) 0 1 1

• alu+• 2 0 (alu+•) 0 1 1
n alu+• 2 0 (alu+•) 0 1 1
n+1 alu+• 2 0 (alu+•) 1 0 1

n+2 pc+3L i 0 - 0 1 1
pc+3L

n registers 1 pc+2L i 0 (pc+2L) 0 0 0
(n>1) 2 alu 2 0 (alu) 0 1 1
incl pc • alu+• 2 0 (alu+•) 0 1 1

n alu+• 2 0 (alu+•) 0 1 1
n+1 alu+• 2 0 pc’ 1 0 1
n+2 pc+3L i 0 - 0 0 1

n+3 pc’ i 0 (pc’) 0 1 0
n+4 pc’+L i 0 (pc’+L) 0 1 0

pc’+2L
181

Store Multiple Registers
Store multiple proceeds very much as load multiple, without
the final cycle. The restart problem is much more straight-

forward here, as there is no wholesale overwriting of regis-
ters. The cycle timings are shown in Table 53 below.

Data Swap
This is similar to the load and store register instructions, but
the actual swap takes place in cycles 2 and 3. In the sec-
ond cycle, the data is fetched from external memory. In the
third cycle, the contents of the source register are written
out to the external memory. The data read in cycle 2 is writ-
ten into the destination register during the fourth cycle. The
cycle timings are shown below in Table 54.

The LOCK output of ARM7TDMI is driven HIGH for the
duration of the swap operation (cycles 2 and 3) to indicate
that both cycles should be allowed to complete without
interruption.

The data swapped may be a byte or word quantity (b/w).

The swap operation may be aborted in either the read or
write cycle, and in both cases the destination register will
not be affected.

b and w are byte and word as defined in Table 40.

Note: Data swap cannot be executed in THUMB state.

Table 53. Store Multiple Registers Instruction Cycle Operations

 Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
1 register 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 1 Ra 0 0 1
pc+3L

n registers 1 pc+8 i 0 (pc+2L) 0 0 0
(n>1) 2 alu 2 1 Ra 0 1 1

• alu+• 2 1 R• 0 1 1
n alu+• 2 1 R• 0 1 1
n+1 alu+• 2 1 R• 0 0 1

 pc+12

Table 54. Data Swap Instruction Cycle Operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC LOCK
1 pc+8 2 0 (pc+8) 0 0 0 0
2 Rn b/w 0 (Rn) 0 0 1 1
3 Rn b/w 1 Rm 1 0 1 1

4 pc+12 2 0 - 0 1 1 0
pc+12
Operations182

Operations
Software Interrupt and Exception Entry
Exceptions (and software interrupts) force the PC to a par-
ticular value and refill the instruction pipeline from there.
During the first cycle the forced address is constructed, and
a mode change may take place. The return address is
moved to R14 and the CPSR to SPSR_svc.

During the second cycle the return address is modified to
facilitate return, though this modification is less useful than
in the case of branch with link.

The third cycle is required only to complete the refilling of
the instruction pipeline. The cycle timings are shown below
in Table 55.

C represents the current mode-dependent value.

T represents the current state-dependent value

pc for software interrupts is the address of the SWI
instruction.
for exceptions is the address of the instruction follow-
ing the last one to be executed before entering the

exception.
for prefetch aborts is the address of the aborting
instruction.
for data aborts is the address of the instruction follow-
ing the one which attempted the aborted data transfer.

Xn is the appropriate trap address.

Coprocessor Data Operation
A coprocessor data operation is a request from ARM7TDMI
for the coprocessor to initiate some action. The action need
not be completed for some time, but the coprocessor must
commit to doing it before driving CPB LOW.

If the coprocessor can never do the requested task, it
should leave CPA and CPB HIGH. If it can do the task, but
can’t commit right now, it should drive CPA LOW but leave
CPB HIGH until it can commit. ARM7TDMI will busy-wait
until CPB goes LOW. The cycle timings are shown in Table
56.

Note: This operation cannot occur in THUMB state.

Table 55. Software Interrupt Instruction Cycle Operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS Mode TBIT
1 pc+2L i 0 (pc+2L) 0 0 0 C old mode T

2 Xn 2 0 (Xn) 0 1 0 1 exception mode 0
3 Xn+4 2 0 (Xn+4) 0 1 0 1 exception mode 0

Xn+8

Table 56. Coprocessor Data Operation Instruction Cycle Operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC nCPI CPA CPB
ready 1 pc+8 0 2 (pc+8) 0 0 0 0 0 0

pc+12

not
ready

1 pc+8 0 2 (pc+8) 1 0 0 0 0 1

2 pc+8 0 2 - 1 0 1 0 0 1

• pc+8 0 2 - 1 0 1 0 0 1
n pc+8 0 2 - 0 0 1 0 0 0

pc+12
183

Coprocessor Data Transfer (from memory to coprocessor)
Here the coprocessor should commit to the transfer only
when it is ready to accept the data. When CPB goes LOW,
ARM7TDMI will produce addresses and expect the copro-
cessor to take the data at sequential cycle rates. The
coprocessor is responsible for determining the number of

words to be transferred, and indicates the last transfer
cycle by driving CPA and CPB HIGH.

ARM7TDMI spends the first cycle (and any busy-wait
cycles) generating the transfer address, and performs the
write-back of the address base during the transfer cycles.
The cycle timings are shown in Table 57.

Note: This operation cannot occur in THUMB state.

Table 57. Coprocessor Data Transfer Instruction Cycle Operations

Cycles Address MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

1
register

1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

ready 2 alu 2 0 (alu) 0 0 1 1 1 1
pc+12

1
register

1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

not
ready

2 pc+8 2 0 - 1 0 1 0 0 1

• pc+8 2 0 - 1 0 1 0 0 1

n pc+8 2 0 - 0 0 1 0 0 0
n+1 alu 2 0 (alu) 0 0 1 1 1 1

pc+12

n
registers

1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

(n>1) 2 alu 2 0 (alu) 0 1 1 1 0 0
ready • alu+• 2 0 (alu+•) 0 1 1 1 0 0

n alu+• 2 0 (alu+•) 0 1 1 1 0 0
n+1 alu+• 2 0 (alu+•) 0 0 1 1 1 1

pc+12

m
registers

1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

(m>1) 2 pc+8 2 0 - 1 0 1 0 0 1
not
ready

• pc+8 2 0 - 1 0 1 0 0 1

n pc+8 2 0 - 0 0 1 0 0 0

n+1 alu 2 0 (alu) 0 1 1 1 0 0
• alu+• 0 (alu+•) 0 1 1 1 0 0
n+m alu+• 2 0 (alu+•) 0 1 1 1 0 0

n+m+1 alu+• 2 0 (alu+•) 0 0 1 1 1 1
pc+12
Operations184

Operations
Coprocessor Data Transfer (from coprocessor to memory)
The ARM7TDMI controls these instructions exactly as for
memory to coprocessor transfers, with the one exception

that the nRW line is inverted during the transfer cycle. The
cycle timings are show in Table 58.

Note: This operation cannot occur in THUMB state.

Table 58. Coprocessor Data Transfer Instruction Cycle Operations

Cycle Address MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

1 register 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

ready 2 alu 2 1 CPdata 0 0 1 1 1 1
pc+12

1 register 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

not ready 2 pc+8 2 0 - 1 0 1 0 0 1
• pc+8 2 0 - 1 0 1 0 0 1
n pc+8 2 0 - 0 0 1 0 0 0

n+1 alu 2 1 CPdata 0 0 1 1 1 1
pc+12

n registers 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

(n>1) 2 alu 2 1 CPdata 0 1 1 1 0 0
ready • alu+• 2 1 CPdata 0 1 1 1 0 0

n alu+• 2 1 CPdata 0 1 1 1 0 0
n+1 alu+• 2 1 CPdata 0 0 1 1 1 1

pc+12

m registers 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
(m>1) 2 pc+8 2 0 - 1 0 1 0 0 1
not ready • pc+8 2 0 - 1 0 1 0 0 1

n pc+8 2 0 - 0 0 1 0 0 0
n+1 alu 2 1 CPdata 0 1 1 1 0 0
• alu+• 2 1 CPdata 0 1 1 1 0 0

n+m alu+• 2 1 CPdata 0 1 1 1 0 0
n+m+1 alu+• 2 1 CPdata 0 0 1 1 1 1

pc+12
185

Coprocessor Register Transfer (Load from coprocessor)
Here the busy-wait cycles are much as above, but the
transfer is limited to one data word, and ARM7TDMI puts
the word into the destination register in the third cycle. The

third cycle may be merged with the following prefetch cycle
into one memory N-cycle as with all ARM7TDMI register
load instructions. The cycle timings are shown in Table 59.

Note: This operation cannot occur in THUMB state.

Coprocessor Register Transfer (Store to coprocessor)
As for the load from coprocessor, except that the last cycle
is omitted. The cycle timings are shown in Table 60.

Note: This operation cannot occur in THUMB state.

Table 59. Coprocessor Register Transfer (Load from Coprocessor)

 Cycle Address MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0
2 pc+12 2 0 CPdata 1 0 1 1 1 1
3 pc+12 2 0 - 0 1 1 1 - -

 pc+12

not ready 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

2 pc+8 2 0 - 1 0 1 0 0 1
• pc+8 2 0 - 1 0 1 0 0 1
n pc+8 2 0 - 1 1 1 0 0 0

n+1 pc+12 2 0 CPdata 1 0 1 1 1 1
n+2 pc+12 2 0 - 0 1 1 1 - -

pc+12

Table 60. Coprocessor Register Transfer (Store to Coprocessor)

 Cycle Address MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0

2 pc+12 2 1 Rd 0 0 1 1 1 1
 pc+12

not ready 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
• pc+8 2 0 - 1 0 1 0 0 1

n pc+8 2 0 - 1 1 1 0 0 0
n+1 pc+12 2 1 Rd 0 0 1 1 1 1

pc+12
Operations186

Operations
Undefined Instructions and Coprocessor Absent
When a coprocessor detects a coprocessor instruction
which it cannot perform, and this must include all undefined
instructions, it must not drive CPA or CPB LOW. These will

remain HIGH, causing the undefined instruction trap to be
taken. Cycle timings are shown in Table 61.

C represents the current mode-dependent value.

T represents the current state-dependent value.

Note: Coprocessor Instructions cannot occur in THUMB
state.

Unexecuted Instructions
Any instruction whose condition code is not met will fail to
execute. It will add one cycle to the execution time of the
code segment in which it is embedded (see Table 62).

Table 61. Undefined Instruction Cycle Operations

Cycle Address MAS
[1:0]

nRW Data nMRE
Q

SE
Q

nOPC nCPI CP
A

CPB nTRANS Mode TBIT

1 pc+2L i 0 (pc+2L) 1 0 0 0 1 1 C Old T
2 pc+2L i 0 - 0 0 0 1 1 1 C Old T
 3 Xn 2 0 (Xn) 0 1 0 1 1 1 1 00100 0

4 Xn+4 2 0 (Xn+4) 0 1 0 1 1 1 1 00100 0
Xn+8

Table 62. Unexecuted Instruction Cycle Operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
1 pc+2L i 0 (pc+2L) 0 1 0

pc+3L
187

Instruction Speed Summary
Due to the pipelined architecture of the CPU, instructions
overlap considerably. In a typical cycle one instruction may
be using the data path while the next is being decoded and
the one after that is being fetched. For this reason the fol-
lowing table presents the incremental number of cycles
required by an instruction, rather than the total number of
cycles for which the instruction uses part of the processor.
Elapsed time (in cycles) for a routine may be calculated
from these figures which are shown in Table 63. These fig-
ures assume that the instruction is actually executed.
Unexecuted instructions take one cycle.

n is the number of words transferred

m is 1 if bits [32:8] of the multiplier operand are all zero or
one.
2 if bits[32:16] of the multiplier operand are all zero or
one.
3if bits[31:24] of the multiplier operand are all zero or
all one.
4 otherwise.

b is the number of cycles spent in the coprocessor busy-
wait loop.

If the condition is not met all the instructions take one S-
cycle. The cycle types N, S, I, and C are defined in Memory
Interface on page 117.

Table 63. ARM Instruction Speed Summary

Instruction Cycle count Additional
Data Processing 1S + 1I for SHIFT(Rs)

+ 1S + 1N if R15 written
MSR, MRS 1S
LDR 1S+1N+1I + 1S + 1N if R15 loaded

STR 2N
LDM nS+1N+1I + 1S + 1N if R15 loaded
STM (n-1)S+2N

SWP 1S+2N+1I
B,BL 2S+1N
SWI, trap 2S+1N

MUL 1S+mI
MLA 1S+(m+1)I
MULL 1S+(m+1)I

MLAL 1S+(m+2)I
CDP 1S+bI
LDC,STC (n-1)S+2N+bI

MCR 1N+bI+1C
MRC 1S+(b+1)I+1C
Operations188

Timing
Diagrams
Timing Diagrams

This sections presents the timing diagrams for the ARM7TDMI Core.

The delays shown in these timing diagrams are all process specific. For the corre-
sponding characterized values, refer to one of the following datasheets:

• ARM7TDMI Embedded Core ATC50 Electrical Characteristics
(0.5 micron three-layer-metal CMOS process intended for use with a supply voltage
of 3.3V ± 0.3V, previously known as AT55K)

• ARM7TDMI Embedded Core ATC50/E2 Electrical Characteristics
(0.5 micron three-layer-metal CMOS/NVM process intended for use with a supply
voltage of 3.3V ± 0.3V, previously known as AT55.8K)

• ARM7TDMI Embedded Core ATC35 Electrical Characteristics
(0.35 micron three-layer-metal CMOS process intended for use with a supply
voltage of 3.3V ± 0.3V, previously known as AT56K)
189

Timing Diagrams
Figure 89. General Timings

Note: nWAIT, APE, ALE and ABE are all HIGH during the cycle shown. Tcdel is the delay (on either edge) from MCLK changing to
ECLK changing.

MCLK

ECLK

A[31:0]

nRW

MAS[1:0],
LOCK

nM[4:0],
nTRANS

TBIT

nOPC

nMREQ,
SEQ

nEXEC

Tcdel Tcdel

Tah
 Taddr

Trwh
 Trwd

Tblh
 Tbld

Tmdh
 Tmdd

Topch
 Topcd

Tmsh

 Tmsd

Texh

 Texd
Timing Diagrams190

Timing Diagrams
Figure 90. ALE Address Control

Note: Tald is the time by which ALE must be driven LOW in order to latch the current address in phase 2. If ALE is driven low after
Tald, then a new address will be latched.

Figure 91. APE Address Control

Figure 92. ABE Address Control

MCLK

ALE

A[31:0],
nRW, LOCK,

nOPC,
nTRANS,
MAS[1:0]

TaldTale

MCLK

APE

A[31:0],
nRW,

 LOCK,
nOPC,

nTRANS,
MAS[1:0] Tald

Taph Taps

MCLK

ABE

A[31:0],
nRW,

 LOCK,
nOPC,

nTRANS,
MAS[1:0]

Tabz Tabe Taddr
191

Figure 93. Bidirectional Data Write Cycle

Note: DBE is HIGH and nENIN is LOW during the cycle shown.

Figure 94. Bidirectional Data Read Cycle

Note: DBE is HIGH and nENIN is LOW during the cycle shown.

MCLK

nENOUT

D[31:0]

Tdoh

Tnenh

Tnen

Tdout

MCLK

nENOUT

D[31:0]

Tnen

BL[3:0]

Tbylh Tbyls

Tdis Tdih
Timing Diagrams192

Timing Diagrams
Figure 95. Data Bus Control

Note: The cycle shown is a data write cycle since nENOUT was driven LOW during phase 1. Here, DBE has first been used to modify
the behaviour of the data bus, and then nENIN.

Figure 96. Output 3-State Time

MCLK

nENOUT

DBE

TdbnenTdbnen

Tdbz Tdbe

Tdout Tdbz

Tdbe

Tdoh

D[31:0]

nENIN

MCLK

TBE

A[31:0],
D[31:0],

nRW, LOCK,
nOPC,

nTRANS
MAS[1:0]

Ttbz Ttbe
193

Figure 97. Unidirectional Data Write Cycle

Figure 98. Unidirectional Data Read Cycle

Figure 99. Configuration Pin Timing

MCLK

nENOUT

DOUT[31:]

Tnen

Tdohu

Tdoutu

MCLK

nENOUT

DIN[31:0]

BL[3:0]

Tnen

Tdisu Tdihu

Tbylh Tbyls

MCLK

BIGEND

ISYNC

Tcth Tcts

Tcts Tcth
Timing Diagrams194

Timing Diagrams
Figure 100. Coprocessor Timing

Note: Normally, nMREQ and SEQ become valid Tmsd after the falling edge of MCLK. In this cycle the ARM has been busy-waiting,
waiting for a coprocessor to complete the instruction. If CPA and CPB change during phase 1, the timing of nMREQ and SEQ
will depend on Tcpms. Most systems should be able to generate CPA and CPB during the previous phase 2, and so the timing
of nMREQ and SEQ will always be Tmsd.

Figure 101. Exception Timing

Note: Tis/Trs guarantee recognition of the interrupt (or reset) source by the corresponding clock edge. Tim/Trm guarantee non-recog-
nition by that clock edge. These inputs may be applied fully asynchronously where the exact cycle of recognition is unimportant.

MCLK

Tcpi

Tcps

nCPI

CPA, CPB

nMREQ,
SEQ

Tcpih

Tcpms Tcph

MCLK

ABORT

nFIQ, IRQ

nMREQ,
SEQ

Tabts Tabth

Tis Tim

Trs Trm
195

Figure 102. Debug Timing

Figure 103. Breakpoint Timing

Note: BREAKPT changing in the LOW phase of MCLK to signal a watchpointed store can affect nCPI, nEXEC, nMREQ, and SEQ in
the LOW phase of MCLK.

Figure 104. TCK-ECLK Relationship

MCLK

DBGACK

BREAKPT

Tdbgh

Tdbgd

Tbrks Tbrkh

Trqs Trqh

Texts Texth

DBGRQ

XTERN[1:0]

MCLK

BREAKPT

nCPI, nEXEC,
nMREQ, SEQ

Tbcems

MCLK

ECLK

Tctdel Tctdel
Timing Diagrams196

Timing Diagrams
Figure 105. MCLK Timing

Note: The ARM core is not clocked by the HIGH phase of MCLK enveloped by nWAIT. Thus, during the cycles shown, nMREQ and
SEQ change once, during the first LOW phase of MCLK, and A[31:0] change once, during the second HIGH phase of MCLK.
For reference, ph2 is shown. This is the internal clock from which the core times all its activity. This signal is included to show
how the high phase of the external MCLK has been removed from the internal core clock.

MCLK

nWAIT

ECLK

nMREQ/
SEQ

A[31:0]

Tmsd

Taddr

TwhTws

Tmckl Tmckh
197

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309
Terms and product names in this document may be trademarks of others.
 Printed on recycled paper.

Rev. 0673B–01/99

	Architectural Overview
	Introduction
	ARM7TDMI Architecture
	The THUMB Concept
	THUMB’s Advantages

	ARM7TDMI Block Diagram
	ARM7TDMI Core Diagram
	ARM7TDMI Functional Diagram
	Signal Description
	Key to signal types

	Programmer’s Model
	Processor Operating States
	Switching State
	Entering THUMB state
	Entering ARM state

	Memory Formats
	Big endian format
	Little endian format

	Instruction Length
	Data Types
	Operating Modes
	Registers
	The ARM state register set
	The THUMB state register set
	The relationship between ARM and THUMB state registers
	Accessing Hi registers in THUMB state

	The Program Status Registers
	The condition code flags
	The control bits

	Exceptions
	Action on entering an exception
	Action on leaving an exception
	Exception entry/exit summary
	Notes

	FIQ
	IRQ
	Abort
	Software interrupt
	Undefined instruction
	Exception vectors
	Exception priorities
	Not all exceptions can occur at once:

	Interrupt Latencies
	Reset
	ARM Instruction Set
	Instruction Set Summary
	Format summary
	Instruction summary

	The Condition Field
	Branch and Exchange (BX)
	Instruction cycle times
	Assembler syntax
	Using R15 as an operand
	Examples

	Branch and Branch with Link (B, BL)
	The link bit
	Instruction cycle times
	Assembler syntax
	Examples

	Data Processing
	CPSR flags
	Shifts
	Instruction specified shift amount
	Register specified shift amount

	Immediate operand rotates
	Writing to R15
	Using R15 as an operand
	TEQ, TST, CMP and CMN opcodes
	Instruction cycle times
	Assembler syntax
	where:

	Examples

	PSR Transfer (MRS, MSR)
	Operand restrictions
	Reserved bits
	Example
	Instruction cycle times
	Assembler syntax
	Key:

	Examples

	Multiply and Multiply-Accumulate (MUL, MLA)
	If the operands are interpreted as signed
	If the operands are interpreted as unsigned
	Operand restrictions
	CPSR flags
	Instruction cycle times
	Assembler syntax
	Examples

	Multiply Long and Multiply-Accumulate Long (MULL,MLAL)
	Operand restrictions
	CPSR flags
	Instruction cycle times
	For signed instructions SMULL, SMLAL:
	For unsigned instructions UMULL, UMLAL:

	Assembler syntax
	where:

	Examples

	Single Data Transfer (LDR, STR)
	Offsets and auto-indexing
	Shifted register offset
	Bytes and words
	Little endian configuration
	Big endian configuration

	Use of R15
	Restriction on the use of base register
	Example:

	Data aborts
	Instruction cycle times
	Assembler syntax
	Examples

	Halfword and Signed Data Transfer(LDRH/STRH/LDRSB/LDRSH)
	Offsets and auto-indexing
	Halfword load and stores
	Signed byte and halfword loads
	Endianness and byte/halfword selection
	Little endian configuration
	Big endian configuration

	Use of R15
	Data aborts
	Instruction cycle times
	Assembler syntax
	Examples

	Block Data Transfer (LDM, STM)
	The register list
	Addressing modes
	Address alignment
	Use of the S bit
	LDM with R15 in transfer list and S bit set (Mode changes)
	STM with R15 in transfer list and S bit set (User bank transfer)
	R15 not in list and S bit set (User bank transfer)

	Use of R15 as the base
	Inclusion of the base in the register list
	Data aborts
	Aborts during STM instructions
	Aborts during LDM instructions

	Instruction cycle times
	Assembler syntax
	Addressing mode names

	Examples

	Single Data Swap (SWP)
	Bytes and words
	Use of R15
	Data aborts
	Instruction cycle times
	Assembler syntax
	Examples

	Software Interrupt (SWI)
	Return from the supervisor
	Comment field
	Instruction cycle times
	Assembler syntax
	Examples
	Supervisor code

	Coprocessor Data Operations (CDP)
	The coprocessor fields
	Instruction cycle times

	Assembler syntax
	Examples

	Coprocessor Data Transfers (LDC, STC)
	The coprocessor fields
	Addressing modes
	Address alignment
	Use of R15
	Data aborts
	Instruction cycle times
	Assembler syntax
	Examples

	Coprocessor Register Transfers (MRC, MCR)
	The coprocessor fields
	Transfers to R15
	Transfers from R15
	Instruction cycle times
	Assembler syntax
	Examples

	Undefined Instruction
	Instruction cycle times
	Assembler syntax

	Instruction Set Examples
	Using the conditional instructions
	Using conditionals for logical OR
	Absolute value
	Multiplication by 4, 5 or 6 (run time)
	Combining discrete and range tests
	Division and remainder
	Overflow detection in the ARM7TDMI

	Pseudo-random binary sequence generator
	Multiplication by constant using the barrel shifter
	Multiplication by 2^n (1,2,4,8,16,32..)
	Multiplication by 2^n+1 (3,5,9,17..)
	Multiplication by 2^n-1 (3,7,15..)
	Multiplication by 6
	Multiply by 10 and add in extra number
	General recursive method for Rb := Ra*C, C a constant:

	Loading a word from an unknown alignment

	Thumb Instruction Set
	Format Summary
	Opcode Summary
	Format 1: move shifted register
	Operation
	Instruction cycle times
	Examples

	Format 2: add/subtract
	Operation
	Instruction cycle times
	Examples

	Format 3: move/compare/add/subtract immediate
	Operations
	Instruction cycle times
	Examples

	Format 4: ALU operations
	Operation
	Instruction cycle times
	Examples

	Format 5: Hi register operations/branch exchange
	Operation
	Instruction cycle times
	The BX instruction
	Examples
	Using R15 as an operand

	Format 6: PC-relative load
	Operation
	Instruction cycle times
	Examples

	Format 7: load/store with register offset
	Operation
	Instruction cycle times
	Examples

	Format 8: load/store sign-extended byte/halfword
	Operation
	Instruction cycle times
	Examples

	Format 9: load/store with immediate offset
	Operation
	Instruction cycle times
	Examples

	Format 10: load/store halfword
	Operation
	Instruction cycle times
	Examples

	Format 11: SP-relative load/store
	Operation
	Instruction cycle times
	Examples

	Format 12: load address
	Operation
	Instruction cycle times
	Examples

	Format 13: add offset to Stack Pointer
	Operation
	Instruction cycle times
	Examples

	Format 14: push/pop registers
	Operation
	Instruction cycle times
	Examples

	Format 15: multiple load/store
	Operation
	Instruction cycle times
	Examples

	Format 16: conditional branch
	Operation
	Instruction cycle times
	Examples

	Format 17: software interrupt
	Operation
	Instruction cycle times
	Examples

	Format 18: unconditional branch
	Operation
	Examples

	Format 19: long branch with link
	Operation
	Instruction cycle times
	Examples

	Instruction Set Examples
	Multiplication by a constant using shifts and adds
	General purpose signed divide
	Thumb code
	ARM code

	Division by a constant
	Explanation of divide-by-constant ARM code
	ARM code
	THUMB code

	Memory Interface
	Overview
	Cycle Types
	Address Timing

	Data Transfer Size
	Instruction Fetch
	Memory Management
	Locked Operations
	Stretching Access Times
	The ARM Data Bus
	The External Data Bus
	The unidirectional data bus
	The bidirectional data bus
	Example system: The ARM7TDMI Testchip

	Overview
	Interface Signals
	Coprocessor present/absent
	Busy-waiting
	Pipeline following
	Data transfer cycles

	Register Transfer Cycle
	Privileged Instructions
	Idempotency
	Undefined Instructions
	Debug Interface
	Overview
	Debug Systems
	Debug Interface Signals
	Entry into debug state
	Entry into debug state on breakpoint
	Entry into debug state on watchpoint
	Entry into debug state on debug-request
	Action of ARM7TDMI in debug state

	Scan Chains and JTAG Interface
	Scan limitations
	Scan chain 0
	Scan chain 1
	Scan Chain 2

	The JTAG state machine

	Reset
	Pullup Resistors
	Instruction Register
	Public Instructions
	EXTEST (0000)
	SCAN_N (0010)
	INTEST (1100)
	IDCODE (1110)
	BYPASS (1111)
	CLAMP (0101)
	HIGHZ (0111)
	CLAMPZ (1001)
	SAMPLE/PRELOAD (0011)
	RESTART (0100)

	Test Data Registers
	Bypass register
	ARM7TDMI device identification (ID) code register
	Operating mode:

	Instruction register
	Scan chain select register
	Scan chains 0,1 and 2
	Scan chain 0 and 1
	Scan chain 0
	Scan chain 1
	Scan chain 3

	ARM7TDMI Core Clocks
	Clock switch during debug
	Clock switch during test

	Determining the Core and System State
	Determining the core’s state
	Determining system state
	Exit from debug state

	The PC’s Behaviour During Debug
	Breakpoint
	Watchpoints
	Watchpoint with another exception
	Debug request
	System speed access
	Summary of return address calculations

	Priorities / Exceptions
	Breakpoint with prefetch abort
	Interrupts
	Data aborts

	Scan Interface Timing
	Debug Timing
	ICEBreaker Module
	Overview
	The Watchpoint Registers
	Programming and reading watchpoint registers
	Using the mask registers
	The control registers

	Programming Breakpoints
	Hardware breakpoints:
	Software breakpoints:
	Hardware breakpoints
	Software breakpoints
	Setting the breakpoint
	Clearing the breakpoint

	Programming Watchpoints
	The Debug Control Register
	Debug Status Register
	Coupling Breakpoints and Watchpoints
	Example
	CHAINOUT signal
	RANGEOUT signal
	Example

	Disabling ICEBreaker
	ICEBreaker Timing
	Programming Restriction
	Debug Communications Channel
	Debug comms channel registers
	Communications via the comms channel

	Instruction Cycle Operations
	Introduction
	Branch and Branch with Link
	THUMB Branch with Link
	Branch and Exchange (BX)
	Data Operations
	Multiply and Multiply Accumulate
	Load Register
	Store Register
	Load Multiple Registers
	Store Multiple Registers
	Data Swap
	Software Interrupt and Exception Entry
	Coprocessor Data Operation
	Coprocessor Data Transfer (from memory to coprocessor)
	Coprocessor Data Transfer (from coprocessor to memory)
	Coprocessor Register Transfer (Load from coprocessor)
	Coprocessor Register Transfer (Store to coprocessor)
	Undefined Instructions and Coprocessor Absent
	Unexecuted Instructions
	Instruction Speed Summary
	Timing Diagrams
	Timing Diagrams

