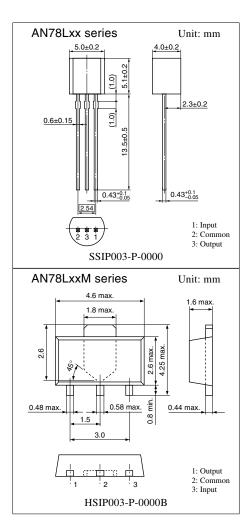
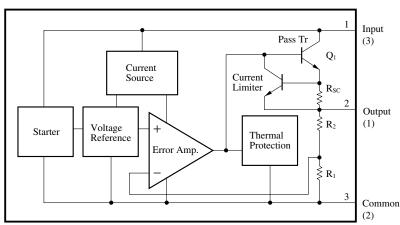
AN78Lxx/AN78LxxM Series

3-pin positive output voltage regulator (100 mA type)


Overview

The AN78Lxx series and the AN78LxxM series are 3pin fixed positive output type monolithic voltage regulator.


A stabilized fixed output voltage is obtained from an unstable DC input voltage without using any external parts. 12 types of fixed output voltage are available; 4V, 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V and 24V. They can be used widely as power circuits with a current capacity of up to 100mA.

Features

- No external components
- Output voltage: 4V, 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V
- Built-in overcurrent limit circuit
- Built-in thermal overload protection circuit

■ Block Diagram (AN78Lxx series)

Note) The number in () shows the pin number for the AN78LxxM series.

Absolute Maximum Ratings at $T_a = 25^{\circ}C$

Parameter		Symbol	Rating	Unit
T / 1/		VI	35 *1	V
input voltage	Input voltage		40 *2	v
Power dissipation		PD	650 *3	mW
Operating ambient ten	nperature	T _{opr}	-30 to +80	°C
<u>S</u> ta	AN78Lxx series	т	-55 to +150	00
Storage temperature	AN78LxxM series	T _{stg}	-55 to +125	°C

*1 AN78L04/M, AN78L05/M, AN78L06/M, AN78L07/M, AN78L08/M, AN78L09/M, AN78L10/M, AN78L12/M, AN78L15/M

*2 AN78L18/M, AN78L20/M, AN78L24/M

*3 Follow the derating curve. When T_j exceeds 150°C, the internal circuit cuts off the output.

AN78LxxM series is mounted on a standard board (glass epoxy: 20mm × 20mm × 11.7mm with Cu foil of 1cm² or more).

■ Electrical Characteristics at T_a = 25°C

• AN78L04, AN78L04M (4V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	3.84	4	4.16	V
Output voltage tolerance	Vo	$V_{I} = 6.5$ to 19V, $I_{O} = 1$ to 70mA	3.8		4.2	V
Line regulation	REGIN	$V_I = 6.5$ to 19V, $T_j = 25^{\circ}C$		50	145	mV
Line regulation	KEUIN	$V_{I} = 7$ to 19V, $T_{j} = 25^{\circ}C$		40	95	mV
	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		10	55	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		4.5	30	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = 7$ to 19V, $T_j = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		40		μV
Ripple rejection ratio	RR	$V_I = 7$ to 17V, $I_O = 40$ mA, $f = 120$ Hz	48	58		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	$I_{O(Short)}$	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.6		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 9V$, $I_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125°C (AN78L04) and $T_j = 0$ to 100°C (AN78L04M)

• AN78L05, AN78L05M (5V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	4.8	5	5.2	V
Output voltage tolerance	Vo	$V_{I} = 7.5$ to 20V, $I_{O} = 1$ to 70mA	4.75	—	5.25	V
Line regulation	REGIN	$V_I = 7.5$ to 20V, $T_j = 25^{\circ}C$		55	150	mV
Line regulation	KEOIN	$V_I = 8$ to 20V, $T_j = 25^{\circ}C$		45	100	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		11	60	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		5	30	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = 8$ to 20V, $T_j = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		40		μV
Ripple rejection ratio	RR	$V_I = 8$ to 18V, $I_O = 40$ mA, $f = 120$ Hz	47	57		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		v
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.65		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 10V$, $\hat{I}_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L05) and $T_j = 0$ to 100° C (AN78L05M)

• AN78L06, AN78L06M (6V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	5.76	6	6.24	V
Output voltage tolerance	Vo	$V_{I} = 8.5$ to 21V, $I_{O} = 1$ to 70mA	5.7	—	6.3	V
Line regulation	REGIN	$V_I = 8.5$ to 21V, $T_j = 25^{\circ}C$		60	155	mV
	KEOIN	$V_{I} = 9$ to 21V, $T_{j} = 25^{\circ}C$		50	105	mV
Load regulation	REG	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		12	65	mV
Load regulation	KEUL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		5.5	35	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 9$ to 21V, $T_{j} = 25^{\circ}C$		—	1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		—	0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		50		μV
Ripple rejection ratio	RR	$V_{I} = 9$ to 19V, $I_{O} = 40$ mA, f = 120Hz	46	56		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.7		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = 11V$, $\tilde{I}_0 = 40$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L06) and $T_j = 0$ to 100° C (AN78L06M)

• AN78L07, AN78L07M (7V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	6.72	7	7.28	V
Output voltage tolerance	Vo	$V_I = 9.5$ to 22V, $I_O = 1$ to 70mA	6.65		7.35	V
Line regulation	REGIN	$V_I = 9.5$ to 22V, $T_j = 25^{\circ}C$		70	165	mV
Line regulation	KLOIN	$V_{I} = 10$ to 22V, $T_{j} = 25^{\circ}C$		60	115	mV
Load regulation	REG	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		13	75	mV
Load regulation	KEUL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		6	35	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 10$ to 22V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		50		μν
Ripple rejection ratio	RR	$V_{I} = 10$ to 20V, $I_{O} = 40$ mA, $f = 120$ Hz	45	55		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.75		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = 12V$, $\tilde{I}_0 = 40$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L07) and $T_j = 0$ to 100° C (AN78L07M)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	7.7	8	8.3	V
Output voltage tolerance	Vo	$V_I = 10.5$ to 23V, $I_O = 1$ to 70mA	7.6		8.4	v
Line regulation	REG _{IN}	$V_{I} = 10.5$ to 23V, $T_{j} = 25^{\circ}C$		80	175	mV
	KEOIN	$V_{I} = 11$ to 23V, $T_{j} = 25^{\circ}C$		70	125	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		15	80	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		7	40	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 11$ to 23V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		—	0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		60		μV
Ripple rejection ratio	RR	$V_{I} = 11$ to 21V, $I_{O} = 40$ mA, $f = 120$ Hz	44	54		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.8		mV/°C

• AN78L08, AN78L08M (8V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 14V$, $I_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L08) and $T_j = 0$ to 100° C (AN78L08M)

• AN78L09, AN78L09M (9V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	8.64	9	9.35	V
Output voltage tolerance	Vo	$V_{I} = 11.5$ to 24V, $I_{O} = 1$ to 70mA	8.55		9.45	V
Line regulation	DEC	$V_I = 11.5$ to 24V, $T_j = 25^{\circ}C$		90	190	mV
	REGIN	$V_I = 12 \text{ to } 24V, T_j = 25^{\circ}C$		80	140	mV
Load regulation	REG	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		16	85	mV
Load regulation	KEUL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		8	45	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 12 \text{ to } 24V, T_{j} = 25^{\circ}C$		—	1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		65		μV
Ripple rejection ratio	RR	$V_{I} = 12$ to 22V, $I_{O} = 40$ mA, $f = 120$ Hz	43	53		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.85		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 15V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L09) and $T_j = 0$ to 100° C (AN78L09M)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	9.6	10	10.4	V
Output voltage tolerance	Vo	$V_{I} = 12.5$ to 25V, $I_{O} = 1$ to 70mA	9.5		10.5	V
Line regulation	REGIN	$V_I = 12.5$ to 25V, $T_j = 25^{\circ}C$		100	210	mV
Line regulation	KLOIN	$V_{I} = 13$ to 25V, $T_{j} = 25^{\circ}C$		90	160	mV
Load regulation	REG	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		17	90	mV
Load regulation	KEUL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		9	45	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 13 \text{ to } 25V, T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		70		μν
Ripple rejection ratio	RR	$V_{I} = 13$ to 23V, $I_{O} = 40$ mA, $f = 120$ Hz	42	52		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.9		mV/°C

AN78L10, AN78L10M (10V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 16V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L10) and $T_j = 0$ to 100° C (AN78L10M)

■ Electrical Characteristics at T_a = 25°C (continued)

• AN78L12, AN78L12M (12V type)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	11.5	12	12.5	V
Output voltage tolerance	Vo	$V_{I} = 14.5$ to 27V, $I_{O} = 1$ to 70mA	11.4		12.6	V
Line regulation	REG _{IN} $ $	$V_I = 14.5$ to 27V, $T_j = 25^{\circ}C$		120	250	mV
Line regulation		$V_{I} = 15$ to 27V, $T_{j} = 25^{\circ}C$		100	200	mV
Load regulation	REG	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		20	100	mV
Load regulation	KEUL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		10	50	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 15$ to 27V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		80		μV
Ripple rejection ratio	RR	$V_I = 15$ to 25V, $I_O = 40$ mA, $f = 120$ Hz	40	50		dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		-1		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 19V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L12) and $T_j = 0$ to 100° C (AN78L12M)

Parameter Symbol Conditions Min Тур Max Unit Output voltage V_{O} $T_i = 25^{\circ}C$ 14.4 15 15.6 v V Output voltage tolerance Vo $V_I = 17.5$ to 30V, $I_O = 1$ to 70mA 14.25 15.75 $V_I = 17.5$ to 30V, $T_i = 25^{\circ}C$ _____ 130 300 mV Line regulation REGIN $V_{I} = 18$ to 30V, $T_{j} = 25^{\circ}C$ 250 110 mV $I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$ 25 150 mV Load regulation REGL $I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$ 12 75 mV Bias current $T_i = 25^{\circ}C$ 2 3.5 IBias mA $V_{I} = 18$ to 30V, $T_{i} = 25^{\circ}C$ Bias current fluctuation to input 1 $\Delta I_{Bias(IN)}$ mA Bias current fluctuation to load $\Delta I_{Bias(L)}$ $I_0 = 1$ to 40mA, $T_i = 25^{\circ}C$ 0.1 mA V_{no} Output noise voltage f = 10Hz to 100kHz90 μV Ripple rejection ratio RR $V_I = 18$ to 28V, $I_O = 40$ mA, f = 120Hz 38 48 dB Minimum input/output voltage difference V_{DIF(min)} $T_i = 25^{\circ}C$ 1.7 V Output short-circuit current $T_j = 25^{\circ}C, V_I = 35V$ 140 mА I_{O(Short)} Output voltage temperature coefficient $\Delta V_0/T_a$ $I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$ -1.3 mV/°C

• AN78L15, AN78L15M (15V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = 23V$, $I_0 = 40$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L15) and $T_j = 0$ to 100° C (AN78L15M)

■ Electrical Characteristics at T_a = 25°C (continued)

• AN78L18, AN78L18M (18V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	17.3	18	18.7	v
Output voltage tolerance	Vo	$V_{\rm I}{=}20.5$ to 33V, $I_{\rm O}{=}1$ to 70mA	17.1		18.9	V
Line regulation	REGIN	$V_{\rm I}{=}20.5$ to 33V, $T_{\rm j}{=}25^{\circ}C$		45	300	mV
Line regulation	KLOIN	$V_I = 21$ to 33V, $T_j = 25^{\circ}C$		35	250	mV
Load regulation	REG	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		30	170	mV
Load regulation	KEUL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		15	85	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 21$ to 33V, $T_{j} = 25^{\circ}C$		—	1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		—	0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		150		μV
Ripple rejection ratio	RR	$V_{I} = 21$ to 31V, $I_{O} = 40$ mA, $f = 120$ Hz	36	46		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		v
Output short-circuit current	$I_{O(Short)}$	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0$ to $125^{\circ}C$		-1.5		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 27V$, $\tilde{I}_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L18) and $T_j = 0$ to 100° C (AN78L18M)

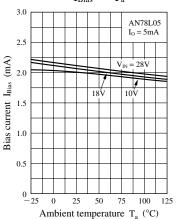
Parameter Symbol Conditions Unit Min Тур Max $T_j = 25^{\circ}C$ Output voltage 19.2 20 20.8 V Vo Output voltage tolerance V Vo $V_I = 22.5$ to 35V, $I_O = 1$ to 70mA 19 21 $V_I = 22.5$ to 35V, $T_j = 25^{\circ}C$ 50 300 mV Line regulation REGIN $V_I = 23$ to 35V, $T_i = 25^{\circ}C$ 40 250 mV $I_0 = 1$ to 100mA, $T_1 = 25^{\circ}C$ 35 180 mV Load regulation REGL $I_0 = 1$ to 40mA, $T_1 = 25^{\circ}C$ 17 90 mV Bias current $T_i = 25^{\circ}C$ 2 3.5 I_{Bias} mA Bias current fluctuation to input $V_I = 23$ to 35V, $T_i = 25^{\circ}C$ $\Delta I_{\text{Bias(IN)}}$ 1 mA Bias current fluctuation to load $I_0 = 1$ to 40mA, $T_i = 25^{\circ}C$ 0.1 mA $\Delta I_{Bias(L)}$ Output noise voltage V_{no} f = 10Hz to 100kHz170 μV _ Ripple rejection ratio RR $V_I = 23$ to 33V, $I_O = 40$ mA, f = 120Hz 34 44 dB Minimum input/output voltage difference V_{DIF(min)} $T_i = 25^{\circ}C$ 1.7 V Output short-circuit current $T_j = 25^{\circ}C, V_I = 35V$ 140 mА I_{O(Short)} _ Output voltage temperature coefficient $\Delta V_0/T_a$ $I_0 = 5mA$, $T_1 = 0$ to $125^{\circ}C$ -1.7mV/°C

• AN78L20, AN78L20M (20V type)

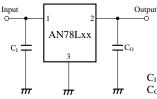
Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = 29V$, $\tilde{I}_0 = 40$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L20) and $T_j = 0$ to 100° C (AN78L20M)

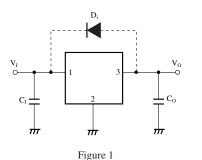
• AN78L24, AN78L24M (24V type)


Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	23	24	25	V
Output voltage tolerance	Vo	$V_{I} = 26.5$ to 39V, $I_{O} = 1$ to 70mA	22.8	—	25.2	V
Line regulation	REGIN	$V_{I} = 26.5$ to 39V, $T_{j} = 25^{\circ}C$		60	300	mV
Line regulation	KEOIN	$V_{I} = 27$ to 39V, $T_{j} = 25^{\circ}C$		50	250	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		40	200	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		20	100	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{\rm I}$ = 27 to 39V, $T_{\rm j}$ = 25°C		—	1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		—	0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		200		μV
Ripple rejection ratio	RR	$V_I = 27$ to 37V, $I_O = 40$ mA, $f = 120$ Hz	34	44		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	$I_{O(Short)}$	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		-2		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored. Note 2) Unless otherwise specified, $V_I = 33V$, $I_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125°C (AN78L24) and $T_j = 0$ to 100°C


(AN78L24M)

Main Characteristics


Basic Regulator Circuit

 C_I is necessary when the input line is long. C_O improves the transient response.

Usage Notes

1. Cautions for a basic circuit

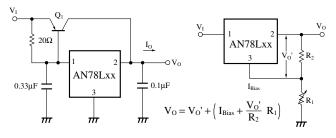
- connect an electrolytic capacitor of 10μ F to 100μ F to improve a transitional response of output voltage.
 - D_i: Normally unnecessary. But add it in the case that there is a residual voltage at the output capacitor Co even after switching off the supply power because a current is likely to flow into an output pin of the IC and damage the IC.

C₁: When a wiring from a smoothing circuit to a three-pin regulator

C₀: When any sudden change of load current is likely to occur,

0.47µF should be connected near an input pin.

is long, it is likely to oscillate at output. A capacitor of 0.1µF to


- 2. Other caution items
 - 1) Short-circuit between the input pin and GND pin

If the input pin is short-circuitted to GND or is cut off when a large capacitance capacitor has been connected to the IC's load, a voltage of a capacitor connected to an output pin is applied between input/output of the IC and this likely results in damage of the IC. It is necessary, therefore, to connect a diode, as shown in figure 2, to counter the reverse bias between input/output pins. Figure 2

2) Floating of GND pin

If a GND pin is made floating in an operating mode, an unstabilized input voltage is outputted. In this case, a thermal protection circuit inside the IC does not normally operate. In this state, if the load is short-circuited or overloaded, it is likely to damage the IC.

Application Circuit Examples

Note) $V_{\rm O}$ varies due to sample to sample variation of $I_{\rm Bias}$. Never fail to adjust individually with R_1 .

Panasonic

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.