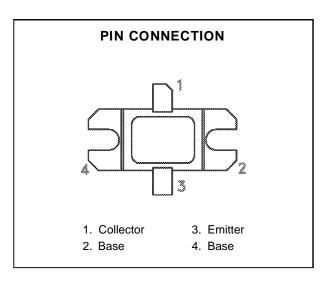


AM1214-300

RF & MICROWAVE TRANSISTORS L-BAND RADAR APPLICATIONS

- REFRACTORY/GOLD METALLIZATION
- EMITTER SITE BALLASTED
- 5:1 VSWR CAPABILITY
- LOW THERMAL RESISTANCE
- INPUT/OUTPUT MATCHING
- OVERLAY GEOMETRY
- METAL/CERAMIC HERMETIC PACKAGE
- Pout = 270 W MIN. WITH 6.3 dB GAIN



DESCRIPTION

The AM1214-300 device is a high power transistor specifically designed for L-Band radar pulsed output and driver applications.

This device is designed for operation under moderate pulse width and duty cycle pulse conditions and is capable of withstanding 5:1 output VSWR at rated RF conditions. Low RF thermal resistance and computerized automatic wire bonding techniques ensure high reliability and product consistency.

The AM1214-300 is supplied in the BIGPAC™ Hermetic Metal/Ceramic package with internal Input/Output matching structures.

ABSOLUTE MAXIMUM RATINGS $(T_{case} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
P _{DISS}	Power Dissipation* (T _C ≤ 100°C)	730	W
Ic	Device Current*	18.75	А
Vcc	Collector-Supply Voltage*	55	V
TJ	Junction Temperature (Pulsed RF Operation)	250	°C
T _{STG}	Storage Temperature	- 65 to +200	°C

THERMAL DATA

R _{TH(j-c)} Junction-Case Thermal Resistance*	0.24	°C/W
--	------	------

^{*}Applies only to rated RF amplifier operation

September 1992

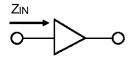
ELECTRICAL SPECIFICATIONS $(T_{case} = 25^{\circ}C)$

STATIC

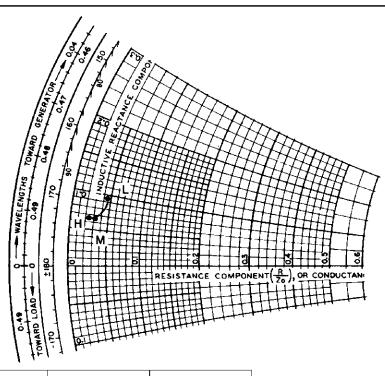
Symbol	Took Conditions	Value			IIn:4		
	Test Conditions		Min.	Тур.	Max.	Unit	
BV _{CBO}	I _C = 50mA	$I_E = 0mA$		65	_	_	V
BV _{EBO}	I _E = 15mA	$I_C = 0mA$		3.0	_	_	V
BVces	IC = 50mA			65	_	_	V
ICES	V _{CE} = 50V			_	_	30	mA
h _{FE}	V _{CE} = 5V	$I_C = 5A$		10	_	_	_

DYNAMIC

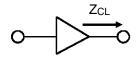
Symbol	Test Conditions		Value		Unit		
Symbol	rest Conditions			Min.	Тур.	Max.	Unit
Pout	f = 1235 — 1365MHz	$P_{\text{IN}}=63W$	$V_{\text{CC}} = 50V$	270	300	_	W
ης	f = 1235 — 1365MHz	$P_{IN} = 63W$	$V_{CC} = 50V$	40	45	_	%
G _P	f = 1235 — 1365MHz	$P_{IN} = 63W$	$V_{CC} = 50V$	6.3	6.8	_	dB


Note: Pulse Width = $50\mu Sec$ Duty Cycle = 4%

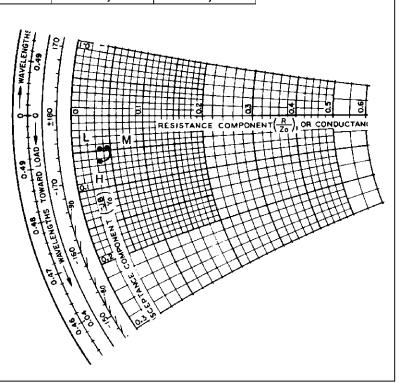
TYPICAL PERFORMANCE



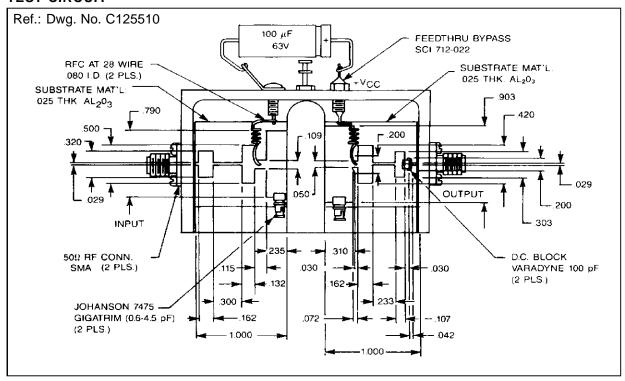
IMPEDANCE DATA



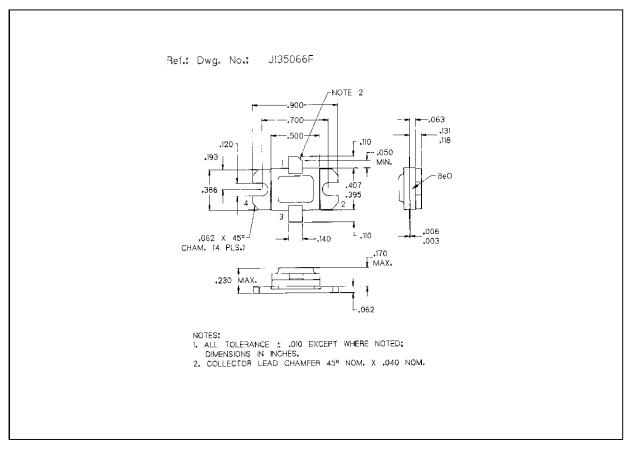
 $\begin{aligned} P_{IN} &= 63 \text{ W} \\ V_{CC} &= 50 \text{ V} \\ Z_0^* &= 50 \text{ ohms} \end{aligned}$


FREQ.	Z _{IN} (Ω)	Z _{CL} (Ω)
L = 1235 MHz	2.5 + j 5.0	2.0 – j 2.5
M = 1300 MHz	1.5 + j 3.5	2.5 – j 2.5
H = 1365 MHz	1.0 + j 3.5	2.0 – j 3.0

TYPICAL COLLECTOR LOAD IMPEDANCE



 $\begin{aligned} P_{IN} &= 63 \text{ W} \\ V_{CC} &= 50 \text{ V} \\ Z_0^* &= 50 \text{ ohms} \end{aligned}$


*Normalized Impedance

TEST CIRCUIT

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

