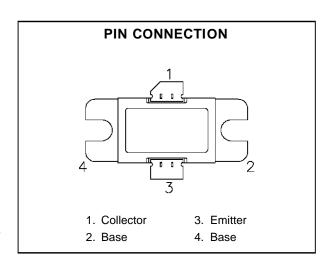


AM1011-500

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS

- Pout = 500 W MIN. WITH 8.5 dB MIN. GAIN
- 10:1 LOAD VSWR CAPABILITY @ 10µS., 1% DUTY
- SIXPAC™ HERMETIC METAL/CERAMIC PACKAGE
- EMITTER SITE BALLASTED OVERLAY GEOMETRY
- REFRACTORY/GOLD METALLIZATION
- LOW THERMAL RESISTANCE
- INTERNAL INPUT/OUTPUT MATCHING
- CHARACTERIZED UNDER 32µS.,2% DUTY CYCLE PULSE CONDITIONS



DESCRIPTION

The AM1011-500 device is a high power Class C transistor specifically designed for L-Band Avionic applications involving high pulse burst duty cycles.

This device is capable of operation over a wide range of pulse widths, duty cycles, and temperatures. Low RF thermal resistance and computerized automatic wire bonding techniques ensure high reliability and product consistency.

The AM1011-500 is supplied in the SIXPAC™ Hermetic metal/ceramic package with internal input/output matching structures.

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^{\circ}C$)

Symbol	Parameter	Value	Unit
P _{DISS}	Power Dissipation* (T _C ≤ 100°C)	1,360	W
Ic	Device Current*	27	Α
V _{CC}	Collector-Supply Voltage*	55	V
TJ	Junction Temperature (Pulsed RF Operation)	250	°C
T _{STG}	Storage Temperature	- 65 to +200	°C

THERMAL DATA

R _{TH(j-c)} Junction	n-Case Thermal Resistance*	0.11	°C/W
-------------------------------	----------------------------	------	------

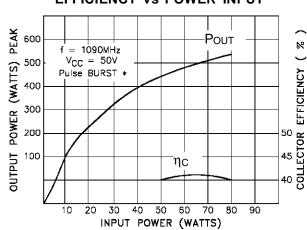
^{*}Applies only to rated RF amplifier operation

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

STATIC

Symbol		Test Conditions		Value			11:4:4
	rest Conditions		Min.	Тур.	Max.	Unit	
BV _{CBO}	I _C = 50 mA	$I_E = 0 \text{ mA}$		70	_		V
BV _{EBO}	I _E = 30 mA	$I_C = 0 \text{ mA}$		3.0	_		V
BVces	I _C = 50 mA	$V_{BE} = 0 V$		70	_	_	V
Ices	V _{BE} = 0 V	$V_{CE} = 50 \text{ V}$		_	_	40	mA
hFE	V _{CE} = 5 V	I _C = 1.0 A		10	_	200	_

DYNAMIC


Symbol	Test Conditions			Value			Unit
Symbol		rest Conditions		Min.	Тур.	Max.	Onit
Pout	f = 1090 MHz	$P_{IN} = 70 \text{ W}$	$V_{CC} = 50 \text{ V}$	500	_	_	W
hc	f = 1090 MHz	$P_{OUT} = 500 \text{ W}$	$V_{CC} = 50 \text{ V}$	40	_	_	%
G _P	f = 1090 MHz	$P_{OUT} = 500 \text{ W}$	$V_{CC} = 50 \text{ V}$	8.5	_	_	dB
Load Mismatch	P _{OUT} = 500 W Peak F = 1090MHz V _{CC} = 50 V	VSWR = 10:1, 1 VSWR = 5:1, 32		No De	egradat Po		Dutput

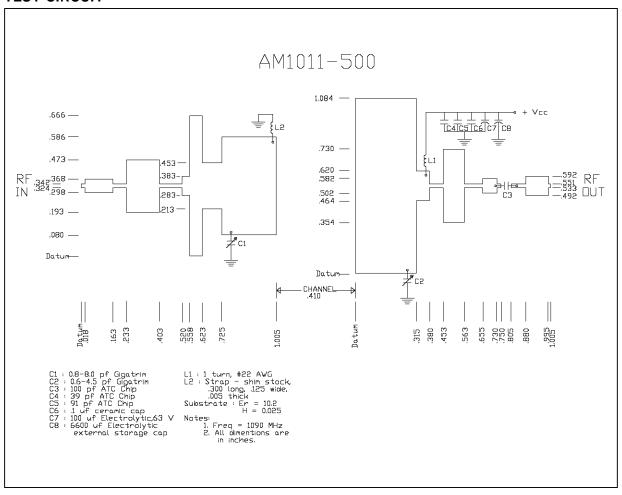
Note: Pulse Width = 32μ Sec, Duty Cycle = 2%

TYPICAL PERFORMANCE

POWER OUTPUT & COLLECTOR EFFICIENCY vs POWER INPUT Pout OUTPUT POWER (WATTS) PEAK COLLECTOR EFFICIENCY (%) 600 f = 1090MHz $V_{CC} = 50V$ Pulse 32usec, 2% 500 400 300 200 ης 100 10 30 40 50 60 70 80 20 INPUT POWER (WATTS)

POWER OUTPUT & COLLECTOR EFFICIENCY vs POWER INPUT

* Pulse Burst conditions: 128 μSec train, 0.5 μSec on, 0.5 μSec off; with a period of 6.4 msec.


IMPEDANCE DATA

FREQ.	$Z_{IN}(\Omega)$	$Z_CL(\Omega)$
1030 MHz	4.35 + j 6.97	1.38 – j 4.08
1090 MHz	4.38 + j 2.75	.874 – j 3.55
1120 MHz	4.69 + j 2.95	1.3 – j 4.97

 $P_{IN} = 70W$

 $V_{CC} = 50V$

TEST CIRCUIT

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.