Preliminary Rev. A 8/10/01

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 ©Analog Devices, Inc., 2001

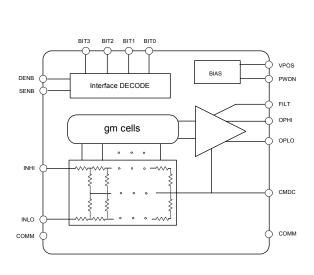
PRELIMINARY TECHNICAL DATA

FEATURES

Very Flat AC Response to 400MHz, ±.5dB Digital Variable Gain, from -5dB to +40dB $(R_L=1k\Omega)$ 3dB Step Size Parallel or Serial 4-bit Interface **Differential Input and Output 200**Ω Differential Input **200**Ω Differential Output **High-Efficiency Output Stage** Operation from Supply Voltages from 3.0 - 5.5 V Rapid Power-Down to less than 300 µA max

APPLICATIONS IF Sampling Receivers Cellular/PCS Base Stations

PRODUCT DESCRIPTION


The AD8369 is a high-performance digitally controlled variable gain amplifier for use from very low frequencies to 550MHz, with a -3dB frequency of 700MHz at full gain (40dB, Rload=1k) and essentially constant response at all gains. The AD8369 delivers excellent distortion performance, two-tone intermodulation distortion is 63dBc at 150MHz for 10MHz spacing. Digital control of the AD8369 is achieved using a 4-bit serial or parallel interface. The mode of digital control is selected by connecting a single pin to ground or the positive supply.

Variable gain is achieved via two methods. Six dB gain steps are implemented using the X-AMP approach, where the input signal is scaled by a differential R-2R ladder network. The ladder also sets the input impedance at 200 ohms differential. Three dB steps are implemented at the output of the amp via a signal subtraction method. The output impedance is set via on chip resistors across the differential output pins. Consequently the load that is presented to the part will affect the overall gain of the amplifier.

Standard CMOS levels can drive the digital interface. Control pins (SENB and DENB) when left open are pulled to levels that put the part in the parallel transparent mode. The Data pins are pulled low if left unconnected. In serial mode, Bit0 is the serial data input and Bit1 is clock. The DENB has the same function in both the serial and parallel modes. Data is latched while the DENB pin is low and transparent when DENB is high. The AD8369 may be powered on or off by a voltage applied to the ENBL pin. When this voltage is at logic LO, the total dissipation drops to the microwatt range. For a logic HI, the chip powers-up rapidly to its nominal quiescent current of 34mA at 25° C.

The AD8369 is fabricated on Analog Devices proprietary, high performance 25GHz silicon Bipolar IC process. The AD8369 is available in a 16pin TSSOP package for the industrial temperature range of -40°C to +85°C. A device populated evaluation board is available

Patents Pending

AD8369

45-dB Digital VGA

LF to 500MHz

ANALOG DEVICES

AD8369

AD8369-SPECIFICATIONS (V_s=5V, T=25°C, Z_O = 200Ω, Frequency = 70MHz unless otherwise noted)

Parameters	Conditions	Min	Тур	Max	Units
OVERALL FUNCTION					
Frequency Range	V_{s} =5V, T=25°C, Z_{O} = 200 Ω	Note 1		550	MHz
INPUT STAGE					
Maximum Input	Maximum Peak Input Voltage			TBD	Vp-p
Input Resistance// Capacitance	From INHI to INLO, Freq = 70 MHz		200		$\Omega //pF$
Input Noise Spectral Density	At max gain		TBD		nV/√H:
GAIN CONTROL					
INTERFACE					
Gain Range			45		dB
Maximum Gain	Gain Code F (1111)		40		dB
Minimum Gain	Gain Code 0 (0000)		-5		dB
Gain Step Size			3		dB
Gain Step Accuracy			TBD		dB
Gain Step Response	Gain Code 0 (0000) to Gain Code 1 (0001)		TBD		μs
OUTPUT STAGE					
Maximum Output Voltage	$R_L \ge 1k\Omega$		TBD		Vpp
Output Resistance// Capacitance	From OPHI to OPLO		200		$\Omega//pF$
f = 70 MHz					
Gain	Gain Code F (1111)		35		dB
Noise Figure	At Max Gain		6.8		dB
Output IP3	fl = 69.5 MHz, f2 = 70.5MHz, At Max Gain		22		dBm
Output 1dB Compression Point	At Max Gain		-1		dBm
f = 140 MHz					
Gain	All bits high (1111)		35		dB
Noise Figure	At Max Gain		6.8		dB
Output IP3	f1 = 139.5 MHz, f2 = 140.5MHz, At Max Gain		18		dBm
Output 1dB Compression Point	At Max Gain		TBD		dBm
f = 190 MHz					1
Gain	All bits high (1111)		35		dB
Noise Figure	At Max Gain		6.9		dB
Output IP3	f1 = 189.5 MHz, f2 = 190.5MHz, At Max Gain		17		dBm
Output 1dB Compression Point	At Max Gain		TBD		dBm
f = 240 MHz					
Gain	All bits high (1111)		35		dB
Noise Figure	At Max Gain		6.9		dB
Output IP3	f1 = 239.5MHz, f2 = 240.5MHz, At Max Gain		15		dBm
Output 1dB Compression Point	At Max Gain		TBD		dBm

AD8369-SPECIFICATIONS

(Vs=5V, T=25°C, Z_O = 200 Ω , Frequency = 70MHz unless otherwise noted)

POWER INTERFACE				
Supply Voltage		3.0	5.5	V
Quiescent Current	PWDN high	34		mA
vs. Temperature	$-30^{\circ}C \le T_A \le 85^{\circ}C$			mA
Disable Current	PWDN low	750		μΑ
vs. Temperature	$-30^{\circ}C \le T_A \le 85^{\circ}C$			uA
MODE CONTROL				
INTERFACE				
Mode LO Threshold	Device in parallel mode of operation	V _S / 2		V
Mode HI Threshold	Device in serial mode of operation	$V_{\rm S}/2$		V
POWER DOWN INTERFACE				
Threshold		1.7		V
Response Time	Time delay following LO to HI transition until device meets full specifications.	TBD		μs
Input Bias Current	PWDN = 5 V	170		μΑ

Notes

1) The lowest frequency of operation is determined by the capacitor on pin FILT.

2) See applications section for reactive matching networks

AD8369

TIMING REQUIREMENTS (Vs=5V, T=25°C, F_{CLK} = 8MHz unless otherwise noted)

¥=1.				
Parameter		Тур	Max	Units
Clock Pulse Width (T _{PW})	TBD			ns
Clock Period (T _{CK})	TBD			ns
Setup Time Data vs. Clock (T _{DS})	TBD			ns
Setup Time Data Enable vs. Clock (T _{ES})	TBD			ns
Hold Time Data Enable vs. Clock (T _{EH})	TBD			ns

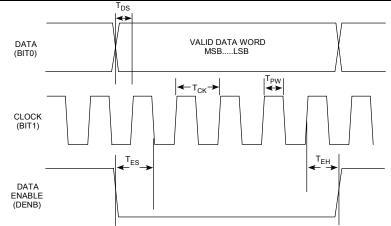
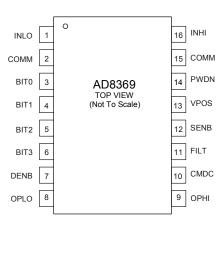


Figure 1. Serial Interface Timing Diagram

Desired Gain (dB)	Equivalent Gain (V _{OUT} /V _{IN})	BIT3 (MSB)	BIT2	BIT1	BIT0 (LSB)
-5	0.562341	0	0	0	0
-2	0.794328	0	0	0	1
+1	1.122018	0	0	1	0
+4	1.584893	0	0	1	1
+7	2.238721	0	1	0	0
+10	3.162278	0	1	0	1
+13	4.466836	0	1	1	0
+16	6.309573	0	1	1	1
+19	8.912509	1	0	0	0
+22	12.58925	1	0	0	1
+25	17.78279	1	0	1	0
+28	25.11886	1	0	1	1
+31	35.48134	1	1	0	0
+34	50.11872	1	1	0	1
+37	70.79458	1	1	1	0
+40	100	1	1	1	1

Table 1. Gain for Multiple Values of Gain Code for $1k\Omega$ Load.

AD8369


AD8369

ABSOLUTE MAXIMUM	I RATINGS*
------------------	------------

Supply Voltage VPOS PWDN Voltage	
SENB Select Voltage	$\dots V_{S} + xV$
Input Volage, INHI - INLO	xV
Internal Power Dissipation	TBD
θ_{JA}	150 °C/W
Maximum Junction Temperature	+125° C
Operating Temperature Range40° C	C to +85° C
Storage Temperature Range $\dots -65^{\circ} C$	to $+150^{\circ}$ C
Lead Temperature Range (Soldering 60 se	c)+300° C

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS				
Name	Function			
INLO	Balanced Differential Input. Internally			
	biased, should be AC coupled.			
COMM	Device Common. Connect to low			
	impedance ground.			
BIT0	Gain Selection Least Significant Bit. Used as			
	DATA input signal when in serial mode of			
BIT1	operation. Gain Selection Control Bit. Used as CLOCK			
DITI	input pin when in serial mode of operation.			
BIT2	Gain Selection Control Bit. Inactive when in			
	serial mode of operation.			
BIT3	Gain Selection Most Significant Bit. Inactive			
	when in serial mode of operation.			
DENB	Data Enable Pin. Data writes to register when			
	low. Data is latched during low to high transition. See Figure 1 for timing diagram.			
OPLO	Balanced Differential Output. Biased to mid			
	supply, should be AC coupled			
OPHI	Balanced Differential Output. Biased to mid			
	supply, should be AC coupled			
CMDC	Common Mode Decoupling Pin. Connect bypass			
	capacitor to ground for additional common mode			
	supply decoupling.			
FILT	High Pass Filter Connection. Used to set high pass corner frequency.			
SENB	Serial or Parallel Interface Select. Connect SENB			
DEND	to VPOS for serial operation. Connect SENB to			
	COMM for parallel operation.			
VPOS	Positive Supply Voltage, V _S .+ 3V to +5.5V.			
PWDN	Power Down Pin. Device is active when high,			
	pull pin low to disable device.			
COMM	Device Common. Connect to low			
	impedance ground.			
INHI	Balanced Differential Input. Internally			
	biased, should be AC coupled.			

CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8369 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy [>250 V HBM] electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Pin 1

2

3

4

5

6

7

8

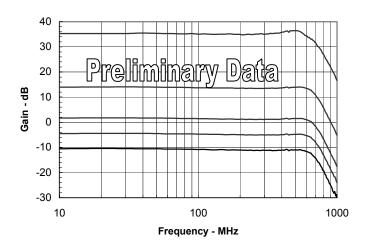
9

10

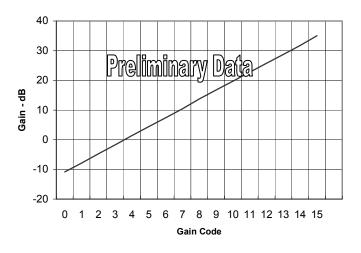
11

12

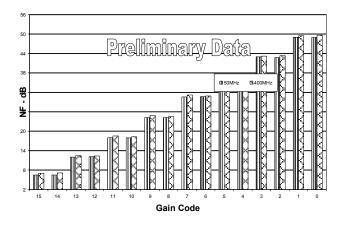
13


14

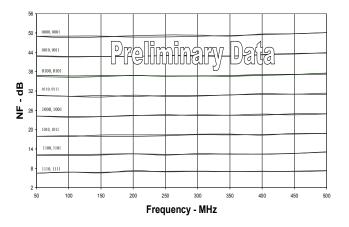
15


16

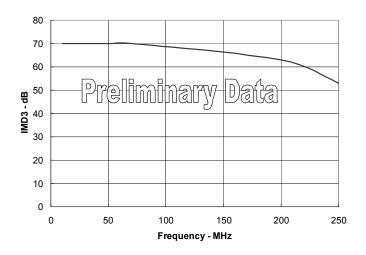
Model	Temp. Range	Package Description	Package Option
AD8369ARU	-40 °C to +85 °C	Tube, 16-Lead TSSOP	RU-16
AD8369ARU-REEL7		7" Tape and Reel	
AD8369-EVAL		Evaluation Board	


AD8369

TPC 1. Frequency Response versus Gain Code (ref 200Ω load)



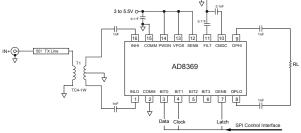
TPC 2. Gain verus Gain Cod e (ref 200Ω load)



TPC 3. NoiseFigurversus Gain Code (ref 200Ω load)

Rev. A 8/10/2001

TPC 4. Noise Figure versus Frequency (ref 200Ω load)



TPC 5. IMD3 versus Frequency at Maximum Gain $V_{out}=1Vpp$ Composite, Rload=1 k Ω

AD8369

Basic Connections

The AD8369 is a digitally controlled variable gain amplifier designed to operate in a 200 Ω system. The differential 200 Ω input and output impedances allow for easy impedance matching and gain adjustment in typical high performance intermediate frequency (IF) signal chain designs. *Figure 1. Basic Connections*

The AD8369 is typically used as an IF VGA in the receive and transmit portions of the signal chain. Figure 1 shows the basic connections for operating the AD8369 and Figure 2 shows a block diagram of a typical application.

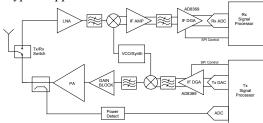


Figure 2. Typical Signal Chain Example

A supply voltage of +3.0 V to +5.5 V is required for the AD8369. The supply to the VPOS pin should be decoupled with a low inductance 0.1μ F surface mount ceramic capacitors, close to the device. Additional supply decoupling may be attained using a small series resistance followed by a shunt capacitor to ground, this should help to ensure clean supply voltage to the AD8369.

The input to the AD8369 is a 200 Ω differential resistive ladder network. A broadband 50 Ω input match can be achieved by using an impedance transformer as shown in figure 1. The impedance transformer not only transforms a 50 Ω input to a 200 Ω value, but can also be used to convert a single ended input signal to a balanced differential output. Most applications will only require operation over a narrow band of frequencies. For narrow band applications it may be more efficient to use a reactive matching network as in the example of figure 3. In this example the input signal from the SAW filter is transformed to match step up matching network. Network selection is highly dependent upon the frequency of operation and driving impedance of the preceding stage. For example, if the SAW filter presents a 50 Ω output impedance at 70MHz, LS = 100 nH and CP = 18 pF will transform the 50 Ω output to match the 200 Ω input of the AD8369.

the 200 Ω input impedance of the AD8369 using a

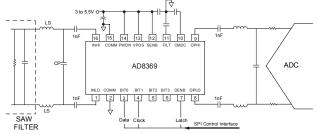


Figure 3. IF Sampling Receiver Example

Evaluation Board

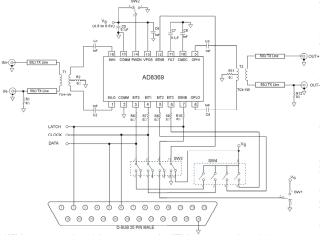
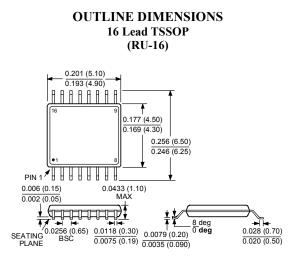


Figure 4. Evaluation Board Schematic

The evaluation board allows for quick testing of the AD8369 using standard 50Ω test equipment. Transforms T1 and T2 are used to transform 50Ω source and load terminations to the desired 200Ω reference impedance. This allows for broadband operation of the device without a need to pay particular attention to impedance matching.


The evaluation board comes with the AD8369 control software which allows for serial gain control from most computers. By simply adjusting the slider bar in the control software, the gain code is automatically updated to the AD8369. It is necessary to set SW3 to 'SER' for the control software to function normally.

AD8369

Component	Function	Default Condition
VPOS, GND	Supply and Ground Vector Pins	Not Applicable
SW1	Data Enable: Set to position A for pass through mode of	Not Applicable
SW2	operation. Ser to position B to latch the gain setting. Device Enable: When in the PWDN position, the PWDN pin will be connected to ground and the AD8369 will be disabled. The device is enabled when the switch is in the PWUP position, connecting PWDN pin to VPOS.	Not Applicable
SW3, R5	Serial/Parallel Selection : The device will respond to	Not Applicable
2	serial control inputs from connector P1 when the switch is in the SER position. Parallel operation is achieved when in PAR position. Device can be hardwired for parallel mode of operation by placing 0Ω resistor in position R5.	R5 = open (Size 0603)
SW4	Parallel Interface Control: Used to hardwire BIT0 through BIT3 to desired gain code when in parallel mode of operation. The switch functions as a hexadecimal to binary encoder (Gain Code $0 = 0000$, Gain Code $F = 1111$).	Not Applicable
C1, C2, C3,	AC Coupling Capacitors: Provides AC coupling of the	C1 = C2 = 1nF (Size 0603)
C4	input and output signals.	C3 = C4 = 1nF (Size 0603)
T1, T2	Impedance Transformers: Used to transform the 200Ω	T1 = T2 = TC4-1W
	input and output impedance to 50Ω .	(MiniCircuits)
R1, R2, R11,	Single Ended or Differential: R2 and R11 are used to	$R1 = R2 = 0\Omega$ (Size 0603)
R12	ground the center tap of the secondary windings on transformers T1 and T2. R1 and R12 should be used to ground J2 and J7 when used in single ended applications.	$R11 = R12 = 0\Omega$ (Size 0603)
R6, R7, R8,	Control Interface Resistors: Simple series resistors for	$R6 = R7 = 0\Omega$ (Size 0603)
R9, R10	each control interface signal. May be replaced with jumpers	$R8 = R9 = 0\Omega$ (Size 0603)
	for interface debug.	$R10 = 0\Omega$ (Size 0603)
C5, C6, C8	Power Supply Decoupling: Nominal supply decoupling	$C5 = 0.1 \mu F$ (Size 0603)
	consists of a 0.1μ F capacitor followed by a 1nF capacitor to ground as close to the device as possible. C8 provides additional decoupling of the output common mode voltage.	C6 = C8 = 1nF (Size 0603)
C7	High Pass Filter Capacitor: Used to set high pass corner frequency of output. See applications section for equations.	C7 = 1nF (Size 0603)
C9	Clock Filter Capacitor: May be required with some printer ports to minimize overshoot. The clock waveform may be smoothed using a simple filter network established by R7 and C9. Some experimentation may be necessary to determine optimum values.	C9 = open (Size 0603)

Table II Evaluation Board Configuration Options

AD8369

Dimensions shown in inches and (mm)

Rev. A 8/10/2001