

10-2500 GHz, Linear-in-dB Variable Gain Amplifier

AD8365

FEATURES

"Linear-in-dB" Gain Control 40dB Control Range 20dB Gain, 20dB Attenuation Performance from 10 to 2500 GHz +3dBm Output Drive Capability Open Collector Option to +10dBm 50 ohm Input/Output Impedance 5 dB Noise Figure (at max gain) +/-1 dB Gain Control Accuracy Power-Down Feature

10 VPOS GPOS Gain Bias 2 Control COMM 9 GNEG INHI 3 8 COMM dB to 4 7 VOUT INLO PWUP 5 6 COMM

APPLICATIONS RF/IF AGC Amplifier Power Amplifier Pre-Driver

10 Pin Micro-SO Package

PRODUCT DESCRIPTION

The AD8365 is a variable gain amplifier for use in RF AGC systems. It provides accurate performance from 10 to 2500 MHz. The decibel gain and attenuation is Linear-in-dB, accurately calibrated and stable over temperature and supply voltage. The device offers 40 dB control range, with 20 dB gain and 20 dB attenuation.

The differential control interface allows a positive or negative gain control transfer function. Single-ended gain control is easily implemented by grounding either GPOS or GNEG.

The output drivers are capable, in full bias operation, of providing +3 dBm output power into a 50 ohm load. An open collector option is offered which enables drive levels up to +10dBm. Noise figure is targeted at 5 dB at maximum gain. Output IP3 design goal is +25 dBm. The device operates from a single supply over a 2.7 to 5.5 volt range, requiring a nominal 20 mA of quiescent current.

This RF VGA is useful as a predriver and gain control device for RF transmitter power amplifiers up to 2500 MHz. It can also be used as receiver AGC amplifier. Cellular base stations and terminals, microwave radios, CATV, Wireless LAN and other systems can benefit from the Linear-in-dB performance at high frequencies.

The AD8365 uses a proprietary circuit topology- the X-AMP[™]. The X-AMP comprises a variable attenuator, followed by a fixed gain amplifier. The front end attenuator allows the fixed gain stage to avoid coping with large input signal levels. A proprietary interpolation technique provides a continuous gain control function which is Linear-in-dB.

The AD8365 is specified for operation from -40°C to +85°C and is available in an 8 pin micro-SO package. It is fabricated on an Analog Devices proprietary high Ft silicon bipolar process.

Rev A 10/15/98

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacturing unless otherwise agreed to in writing. Patents pending.

AD8365	Conditions	Min	Тур	noted) Max	Units
DYNAMIC PERFORMANCE					
-3 dB Small Signal Bandwidth	G=+1, Vout = 0.5 V p-p	TBD	350		MHz
Ū.	G=+5, Vout = 0.5 V p-p		175		MHz
Bandwidth for 0.1 dB Flatness	Vout = 0.2 V p-p	TDB	TDB		MHz
Large Signal Bandwidth	Vout = 4Vp-p		2		MHz
Peaking	Vout = 0.2Vp-p, <50MHz		TBD		dB
Slew Rate	Vout = 2 Vp-p, $G=+2$		900		V/µs
Rise and Fall time	Vout = $2 V p - p$		2		ns
Settling Time	0.1%, Vout = 2Vp-p		TBD		ns
Input Overdrive recovery time	Vin < 150% of Vs		TBD		ns
NOISE/DISTORTION					
PERFORMANCE					
Distortion	Vout = 2 V p-p				
2 nd Harmonic	fc = 1 MHz, Rl = $100\Omega/25\Omega$		-66/TBD		dBc
. ed	10 MHz		TBD		dBc
3 rd Harmonic	fc = 1 MHz, Rl = $100\Omega/25\Omega$		-67/TBD		dBc
	10 MHz		TBD		dBc
Multitone Input Power Ratio	26 kHz to 1.1 MHz, Rl = $100\Omega/25\Omega$		-65/TBD		dBc
IMD	10MHz, Delta f=50kHz, Rl = $100\Omega/25\Omega$		TBD		MHz
IP3	5MHz, Rl = $100\Omega/25\Omega$		TBD		MHz
Voltage Noise (RTI)	f = 100 kHz		4.6		nV/√Hz
Input Current Noise	f = 100 kHz		17		pA/√Hz
Differential Gain	NTSC, RI=150 Ω		TBD		%
Differential Phase	NTSC, RI=150 Ω		TBD		Degrees
INPUT CHARACTERISTICS					
RTI Offset Voltage			TBD	TBD	mV
	Tmin to Tmax			TBD	mV
Input Bias Current			TBD	TBD	μΑ
	Tmin to Tmax			TBD	μΑ
Input Resistance			TBD		MΩ
Input Capacitance			2		pF
Input Common Mode Voltage		TBD		TBD	V
Range					
OUTPUT CHARACTERISTICS					
Output Voltage Swing	Single Ended, Rl= 25Ω	-10		+10	V
Linear Output Current	Tmin to Tmax	400	500		mA
Turn on output Glitch	1VDC input		TBD		mV
Capacitive Load Drive	$Rs = 10\Omega$		TBD		pF
POWER SUPPLY		_			
Operating Range		+5	10 5	+/-13	V
Quiescent Current			12.5	TBD	mA/Amp
	Tmin to Tmax			TBD	mA
	Shutdown		4.5		mA/Amp
Turn off time	To rated shutdown current		TBD		us
Turn on time	To 0.1% of final output, 1VDC input		TBD		us JD
Power Supply Rejection Ratio OPERATING TEMPERATURE	Delta Vs = $+/-1V$	-40	TBD	+85	dB °C
RANGE		-40		+00	C

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices 2 assumes no obligation regarding future manufacturing unless otherwise agreed to in writing. Patents pending.

AD8016	Conditions	Min	Тур	Max	Units
DYNAMIC PERFORMANCE			V I		
-3 dB Small Signal Bandwidth	G=+1, Vout = 0.5 V p-p	TBD	400		MHz
C	G=+5, Vout = 0.5 V p-p		175		MHz
Bandwidth for 0.1 dB Flatness	Vout = 0.2 V p-p	TDB	TDB		MHz
Large Signal Bandwidth	Vout = 4Vp-p		2		MHz
Peaking	Vout = $0.2Vp$ -p, $<50MHz$		TBD		dB
Slew Rate	Vout = 2 Vp-p, G=+ 2		1000		V/µs
Rise and Fall time	Vout = 2 V p - p		2		ns
Settling Time	0.1%, Vout = 2Vp-p		TBD		ns
Input Overdrive recovery time	Vin < 150% of Vs		TBD		ns
NOISE/DISTORTION					
PERFORMANCE					
Distortion	Vout = 2 V p-p				
2 nd Harmonic	$fc = 1 MHz, Rl = 100\Omega/25\Omega$		-66		dBc
	10 MHz		TBD		dBc
3 rd Harmonic	$fc = 1$ MHz, $Rl = 100\Omega/25\Omega$		-67		dBc
	10 MHz		TBD		dBc
Multitone Input Power Ratio	26 kHz to 1.1 MHz, Rl = $100\Omega/25\Omega$		-65		dBc
IMD	10MHz, Delta f=50kHz, Rl = $100\Omega/25\Omega$		TBD		MHz
IP3	5MHz, RI = $100\Omega/25\Omega$		TBD		MHz
Voltage Noise (RTI)	f = 100 kHz		4.6		nV/√Hz
Input Current Noise	f = 100 kHz		17		pA/√Hz
Differential Gain	NTSC, Rl=150 Ω		TBD		%
Differential Phase	NTSC, RI=150 Ω		TBD		Degrees
INPUT CHARACTERISTICS					8
RTI Offset Voltage			TBD	TBD	mV
terr onset voluge	Tmin to Tmax		100	TBD	mV
Input Bias Current			TBD	TBD	μΑ
	Tmin to Tmax		100	TBD	μΑ
Input Resistance			TBD	122	MΩ
Input Capacitance			2		pF
Input Common Mode Voltage		TBD	-	TBD	V
Range					
OUTPUT CHARACTERISTICS					
Output Voltage Swing	Single Ended, $Rl=25\Omega$	-10		+10	V
Linear Output Current	Tmin to Tmax	400	500		mA
Turn on output Glitch	1VDC input		TBD		mV
Capacitive Load Drive	$Rs = 10\Omega$		TBD		pF
POWER SUPPLY					1
Operating Range		+5		+13	V
Quiescent Current			12.5	TBD	mA/Am
Quitestein cuitent	Tmin to Tmax		1210	TBD	mA
	Shutdown		4.5		mA/Am
Turn off time	To rated shutdown current		TBD		us
Turn on time	To 0.1% of final output, 1VDC input		TBD		us
Power Supply Rejection Ratio	Delta Vs = $+/-1V$		TBD		dB
OPERATING TEMPERATURE		-40		+85	°C
RANGE					
	+				

SPECIFICATIONS (@25°C, Vs=+12V, RL=100Ω, Pwrdn= (N.C.), Tmin = -40°C, Tmax = +85°C, unless otherwise noted)

Applications: