

Low Distortion Differential Amplifier

Advanced Data Sheet

AD8351

FEATURES

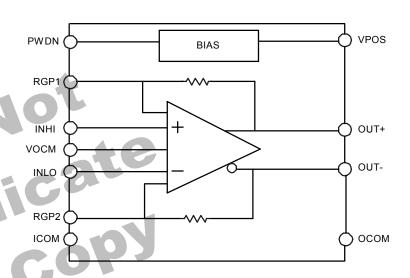
-3dB Bandwidth of 2.0GHz Resistor Programmable Gain Differential Input and Output $5k\Omega$ Differential Input 100Ω Differential Output

I/O Impedance Independent of Load Low Noise Output Stage 9nV/√Hz

Low Harmonic Distortion

-92dBc @ 20MHz

-77dBc @ 100MHz


Single Supply Operation: 3 to 5 V

Adjustable Output Common Mode Voltage

Power Down Feature 10 Pin μSOIC Package

APPLICATIONS
Differential ADC Driver
IF Sampling Receivers
RF/IF Gain Blocks
SAW Filter Interfacing

Single - Ended to Differential Conversion

PRODUCT DESCRIPTION

The AD8351 is a low cost differential amplifier useful in RF and IF applications up to 2.0 GHz. The gain can be set from unity to 15dB using a single external gain resistor. The AD8351 provides a 100Ω differential output impedance that is independent of load conditions. The low noise low distortion performance and constant output impedance makes the AD8351 a useful gain block in high dynamic range differential signal chains.

The AD8351 is designed to satisfy the demanding performance requirements of communications transceiver applications. The device can be used as a

general purpose gain block, an ADC driver, and high speed data interface driver, among other functions. The AD8351 can also be used as a single-ended to differential converter.

Fabricated in ADI's high speed XFCB process, the high bandwidth of the AD8351 provides high frequency performance and low distortion. The quiescent current of the AD8351 is 23mA typically. The AD8351 amplifier comes in a compact 10 pin $\mu SOIC$ package and will operate over the temperature range of -40°C to +85°C.

AD8351-SPECIFICATIONS

(V_S=5V, T=25°C unless otherwise noted)

Parameter	Conditions	Min	Тур	Max	Units
DYNAMIC PERFORMANCE					
-3 dB Bandwidth	$G = 0$ dB, Vout ≤ 1.5 Vp-p		3300		MHz
	$G = 10 \text{ dB}, \text{ dB}, \text{ Vout} \le 1.5 \text{ Vp-p}$		2200		MHz
	$G = 15 \text{ dB}, \text{ Vout} \le 1.5 \text{ Vp-p}$		1400		MHz
Bandwidth for 0.1dB Flatness	$G = 0$ dB, Vout ≤ 1.5 Vp-p		570		MHz
	$G = 10 \text{ dB}, \text{ Vout} \le 1.5 \text{ Vp-p}$		360		MHz
	$G = 15 \text{ dB}, \text{ Vout} \le 1.5 \text{ Vp-p}$		270		MHz
Slew Rate	$R_L = 500\Omega$, Vout = 2V step		11000		V/µs
	$R_L = 100\Omega$, Vout = 2V step		9000		$V/\mu s$
Settling Time	2V step to 0.1%		1.6		ns
Overdrive Recovery Time	$Vin = 4V \text{ to } 0V \text{ step, } Vout \le \pm 10mV$		3.1		ns
Gain Supply Sensitivity	$Vs \pm 4\%$		-46		dB/V
Gain Temperature Sensitivity	-40 °C to 85 °C		0.4		mdB/°C
Reverse Isolation (S12)	@ 200MHz		-50		dB
NOISE/HARMONIC PERFORMANC	E				
33MHz with Vout \leq 2 Vp-p					
Second Harmonic	R_L = 500Ω, Single-Ended		-86		dBc
Third Harmonic	$R_L = 500\Omega$		-85		dBc
Second Harmonic	$R_L = 100\Omega$, Single-Ended		-70		dBc
Third Harmonic	$R_L = 100\Omega$	4	-67		dBc
Two-Tone IMD	$R_L = 500\Omega$		-93		dBc
100MHz with Vout ≤ 2 Vp-p					
Second Harmonic	$R_L = 500\Omega$, Single-Ended		-77		dBc
Third Harmonic	$R_{L} = 500\Omega$		-77		dBc
Second Harmonic	$R_L = 100\Omega$, Single-Ended		-73		dBc
Third Harmonic	$R_L = 100\Omega$		-63		dBc
Two-Tone IMD	$R_{L} = 500\Omega$		-85		dBc
200MHz with Vout ≤ 2 Vp-p					
Second Harmonic	$R_L = 500\Omega$, Single-Ended		-70		dBc
Third Harmonic	$R_L = 500\Omega$		-70		dBc
Second Harmonic	$R_L = 100\Omega$, Single-Ended		-74		dBc
Third Harmonic	$R_{L} = 100\Omega$		-57		dBc
Two-Tone IMD	$R_L = 500\Omega$		-78		dBc
Input Spectral Noise Density	G = 10dB RTI		3.2		nV/√Hz
Output Spectral Noise Density	@ 200 MHz		9		nV/√Hz
INPUT/ OUTPUT CHARACTERISTIC	CS				
Input Common Mode Voltage Range	@ 10 MHz		1.2 - 3.8		V
Max Output Voltage Swing	@ 10 MHz		3.8		Vp-p
Input Bias Current			±20		μΑ
Input Resistance			3		$k\Omega$
Input Capacitance			1.1		pF
CMRR (single ended)	@ 200MHz		-57		dB
Output Resistance			50		Ω
Output Capacitance			1.1		pF

AD8351-SPECIFICATIONS

(V_S=5V, T=25°C unless otherwise noted)

Parameter	Conditions	Min	Тур	Max	Units
POWER INTERFACE					
Supply Voltage		3		5.5	V
Quiescent Current			23		mA
PSSR			-50		dB

Duplicate
Out
Copy