8XC251SA, 8XC251SB,
8XC251SP, 8X(C251SQ
Embedded Microcontroller

User’s Manual

intgl.

8XC251SA, 8XC251SB,

8XC251SP, 8XC251SQ
Embedded Microcontroller
User’'s Manual

May 1996

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including in-
fringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcontroller products may have
minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-548-4725

COPYRIGHT © INTEL CORPORATION, 1996

intgl.
CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

11 MANUAL CONTENTS ...ttt ettt e e b e e ene e naneas 1-1

12 NOTATIONAL CONVENTIONS AND TERMINOLOGYcooviiiiiiiiiiiieiiee e 1-3

1.3 RELATED DOCUMENTS ...ttt ettt nre e e snnes
13.1 DALA SNEELeiiiiiii i
1.3.2 APPICALION NOES ...cciiieiee ittt e e e st e e e e e bt e e e e s sbe e e e e s sntbeeeeeanees

14 APPLICATION SUPPORT SERVICES
141 WOrId WiIde WED ...ttt et e e
1.4.2 COMPUSEIVE FOTUMS ...ttt ee e e e e e e e e s e s reeeeeeeeeas
143 FAXBACK SEIVICE ...eiiiiiiiiiiie ettt ettt e e ettt e e e et e e e e e nnebbe e e e ennees
144 Bulletin Board System (BBS)coiiiiiiiiiiii e

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.1 8XC251SA, SB, SP, SQ ARCHITECTURE

2.2 MCS 251 MICROCONTROLLER COREccociiiiiiiieiie ittt
2,21 CPU et b et
2.2.2 Clock and RESEE UNILccvviiiiiiiiiiieiiee e
2.2.3 INEEITUPE HANAIEE ..ot e e e e
224 ON-ChiP COAE MEMOIYeeiiiiiiiiieie ettt et e e e e et e e e e naaeeeeeeean
2.2.5 ON-ChIP RAM ettt e e et e e e et e e e e e eabaeee e an

2.3 ON-CHIP PERIPHERALS........otiitiiiiieite ittt ettt sne e
2.3.1 Timer/Counters and Watchdog TIMEr ...
2.3.2 Programmable Counter Array (PCA)oooo ittt
2.3.3 SErIAl IO POIt ..o s

CHAPTER 3

ADDRESS SPACES

3.1 ADDRESS SPACES FOR MCS® 251 MICROCONTROLLERS........c.ccoceviiiiiiieenne 3-1

311 Compatibility with the MCS® 51 ArchiteCtureccccceveiiiiiiiiiiiiee e 3-2

3.2 8XC251SA, SB, SP, SQ MEMORY SPACE
3.2.1 On-chip General-purpose Data RAM
3.2.2 On-chip Code Memory (83C251SA, SB, SP, SQ/87C251SA, SB, SP, SQ)

3.2.2.1 Accessing On-chip Code Memory in Region 00:cccooviiiiieeeniiiiiiee e 3-9
3.23 EXIEINAl MEIMOIY ...coiiiiiiiiii et e et e e e e et aee e e e eaees 3-10
3.3 8XC251SA, SB, SP, SQ REGISTER FILEooiiiiiiiiieii et 3-10
3.3.1 Byte, Word, and DWOrd REQISLETSciiueeeiiiieiiie et 3-13
3.3.2 DediCated REGISIETSceiiuiiieiiiie ettt et et e s aee e et e e stee e s saeeeearaeeenes

3.3.2.1 Accumulator and B Register
3.3.2.2 Extended Data PoOINter, DPXuiiiiiiiiiiieeeeee et 3-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

3.3.2.3 Extended Stack POINtEr, SPX ..o 3-15
3.4 SPECIAL FUNCTION REGISTERS (SFRS) ...uviiiiiiiiiiiii ettt 3-16

CHAPTER 4
DEVICE CONFIGURATION
4.1 CONFIGURATION OVERVIEW ..ottt
4.2 DEVICE CONFIGURATION ...ttt ittt
4.3 THE CONFIGURATION BITS. ...ttt ettt ettt
4.4 CONFIGURATION BYTE LOCATION SELECTOR (UCON).....cocoviiiiaiieieeiireeieeiee e
45 CONFIGURING THE EXTERNAL MEMORY INTERFACE.........cccccoceiiiniieiieneeniee
45.1 Page Mode and Nonpage Mode (PAGEH) ...t
45.2 Configuration BitS RDL:I0ccoiiiuiiiiiieiiiiiieie et e ettt e e e e e e s e e e e e s anrbeeeaeeanees
45.2.1 RD21:0 =00 (18 External Address BilS)ccceeeeiiiiiiiiiiiiiiiieee e
45.2.2 RD1:0=01 (17 External Address BitS)cccc......
45.2.3 RD1:0 =10 (16 External Address BitS)ccccccceevirierieiiiiiinnennnn.
45.24 RD1:0 =11 (Compatible with MCS 51 Microcontrollers)
4.5.3 Wait State Configuration BitScccccoeiiiiieeiiiiiiieee e
4.5.3.1 Configuration Bits WSA1:0#, WSB1:# ..
4.5.3.2 Configuration Bit WSBcccooiuiiiiiiai ettt et ae e eaeee e s
4.5.3.3 Configuration Bit XALEH#ccuuiiiiiiiiiii ettt
4.6 OPCODE CONFIGURATIONS (SRC)...ceiutiiiiieiiieniieniie ittt
4.6.1 Selecting Binary Mode Or SOUrCe MOEccuueiiiiiiiiiiiii e
4.7 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)
4.8 INTERRUPT MODE (INTR)....eeitiiiiiiiiitiieiteest et s

CHAPTER 5
PROGRAMMING
5.1 SOURCE MODE OR BINARY MODE OPCODES ..ottt 5-1
5.2 PROGRAMMING FEATURES OF THE MCS® 251 ARCHITECTURE............cccccvvennee. 5-1
5.2.1 D= 1= B Y7 =2 SO PP PP PP PTP TP PSTRPPPINE

5.2.1.1 Order of Byte Storage for Words and Double Words
5.2.2 Register Notation
5.2.3 Address Notation
5.2.4 Addressing Modes
5.3 DATA INSTRUCTIONS ...ttt e e s e e e e e e e e ee e e e e aeaaaes
531 Data ADAreSSiNg MOUESccuiiiiiiiiiiiieeeie et s
5.3.1.1 RegiSter AQArESSING ...couveeiiiiieiiiiie ittt e et et
5.3.1.2 Immediate
ST TN I T B 1 (= o! AU RPUTTPPPRRP
ST 20 0 | 0o 1= o! AU RPUTTRTPRRP
5.3.1.5 DISPIACEMENT ..ottt
53.2 ARthMELiC INSITUCLIONS ...viiiiiiieii et et e e e e s snrbe e e e ennees
5.3.3 (oo (o= 1 [0 1S} (VT i o] o <SP PUTUPUPPPRN
5.34 Data Transfer INSLIUCHONSiiiiiiiiiiie ettt e e ee e e

Int6|® CONTENTS

5.4 BIT INSTRUCTIONS ...ttt ettt 5-11
5.4.1 Bit AQArESSING ..vevvieiieiiiee e e e a e e araaeene 5-11
55 CONTROL INSTRUCTIONS ..ottt sre e 5-12
5.5.1 Addressing Modes for Control INStrUCLIONScccuvieeiiiiiiiiiie e 5-13
5.5.2 ConditioNal JUMPS ..eieeiiiiiieee ettt e e s e e e e s e e e e e aan 5-14
5.5.3 UNCONItioNal JUMPSviiiiiiiiiiiii ettt e e ee e e st te e e e s stbtaaa e e e e satbreaeeeennees 5-15
55.4 Calls @Nd REIUMSccooiiiiiiiiiiiiiie it e 5-15
5.6 PROGRAM STATUS WORDS ...ttt sttt nne e 5-16
CHAPTER 6
INTERRUPT SYSTEM
6.1 OVERVIEW ...ttt ettt nre s 6-1
6.2 8XC251SA, SB, SP, SQ INTERRUPT SOURCES........cccceiiiiiieeniee e 6-3
6.2.1 EXEErNal INTEITUPLS ...ttt e e e e e ae e e e eneeee 6-3
6.2.2 TIMEI INTEITUPLS ...eeeieiiiiiiee ettt ettt e st e e e s et e e e e st e e e e e satbeeee e s 6-4
6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT.........cociiienieie e 6-5
6.4 SERIAL PORT INTERRUPT ..ottt 6-5
6.5 INTERRUPT ENABLEttt e e s 6-5
6.6 INTERRUPT PRIORITIESottt ananneae e 6-7
6.7 INTERRUPT PROGCESSING ..ottt ettt ee e e e e e e e e e s sinininnees 6-9
6.7.1 Minimum Fixed INterrupt TIMEvviiiiiie e 6-10
6.7.2 Variable INterrupt Parameterscoociiiiiiiiiiie e 6-10
6.7.2.1 Response Time Variables ... 6-10
6.7.2.2 Computation of Worst-case Latency With Variablesccccooiiiiiiiiiiniinnns 6-12
6.7.2.3 Latency Calculations
6.7.2.4 Blocking Conditions
6.7.2.5 Interrupt Vector Cycle
6.7.3 ISRSIN PrOCESScoiiiiiiiiiiii
CHAPTER 7
INPUT/OUTPUT PORTS
7.1 INPUT/OUTPUT PORT OVERVIEWoiiiiiiiiiie ettt a e sivaee e 7-1
7.2 I/O CONFIGURATIONS......tiiiiiitieitie ettt ettt ettt be bt nne e e an 7-2
7.3 PORT 1 AND PORT 3 ..ttt sttt sttt ettt et e e bbb e nneenieean 7-2
7.4 PORT O AND PORT 2 ..ttt sbe bttt nneenie e 7-2
7.5 READ-MODIFY-WRITE INSTRUCTIONS ..ottt eeee s 7-5
7.6 QUASI-BIDIRECTIONAL PORT OPERATION... e 7-6
7.7 PORT LOADINGcittiiiit ittt ettt e e e e e e e et bt e e et ee e e e e e e e e s aass s e sanbnbnebsnbeeees 7-7
7.8 EXTERNAL MEMORY ACCESS......coiiiiiiiiiieiie ettt 7-7
CHAPTER 8
TIMER/COUNTERS AND WATCHDOG TIMER
8.1 TIMER/COUNTER OVERVIEW.......ccctiiiiiiiiiiieiie ettt 8-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

8.2 TIMER/COUNTER OPERATION ..ottt 8-1

8.3 TIMER ..ttt ettt ettt nr e 8-3
8.3.1 MOdE O (13-t TIMEI) .eeiieiie it e e e s e e e e s saneeaeeeaes 8-4
8.3.2 MOdE 1 (L6-DIt TIMEI) .eeiieiieiiiie e e e e e st e e e e e snaeeaseeaes 8-4
8.3.3 Mode 2 (8-bit Timer With Auto-reload)ccccveiiiiiiiiiiie e 8-5
8.3.4 Mode 3 (Two 8-hit Timers)

8.4 TIMER 1...oooiiiiiiiiieeeeeee "
8.4.1 Mode 0 (L3-Dit TIMEI) ... et ee e e
8.4.2 Mode 1 (16-Dit TIMEI) ... et e e e e e e
8.4.3 Mode 2 (8-bit Timer with AUtO-reload)ccueiiiiiiiiii e 8-9
8.4.4 MOAE 3 (HAUL) oottt 8-9

8.5 TIMER 0/1 APPLICATIONS. ..ottt ettt 8-9
8.5.1 Auto-load Setup EXAMPIEoooiiiiiiiiiieeiie e 8-9
8.5.2 Pulse Width MEASUIEMENTSccoiiiiiiiiiae ittt ie ettt et ee e e e saereee e e e aeeee 8-10

8.6 TIMER 2.tttk h ettt bbb e 8-10
8.6.1 CAPLUIE MO ..ottt ettt e e e et e e e e b e e e e e e e nneeas 8-11
8.6.2 AULO-TEload MOGEeoiiiiiiiii e e e e 8-12

8.6.2.1 UP CoUNLEI OPEIALIONuuiiiiiiiiiiiiee ettt e e e ettt e e ettt ee e e e sabbreee e e satbaeee e s s aneeeeeeas 8-12

8.6.2.2 Up/Down Counter OPEratiOncoocueeiiiiaiiiiieeee ettt eeaiieee e e e einneee e e e e ennereeens 8-13
8.6.3 Baud Rate Generator MOUEcooiiuiiiiiiiiiiiee ettt e e e e sanbeeee e e naees 8-14
8.6.4 ClOCK-0OUL MOAEoiiiiiiiiiii ettt e e e

8.7 WATCHDOG TIMER ..ottt
8.7.1 D =2{ox 1] o 1o R TP PUUT PP
8.7.2 USING The WDT ...ttt ettt e et e e e e abbr e e e e e nbnneee s
8.7.3 WDT DUring 1dle MOooiiiiiiiiiiie e

8.7.4 WDT During PowerDown

CHAPTER 9
PROGRAMMABLE COUNTER ARRAY

9.1 PCA DESCRIPTION ...ttt be et nneenae e

9.1.1 Alternate Port Usage
9.2 PCA TIMER/COUNTER
9.3 PCA COMPARE/CAPTURE MODULES

9.3.1 16-Dit CAPLUIE MOTE ...t e e s
0.3.2 COMPATrE MOUESoiiiiiieiiit ettt et e e st e et e e e st e e e steeeenneeeentbeeeneeeenees
9.3.3 16-bit Software TIMEr MOUEc.cociieriiiiiieiee ittt
9.3.4 High-speed OULPUL MOUEc..ueiiiiiieiiiie ettt et e e eeee s
9.3.5 PCA Watchdog Timer MOGEcccciiiuiiiiiieiiiieaiiee ettt et e e
9.3.6 Pulse Width Modulation MOUEcccuiiiiiiiieiii i e
CHAPTER 10
SERIAL I/O PORT
10.1 OVERVIEW ..ottt ettt ettt n e nbe et nre e 10-1

Vi

Int6|® CONTENTS

10.2 MODES OF OPERATION.....oiitiiitiiiiieit sttt ettt 10-4
10.2.1 Synchronous Mode (MOAE 0)c.ccciiuiiiieeeiiiiiiee e e eiiiir e e e s eieae e e e e enrare e e e e sneraeeaeeenens 10-4
10.2.1.1 TransmiSSion (MOAE 0)c..uveiiieiiiiiiiiee e ciiiiee e erir e e e sirre e e e e earare e e e e satbaaeaeeenees 10-4
10.2.1.2 Reception (MOAE 0)cceieiiuuiiiiiae ettt e e ettt e e e et ee e e e e etitee e e e s enneeaeaeeeantneeeaeeennes 10-5
10.2.2 Asynchronous Modes (Modes 1, 2, and 3)oocooiuiiiiiiaiiiiiiiiee et 10-6
10.2.2.1 TransmisSion (MOAES 1, 2, 3) ..oooiueiiiieeiiiiiiie et ee ettt ee e e et ea e e e saeeeeee e e eeees 10-6
10.2.2.2 Reception (MOAES 1, 2, 3) ...euiiiiiiiiiiiiee ettt et ee e ettt e e e e eineeee e e e e snneaeeeaeeennes 10-6
10.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)....cccccoiimiieiieiienienneenn 10-7
10.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3).....cccceveeiiiieeniieneeanenn 10-7
10.5 AUTOMATIC ADDRESS RECOGNITIONiciiiiiiieiiiiiiciieeie e 10-7
10.5.1 GIVEN AGAIESS ..oviiiiiiiiie ittt ettt et 10-8
10.5.2 BroadCast AQUIESSccociiiiiiiii et 10-9
10.5.3 RESEL AUUAIESSES ...couviiiiiiiicitit ettt 10-10
10.6 BAUD RATES ...ttt ettt 10-10
10.6.1 Baud Rate for MOAE Oc.ccciiiiiiiiiiiie it 10-10
10.6.2 Baud Rates fOr MOAE 2couiiiiiiiiiiiiie et 10-10
10.6.3 Baud Rates for Modes 1 and 3cccueviiiiieiiiieeiie et 10-10
10.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)ccceevvvvvieiineiiinenniiienne, 10-11
10.6.3.2 Selecting Timer 1 as the Baud Rate Generatorcccccoeevveeeeeiiiiieeeeeennnnn. 10-11
10.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)ccccceeeiiiieeieeniiiiieeeen s 10-12
10.6.3.4 Selecting Timer 2 as the Baud Rate Generatorcccccoeevueeeeeiiiiieeeeeennenn. 10-12
CHAPTER 11
MINIMUM HARDWARE SETUP
11.1 MINIMUM HARDWARE SETUP.....ccciiiiiiieiiiniit et 11-1
11.2 ELECTRICAL ENVIRONMENTcoiiiiitiiitiiriiteit ettt ee e 11-2
11.2.1 Power and GroUNd PINSooiuieiiiiiiiiii et e et e e e e eebaaeaaeenes 11-2
11.2.2 UNUSEA PINS ..ttt ettt e e e e et te e e e e enbt e e e e e anbbneeaaeennns 11-2
11.2.3 NOISE CONSIAEIALIONSuiiiiiiiiiieiiee ettt e e et be e e e e st be e e e e eaibbbe e e e e eabebeeeeeanbbeeeaaeannns 11-2
11.3 CLOCK SOURCES........utitiiitieeit ettt sttt et nb ettt sb e n et sine e nnes 11-3
11.3.1 On-chip OSCIllator (CryStal)ooooiiiiiiiee e e e 11-3
11.3.2 On-chip Oscillator (Ceramic RESONALION)ooiiiiiuiiiiieeiiiiiiie e eriiiiee e eeieeee e 11-4
11.3.3 EXIEINAL CIOCK ...eviiiiiiiiiiiie ettt et e e e bt e e e e e et e e e e e e s annees 11-4
L1.4 RESET ottt b et n 11-5
11.4.1 Externally Initiated Resets 11-6
11.4.2 WDT Initiated Resets 11-6

11.4.3 Reset Operation
11.4.4 Power-on Reset

CHAPTER 12
SPECIAL OPERATING MODES
12,1 GENERALottt e e e et e e e e et e e e e e bbb e e e e etaar e e e e e e eraraeeas 12-1
12.2 POWER CONTROL REGISTER ...ttt e e e e e nanneees 12-1
12.2.1 Serial I/O CONtrOl BitScceveveiiiiiiiiiiii e e e e e e e e e e e e e e e e e e s snenenrrraraeees 12-1

vii

8XC251SA, SB, SP, SQ USER’S MANUAL

12.2.2 POWETN Off FIAQ .uuviiiiiiiiiiie ettt ettt e e s e ete e e e e e ssabaeaeeeanes
12.3 IDLE MODE ..ottt et
12.3.1 ENtering 1dIe MOGEoviiiiii et a e et e e e e e sntb e e e e enees
12.3.2 EXItING IAIE MOAE ...t e e e e e et aae e e e eane
12.4 POWERDOWN MODE..........c.cccuueee
12.4.1 Entering Powerdown Mode
12.4.2 Exiting Powerdown Modeccocvveeeenn.
12.5 ON-CIRCUIT EMULATION (ONCE) MODE
12.5.1 ENtering ONCE MOUEoiiiiiiiiiiie ettt e sbbt e e e e e sataeeee e s aenee
12.5.2 EXitiINg ONCE MOUEuiiiiiiiiiiiie ettt e et e e e e e e e e s ennreaaeeanes

CHAPTER 13
EXTERNAL MEMORY INTERFACE
13.1 OVERVIEW ..ottt ettt b ettt e be ettt nne e 13-1
13.2 EXTERNAL BUS CYCLESooiiiiiiiiieiie et 13-3
13.2.1 BuUS Cycle DEefiNItIONSccooiiiiiiiiiieiiiiie ettt ee e e e ee e e naee 13-3
13.2.2 Nonpage Mode BUS CYCIESooiiiiiiiiiiie ittt eee e e 13-4
13.2.3 Page MOUE BUS CYCIES ..ottt ettt e e e e sate e ee e e naeee 13-5
13.3 WAIT STATES ...ttt sb e bbbttt ettt e e nne e i s 13-8
13.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES........c.ccovcvvvrnineen. 13-8
13.4.1 Extending RD#H/WRH/IPSENHccoeiiiiiieiie ittt 13-8
13.4.2 EXIENAING ALE ...ooiiiiiee e e 13-10
13.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES.......ccccoviiriieieereen 13-10
13.5.1 Real-time WAIT# Enable (RTWE) ...cccccviiiiiieiiee e
13.5.2 Real-time WAIT CLOCK Enable (RTWCE)
13.5.3 Real-time Wait State Bus Cycle Diagrams

13.6 CONFIGURATION BYTE BUS CYCLES............

13.7 PORT O AND PORT 2 STATUS ...oiiiiiii ittt ee ettt et eeneeas
13.7.1 Port 0 and Port 2 Pin Status in Nonpage Modecocccoeiiiiniiieinieee e 13-16
13.7.2 Port 0 and Port 2 Pin Status in Page Modeccccccoeiiiiiiiiiiieieeeeeee e 13-17

13.8 EXTERNAL MEMORY DESIGN EXAMPLES........ccccoiiieiiiieeie e 13-18
13.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAMcccccevvvvrnnen. 13-18
13.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAMcccccceviivennnen. 13-20
13.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAMccccoeviiiieiiiiiiiieeeiee e 13-22
13.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAMc.cccceviiiiiiieiiiiieeniee e 13-24
13.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAMcccccuenne. 13-26

13.8.5.1 An Application Requiring Fast Access to the Stackc.ccccovveveviiiiiiiiiennnnn. 13-26
13.8.5.2 An Application Requiring Fast ACCESS t0 Datacccoccvverivveiiieeiinieesee e 13-26
13.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAMcccccceee. 13-29
13.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flashcccccooiiiiiiiiiiiiiiens 13-30

viii

Int6|® CONTENTS

CHAPTER 14
PROGRAMMING AND VERIFYING
NONVOLATILE MEMORY

LA 1 GENERAL ..ottt ettt sttt ettt aae e 14-1
14.1.1 Programming Considerations for On-chip Code Memorycccccvveviicieeieecrcinenn. 14-2
14.1.2 EPROM DEVICES ..ooiiiiiiiiiie ittt ettt ettt bbbt abe e e nneas 14-3

14.2 PROGRAMMING AND VERIFYING MODES........ccciiiiiiiiiiniiecee e 14-3

14.3 GENERAL SETUPottt ettt ettt st e s sbe e e e stneeene 14-3

144 PROGRAMMING ALGORITHM.....uitiiiiieiiie e eseie s se e see et e st e see e sneeeennee e e 14-5

145 VERIFY ALGORITHM. ..ottt sttt e nee e e st e e enneaeenneeeenneeenns 14-6

146 PROGRAMMABLE FUNCTIONSooiiiie it estee et e stee e e eee et eenee e neee s 14-6
14.6.1 ON-Chip COUE MEMOIY ...uiiiiiiiiiiie ettt ettt e et e e et e e e e et e e e e e e aineeeeeaan 14-7
14.6.2 CoNfiQUratioN BYLIESeeiiiiiiiiiiie ettt ettt a e e e sara e e e e e e aenee 14-7
14.6.3 LOCK Bit SYSIEM ..ottt e ettt e e e ettt e e e e e sanbbeee e e naee 14-7
14.6.4 ENCIYPLON ATAY eiiiiiiiiiiie ettt e ettt ee e ettt e e e e eaatta e e e e e s satbeeeaeeaabbbaeaeeeesanbneeeeaaanne 14-8
14.6.5 SIQNALUIE BYLESciiiiiiiiiiiiei ittt ettt e e e ettt e e e e e satb et e e e e e ebbbeea e e e e sanbbeeeeeennees 14-8

14.7 VERIFYING THE 83C251SA, SB, SP, SQ (ROM) ...cciiiiiiiiiieiiiiin e 14-9

APPENDIX A

INSTRUCTION SET REFERENCE

Al NOTATION FOR INSTRUCTION OPERANDSccoiiiiiiiie ittt A-2

A.2 OPCODE MAP AND SUPPORTING TABLESoottciciee et A-4

A3 INSTRUCTION SET SUMMARY ...t ss et a e e e e aaaaaeaees A-11
A3.1 Execution Times for Instructions that Access the Port SFRScccccceeeeeiiiineen. A-11
A.3.2 INSEFUCHION SUMMANIESiviiiieiiiiiii ettt e e r e e s enrbe e e e e snaree s A-14

APPENDIX B

SIGNAL DESCRIPTIONS

APPENDIX C
REGISTERS

GLOSSARY

INDEX

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

FIGURES
Figure Page
2-1 Functional Block Diagram of the 8XC251SA, SB, SP, SQcccevvvivvieiiiiieee i 2-2
2-2 TRE CPU ..ttt e ettt
2-3 ClocKing DEfINItIONSevieiiiciiiiiie e e e e e e e e s be e e e e snnes
3-1 Address Spaces for MCS® 251 Microcontrollers
3-2 Address Spaces for the MCS® 51 ArchiteCturecooooiiieiiaiiiiiiee e
3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture.............. 34
3-4 8XC251SA, SB, SP, SQ Address Space
3-5 Hardware Implementation of the 8XC251SA, SB, SP, SQ Address Space 3-7
3-6 THE REQISIET Fl ..ottt e e e e e e e nees 3-11
3-7 Register File LOCAtIONS O—7uuiiiieeiiiiiiee ettt e et ie e e et ee e e e e ataeaea e e e e saeaeeeaeeeenees 3-12
3-8 Dedicated Registers in the Register File and their Corresponding SFRs................... 3-14
4-1 Configuration Array (ON-CRIP)......ooueeeeie et e e

4-2 Configuration Array (External)....
4-3 Configuration Byte UCONFIGO
4-4 Configuration Byte UCONFIG1
4-5 Internal/External Address Mapping (RD1:0 = 00 and 01)
4-6 Internal/External Address Mapping (RD1:0 = 10 and 11)
4-7 Binary Mode OpCode Map......ccuueeeeiiiiiiieeeeieee e
4-8 Source Mode Opcode Map
5-1 Word and Double-word Storage in Big Endien Form

5-2 Program Status Word REQISIEN..........cccuiiiiee ittt siree e e srtare e e e eaees
5-3 Program Status Word 1 Register

6-1 INErruPt CONTIOl SYSTEMoeiiiiieecie et
6-2 Interrupt ENable REJISTENooviiiiieie e
6-3 Interrupt Priority High REQISTENoiiiiiiiiiiic et
6-4 Interrupt Priority LOW REQISIENcciiiiiiiiie et a e
6-5 The Interrupt Process

6-6 Response Time EXamPIe #1ooooiiiiiiieie et
6-7 Response Time EXamMPIE #2oooiiiiie et
7-1 Port 1 and Port 3 Structure..........

7-2 Port 0 Structure
7-3 Port 2 Structure

7-4 Internal Pullup Configurations

8-1 Basic Logic Of the TIMEer/COUNLETSuiiiiiiiiiie et
8-2 Timer 0/1 in Mode 0 and Mode 1

8-3 Timer 0/1 in Mode 2, Auto-Reload.................

8-4 Timer 0 in Mode 3, Two 8-bit Timers

8-5 TMOD: Timer/Counter Mode Control REQISIENcccoviiiiiiiiiiiiieei e
8-6 TCON: Timer/Counter Control Register

8-7 Timer 2: Capture Modeccoccvveiiieeiineenns .
8-8 Timer 2: Auto Reload Mode (DCEN = 0)....ccciiiiiiiiieiieeeiiee et
8-9 Timer 2: Auto Reload Mode (DCEN = 1)ccoiiiiiiiiiciieeeiiee et
8-10 Timer 2: CIOCK OUE MOGE..........ueiiiiiiiiiii ettt
8-11 T2MOD: Timer 2 Mode CoNtrol REGISTENc.uiiiiiiiiiiiieiiie e

Int6|® CONTENTS

Figure
8-12
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
10-1
10-2
10-3
10-4
10-5
11-1
11-2
11-3
11-4
11-5
12-1
12-2
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22

FIGURES

T2CON: Timer 2 Control REQISIENvvviie it
Programmable COUNTET AITAY........ccoiiiiiiiie ettt e et ee e e sae e s st ae e s e stbae e e e s esaaaeeesanes
PCA 16-bit Capture MOUEccuviiiieiiiiiiie ettt e e e et eae e ns
PCA Software Timer and High-speed Output Modes
PCA Watchdog TIMer MOUE...........ooiiiiiiiiiee ettt e e
PCA 8-Dit PWM MOUE ... eiieeiiee ettt et e e e anee e e enneeennees
PWM Variable Duty Cycle........cccccvevveiiiiiennenn.
CMOD: PCA Timer/Counter Mode Register......
CCON: PCA Timer/Counter Control Register
CCAPMx: PCA Compare/Capture Module Mode RegiSters...........ccoevviiieeeeiiiieneennne 9-15
Serial Port BIOCK DIAGIamooeoiiuiiieea e e e e e e e e as
SCON: Serial Port Control Register
Mode O TimiNg.....cocveerieiiieie e
Data Frame (Modes 1, 2, and 3)
Timer 2 in Baud Rate Generator Mode
MINIMUIM SETUP .ttt ettt et e e e e et e e e et be e e e e eatbeeee e e ennneeaeaan
CHMOS On-chip Oscillator.........
External Clock Connection.........
External Clock Drive Waveforms...................

RESEt TIMING SEUUENCEoeiiieiiiiii ettt e et e e e e e e e e e satbe e e e e estbraeaaeenes
Power Control (PCON) REQISIEN........cciiiiiie ettt
Idle and Powerdown Clock Control
Bus Structure in Nonpage Mode and Page Mode...........ccoocvveiieieiiiieenieecnec e 13-1
External Code Fetch (NONPage MOUE).........uvviiriiiieee it 13-4
External Data Read (NONPage MOUE)cccioiiiiiiiiieiiiiiiee et 13-4
External Data Write (NONPage MOAE)cccoiiiiiiiiiiiiiiiiie et 13-5
External Code Fetch (Page Mode)
External Data Read (Page Mode)
External Data Write (Page MOOE).......ccuviiriiiiiiiii et
External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)
External Data Write (Nonpage Mode, One WR# Wait State)
External Code Fetch (Nonpage Mode, One ALE Wait State)
Real-time Wait State Control Register (WCON).......ccociiiiieeiiiiiiiee e
External Code Fetch/Data Read (Nonpage Mode, RT Wait State)
External Data Write (Nonpage Mode, RT Wait State)cc.ccceeenee.
External Data Read (Page Mode, RT Wait State)............
External Data Write (Page Mode, RT Wait State)

Configuration Byte BUS CYCIESccoiiiiuiiiieiiiiieee et
Bus Diagram for Example 1: 80C251SB in Page Mode
Address Space for Example L........ccccooviiiieeniieennneenn
Bus Diagram for Example 2: 80C251SB in Page Mode
Address Space for EXamPIE 2........oooiieiiiiiiieiee e

Bus Diagram for Example 3: 87C251SB/83C251SB in Nonpage Mode................... 13-22
Address Space for EXamPIE 3....ccviii ittt 13-23

Xi

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Figure
13-23
13-24
13-25
13-26
13-27
13-28
14-1
14-2
B-1
B-2

Xii

FIGURES

Bus Diagram for Example 4: 87C251SB/83C251SB in Nonpage Mode 13-24
Address Space for EXamPIe 4ccoooiiiiiie ittt

Bus Diagram for Example 5: 80C251SB in Nonpage Mode
Address Space for Examples 5 and 6ocueeieeiiiiiiiinieniiiiieee e

Bus Diagram for Example 6: 80C251SB in Page Mode..........ccccooiiiiieieiiiiiiiieenee
Bus Diagram for Example 7: 80C251SB in Page Mode.........cccccooiiiieiiiiniiiiiieens
Setup for Programming and Verifying Nonvolatile Memory
Program/Verify Bus CyCles.........ccccceeeviiiiiieeccciiiiee e
8XC251SA, SB, SP, SQ 44-pin PLCC Package
8XC251SA, SB, SP, SQ 40-pin PDIP and Ceramic DIP Packagescccccoevueeeennn. B-3

Int6|® CONTENTS

TABLES
Table
1-1 Intel Application SUPPOIT SEIVICES........uuuiiie e ittt se e e e e s eaerea e e e aneaes
2-1 8XC251SA, SB, SP, SQ FEAIUIES ...ttt ettt a e e e e eenenes
3-1 P Yo (o [LTSIV F= 1o o1 o 1= T TP
3-2 Minimum Times to Fetch Two Bytes of Code
3-3 Register Bank SEIECHONcoiuiiiiie e
3-4 Dedicated Registers in the Register File and their Corresponding SFRs................... 3-15
35 8XC251SA, SB, SP, SQ SFR Map and Reset Values
3-6 Core SFRs...............
3-7 I/0 Port SFRs...........
3-8 Serial I/O SFRs
3-9 Timer/Counter and Watchdog Timer SFRScooiiiiiiiiieeeee e
3-10 Programmable Counter Array (PCA) SFRs...
4-1 External Addresses for Configuration Array
4-2 Memory Signal Selections (RD1:0)
4-3 RD#, WR#, PSEN# External Wait States
4-4 Examples of Opcodes in Binary and Source MOAesccueveeiiiiiierieiiiiieee e
5-1 DAt TYPES i ettt et e e e e e e e e e e e e e e e naanene
5-2 Notation for Byte Registers, Word Registers, and Dword Registers...........ccccccceevueeeee.
5-3 Addressing Modes for Data Instructions in the MCS® 51 Architecture................ccuu... 5-6
5-4 Addressing Modes for Data Instructions in the MCS® 251 Architecture...................... 5-7
5-5 Bit-addressable LOCALIONScooiiiiiiiiieiiieeeie et
5-6 Addressing Two Sample Bits
5-7 Addressing Modes for Bit INSITUCHIONScoocviiiiiiieiiiie e 5-12
5-8 Addressing Modes for Control INSIFUCHIONS.ceveiiireeiiieeeee e 5-13
5-9 Compare-conditional JUMP INSTIUCHIONScoouviieei e e 5-14
5-10 The Effects of Instructions on the PSW and PSW1 Flags........ccccccccoviiiveieeiiiiieencene 5-17
6-1 Interrupt System Pin Signals
6-2 Interrupt System Special FUNCtion REQISIENSc.evviiiiiiiiieiiee e 6-3
6-3 INErTUPT CONTIOI IMALIIX. ... eeeeieee ettt e e
6-4 Level of Priority...........coceevvvennne.
6-5 Interrupt Priority Within Level
6-6 Interrupt Latency Variablesc.ccouuee.
6-7 Actual vs. Predicted Latency CalCulations..............oocvuvvieeiiiiiiiieie e
7-1 INput/Output Port PiN DESCHPLIONSvveiiiiiieiiiie e
7-2 Instructions for External Data Moves.............

8-1 Timer/Counter and Watchdog Timer SFRs...
8-2 External Signalsccccvvveeeeiiiiiie e

8-3 Timer 2 Modes Of OPEIatioN...........coiciueiiieiiiiiii e

9-1 PCA Special Function RegiSters (SFRS)uoiuiiiiiiieiiiie ittt
9-2 External Signals

9-3 PCA MOAUIE MOAES ..ottt ettt e e e e e et ee e e e eaeeeee s 9-14
10-1 Serial POrt SIGNAISociiiiieieiee e 10-1
10-2 Serial Port Special FUNCtion REGISIEISc.uviiiiiieiiiie e 10-2
10-3 Summary Of Baud RAEScccoviiiiiiiiiiiieiiiee et nree e saeeeea 10-10

xiii

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

TABLES
Table Page
10-4 Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3.........ccccvvveveveeeeeeeennn. 10-12
10-5 Selecting the Baud Rate GENErator(S)ueevieeiiieriieiiiiiiieeeeeiiireeeeesiieee e e essiraeeae s 10-13
10-6 Timer 2 Generated Baud RAEScccciuviiiiiieiiiiiiiieieeeeeeeeeee e b e erere e
12-1 Pin Conditions in Various Modes
13-1 External Memory Interface Signals..... ...
13-2 Bus Cycle Definitions (NO Walit STAteS)ccciiuuiiieeiiiiiiiie e

13-3 Port 0 and Port 2 Pin Status In Normal Operating Mode..
14-1 Programming and Verifying Modes

14-2 Lock Bit FUNCLION.......ccoovviviiiiiieieieeeeeeeeeeeee,

14-3 Contents of the SIgNAtUure BYLES.......coii et
A-1 Notation for RegiSter OPEIrandS.........oouuuieiaaiiiiiiie e eeiieeiee et e e e e e e eeeeas
A-2 Notation for Direct Addresses............ccceunn.....

A-3 Notation for Immediate Addressing

A-4 Notation for Bit Addressing........ccoecveeeeviiieee e

A-5 Notation for Destinations in Control INSIrUCHIONScccvvveieiiiiieiiiic s
A-6 Instructions for MCS® 51 MiCroCONtrollErS..........covvvuveiieieeeeeieeeeeeee e

A-7 New Instructions for the MCS® 251 Architecture
A-8 Data INSIrUCHIONScevveeivie e,
A-9 High Nibble, Byte 0 of Data Instructions
A-10 Bt INSIIUCTIONS ...ttt et e e e e et e e e e e b a b erreeeeeeeeeaeeeeeeeesssssrennes

A-11 Byte 1 (High Nibble) for Bit INStrUCtiONS.........c..vvviiiiiiiiiec e
A-12 PUSH/POP Instructions

A-13 (0] 01 o] I 0151 110 Tox (o] o SRS
A-14 Displacement/EXtended MOVS.........cooiiiiiiiiiiiieeiieeeie e e
A-15 INC/DEC ... ettt ettt ee e et s st e e snbe e e ete e e nnnes
A-16 ENcoding for INC/DECcoiiiiiiiiiii ettt e e e saeae e
A-17 ShiftS woeie e

A-18 State Times to AcCeSS the POrt SFRS ...
A-19 Summary of Add and Subtract INStrUCIONScoovieviiiiieeii e
A-20 Summary of Compare INStrUCtioNScovvcveiiieeeiiinens

A-21 Summary of Increment and Decrement Instructions
A-22 Summary of Multiply, Divide, and Decimal-adjust Instructions

A-23 Summary of Logical INStIUCHIONScociiiiiiiiiie e
A-24 Summary Of MOVE INSIIUCHIONSeveiiiiiiiiie e e s
A-25 Summary of Exchange, Push, and Pop Instructions

A-26 Summary of Bit INStrUCtioNnS...........cccceeiieeiieiiniieeiiieee

A-27 Summary of Control Instructions

A-28 FIag SYMDBOIS. ...t et
B-1 PLCC/DIP Pin Assignments Listed by Functional Category..........cccccevveeiviiiveieesiinnenn.
B-2 Signal Descriptions

B-3 Memory Signal Selections (RDL1:0)cc.ueveririiriieeiiiie et
C-1 8XC251SA, SB, SP, SQ SFR MaP....citeiiieeeitiee et etieeetee et sitee e snneeessneae s nneee s
C-2 C0r8 SRS .ttt
C-3 /O POt SFRS ...ttt ettt st st e et e st nnee s

Xiv

Int6|® CONTENTS

TABLES
Table Page
C-4 SEMAI /O SFRS .ttt C-4
C-5 Timer/Counter and Watchdog Timer SFRScoooiiiiiiiiiiieiie e C-4
C-6 Programmable Counter Array (PCA) SFRS.........uiiiiiiiiiiee et C-5
C-7 REGISIET IR .ttt ettt e e et e e e e enatbeee e e e enaeeeeeaan C-6

XV

intel.
1

Guide to This Manual

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8XC251SA, SB, SP, SQt embedded microcontroller, which is the first
member of the Intel MC%251 microcontroller family. This manual is intended for use by both
software and hardware designers familiar with the principles of microcontrollers.

1.1 MANUAL CONTENTS

This manual contains 14 chapters and 3 appendices. This chapter, Chapter 1, provides an over-
view of the manual. This section summarizes the contents of the remaining chapters and appen-
dices. The remainder of this chapter describes notational conventions and terminology used
throughout the manual and provides references to related documentation.

Chapter 2, “Architectural Overview” — provides an overview of device hardware. It covers
core functions (pipelined CPU, clock and reset unit,amrdhip memory) and on-chip peripher-
als (timer/counters, watchdog timer, programmable counter array, and serial /O port.)

Chapter 3, “Address Spaces— describes the three address spaces of the MCS 251 microcon-
troller: memory address space, special function register (SFR) space, and the register file. It also
provides a map of the SFR space showing the location of the SFRs and their reset values and ex-
plains the mapping of the address spaces of the®BISirchitecture into the address spaces of

the MCS 251 architecture.

Chapter 4, “Device Configuration” — describes microcontroller features that are configured at
device reset, including the external memory interface (the number of external address bits, the
number of wait states, memory regions for asserting RD#, WR#, and PSEN#, page mode), binary/
source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. It describes the configuration bytes and how to program them for the desired configu-
ration. It also describes how internal memory space maps into external memory.

Chapter 5, “Programming” — provides an overview of the instruction set. It describes each in-
struction type (control, arithmetic, logical, etc.) and lists the instructions in tabular form. This
chapter also discusses the addressing modes, bit instructions, and the program status words.
Appendix A provides a detailed description of each instruction.

Chapter 6, “Interrupt System” — describes the 8XC25%$nterrupt circuitry which provides

a TRAP instruction interrupt and seven maskable interrupts: two external interrupts, three timer
interrupts, a PCA interrupt, and a serial port interrlipis chapter also discusses the interrupt
priority scheme, interrupt enable, interrupt processing, and interrupt response time.

T The 8XC251SA, SB, SP, SQ products are also collectively referred to as 8XC251Sx.

I 1-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Chapter 7, “Input/Output Ports” — describes the four 8-bit I/O ports (ports 0-3) and discusses
their configuration for general-purpose 1/0, external memory accesses (ports 0, 2), and alterna-
tive special functions.

Chapter 8, “Timer/Counters and WatchDog Timer” — describes the three on-chip tim-
er/counters and discusses their application. This chapter also provides instructions for using the
hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 9, “Programmable Counter Array” — describes the PCA on-chip peripheral and ex-
plains how to configure it for general-purpose applications (timers and counters) and special ap-
plications (programmable WDT and pulse-width modulator).

Chapter 10, “Serial 1/0 Port” — describes the full-duplex serial 1/0 port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 11, “Minimum Hardware Setup” — describes the basic requirements for operating
the 8XC2518 in a system. It also discusses on-chip and external clock sources and describes de-
vice resets, including power-on reset.

Chapter 12, “Special Operating Modes” —provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describes the power control (PCON) special function register and lists the status of the device
pins during the special modes and reset (Table 12-1).

Chapter 13, “External Memory Interface” —describes the external memory signals and bus
cycles and provides examples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 14, “Programming and Verifying Nonvolatile Memory” — provides instructions for
programming and verifying on-chip code memory, configuration bytes, signature bytes, lock bits
and the encryption array.

Appendix A, “Instruction Set Reference” —provides reference information for the instruction

set. It describes each instruction; defines the bits in the program status word registers (PSW,
PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op-
codes, instruction lengths, and execution times. Chapter 5, “Programming,” includes a general
discussion of the instruction set.

1-2 I

Int€|® GUIDE TO THIS MANUAL

Appendix B, “Signal Descriptions” — describes the function(s) of each device pin. Descrip-
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C, “Registers” — accumulates, for convenient reference, copies of the register defi-
nition figures that appear throughout the manual.

A glossary has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdepresents the
second variable. For example, in registecyPx represents the
variable [1-4] that identifies the specific port, ancepresents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

XXXX Uppercase X (no italics) represents an unknown value or a “don'’t
care” state or condition. The value may be either binary or
hexadecimal, depending on the context. For example, 2XAFH (hex)
indicates that bits 11:8 are unknown; 10XX in binary context
indicates that the two LSBs are unknown.

Assert and Deassert ~ The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

I 1-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Instructions

Logic 0 (Low)

Logic 1 (High)

Numbers

Register Bits

Register Names

Reserved Bits

Set and Clear

Signal Names

1-4

Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

An input voltage level equal to or less than the maximum value of
V,_ or an output voltage level equal to or less than the maximum
value of \}, . See data sheet for values.

An input voltage level equal to or greater than the minimum value of
V,, or an output voltage level equal to or greater than the minimum
value of \4,,. See data sheet for values.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, th8letter
is added for clarity.

Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase

character, it represents more than one register. For example,

CCAPMx represents the five registers: CCAPMO through CCAPMA4.

Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate.

The termssetandclear refer to the value of a bit or the act of giving
it a value. If a bit isset its value is “1;"settinga bit gives it a “1”
value. If a bit isclear, its value is “0;"clearing a bit gives it a “0”
value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin number (e.g., P0.0, P0.1). A pound
symbol (#) appended to a signal name identifies an active-low signal.

Int€|® GUIDE TO THIS MANUAL

Units of Measure The following abbreviations are used to represent units of measure:
A amps, amperes
DCV direct current volts
Kbyte kilobytes
KQ kilo-ohms
mA milliamps, milliamperes
Mbyte megabytes
MHz megahertz
ms milliseconds
mw milliwatts
ns nanoseconds

pF picofarads

W watts

Vv volts

MA microamps, microamperes
uF microfarads

HS microseconds

uwW microwatts

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8XC25%Snicrocontroller. To order documents, please call Intel Literature Ful-
fillment (1-800-548-4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646
Embedded Processors Order Number 272396
Embedded Applications Order Number 270648
Packaging Order Number 240800

I 1-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

1.3.1 Data Sheet
The data sheet is includedEmbedded Microcontrollerand is also available individually.

8XC251SA, SB, SP, SQ High-Performance CHMOS Microcontrolle©rder Number 272783
(Commercial/Express)

1.3.2 Application Notes

The following application notes apply to the MCS 251 microcontroller.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers Order Number 230659
AP-708, Introducing the M&5251 Microcontroller Order Number 272670
—the8XC251SB

AP-709,Maximizing Performance Using M@251 Microcontroller ~ Order Number 272671
—Programming th8XC251SB

AP-710, Migrating from the MC&51 Microcontroller to the MCS 2510rder Number 272672
Microcontroller 8XC251SB—Software and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the MCS 251 microcon-
troller.

AP70, Using the Intel MG551 Boolean Processing Capabilities Order Number 203830

AP-223,8051 Based CRT Terminal Controller Order Number 270032
AP-252 Designing With the 80C51BH Order Number 270068
AP-425, Small DC Motor Control Order Number 270622
AP-410,Enhanced Serial Port on the 83C51FA Order Number 270490
AP-415,83C51FA/FB PCA Cookbook Order Number 270609
AP-476, How to Implemem@ Serial Communication Order Number 272319

Using Intel MC® 51 Microcontrollers

1-6 I

Int€|® GUIDE TO THIS MANUAL

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, CompuServe, the FaxBack* service, and Intel's Brand Products and Applica-
tions Support bulletin board service (BBS). These systems are available 24 hours a day, 7 days a
week, providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con-
tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide Web | URL: http://www.intel.com/ | URL: http://www.intel.com/ | URL: http://www.intel.com/
CompuServe go intel go intel go intel
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local | Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155 England
+81(0)120 47 88 32 +44(0)1793-421777 France
+44(0)1793-421333 Germany

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL: ht-
tp:/iwww.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, and news.

1.4.2 CompuServe Forums

Intel maintains several CompuServe forums that provide a means for you to gather information,
share discoveries, and debate issues. Type “go intel” for access. The INTELC forum is set up to
support designers using various Intel components. For information about CompuServe access and
service fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

1.4.3 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change notifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.
The following catalogs and information are available at the time of publication:

1. Solutions OEMsubscription form
Microcontroller and flash catalog
Development tools catalog
Systems catalog
Multimedia catalog
Multibus and iRMX software catalog and BBS file listings
Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© © N o g p WD

IAL (Intel Architecture Labs) technology catalog

1.4.4 Bulletin Board System (BBS)

Intel's Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the latégtBUILDER software, hypertext manuals and
datasheets, software drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

1-8 I

Ir]teg® GUIDE TO THIS MANUAL

Any customer with a PC and modem can access the BBS. The system provides automatic config-
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respond to the
system prompts. During your first session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

I 1-9

intel.

Architectural
Overview

intel.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8XC251Ris the first member of the M@251 microcontroller family. This family of 8-bit
microcontrollers is a high-performance upgrade of the widely-used M€ &idrocontrollers.

It extends features and performance while maintaining binary-code compatibility and pin com-
patibility with the 8XC51FX, so the impact on existing hardware and software is minimal. Typi-
cal control applications for the 8XC254Bclude copiers, scanners, CD ROMs, and tape drives.

It is also well suited for communications applications, such as phone terminals, business/feature
phones, and phone switching and transmission systems.

This manual covers all memory options of the 8XC251SA, SB, SP, SQ and these options are listed
in Table 2-1.
All MCS 251 microcontrollers share a set of common features:

* 24-bit linear addressing and up to 16 Mbytes of memory

* aregister-based CPU with registers accessible as bytes, words, and double words

* apage mode for accelerating external instruction fetches

* an instruction pipeline

¢ an enriched instruction set, including 16-bit arithmetic and logic instructions

* a 64-Kbyte extended stack space

* a minimum instruction-execution time of two clocks (vs. 12 clocks for MCS 51 microcon-
trollers)

* three types of wait state solutions: real-time, RD#/WR#/PSEN#, and ALE

¢ binary-code compatibility with MCS 51 microcontrollers

Several benefits are derived from these features:
¢ preservation of code written for MCS 51 microcontrollers

* asignificant increase in core execution speed in comparison with¥i@ficrocontrollers
at the same clock rate

* support for larger programs and more data
* increased efficiency for code written in C

¢ dynamic bus control through real-time wait state operations

I 2-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

/ 1/0 Ports and \
System Bus and 1/O Ports Peripheral Signals
P0.7:0 P2.7:0 P1.7:0 P3.7:0
Code A N\ Data RAM
: . ata . .
Port 0 Port 2 OT';RK?)%ZOM K 512 Bytes Port 1 Port 3
Drivers Drivers or or Drivers Drivers

JEIRE | ol

Memory Data (16) I

kR I|_|

| Memory Address (16)

L U

Watchdog
<:> Timer

A N . 1
§_> Peripheral 1
Bus Interface Interface <:>
(‘ <:> Timer/
Code Bus (16) l I i iCode Address (24) o~ Counters
A Tg’
. Interrupt @ 1
Instruction Sequencer (‘ > Handler <:> m !
Q
U g =
[srci(s) sl |8
VANEDAN Py 5
@ g 1 !
A4 ©)
| src2 (8) =l |8
<:> Serial I/O
Clock
~/ ~ ~ & <:>
Reset 1
. Data 1
Register ¢> |
ALU . Memory |]
File Interface _D_> A Peripherals
| Dbstae |
MCS® 251 Microcontroller Core
v Clock & Reset
\ 8XC251SA/SB/SP/SQ Microcontroller /

A4214-01

Figure 2-1. Functional Block Diagram of the 8XC251SA, SB, SP, SQ

2-2

Int6|® ARCHITECTURAL OVERVIEW

2.1 8XC251SA, SB, SP, SQ ARCHITECTURE

Figure 2-1 is a functional block diagram of the 8XC251SA, SB, SP, SQ. The core, which is com-
mon to all MCS 251 microcontrollers, is described in section 2.2, “MCS 251 Microcontroller
Core.” Each microcontroller type in the family has its own on-chip peripherals, I/O ports, external
system bus, size of on-chip RAM, and type and size of on-chip program memory. Table 2-1 lists
the distinguishing features of the product.

The 8XC2518 peripherals include a dedicated watchdog timer, a timer/counter unit, a program-
mable counter array (PCA), and a serial /O unit. The 8XC254S four 8-bit I/O ports, PO—P3.

Each port pin can be individually programmed as a general 1/O signal or as a special-function sig-
nal that supports the external bus or one of the on-chip peripherals. Ports PO and P2 comprise a
16-line external bus, which transmits a 16-bit address multiplexed with 8 data bits. (You can also
configure the 8XC251&0 have a 17-bit or an 18-bit external address bus. See section 4.5, “Con-
figuring the External Memory Interface.” Ports P1 and P3 carry bus-control and peripheral sig-
nals.

Table 2-1. 8XC251SA, SB, SP, SQ Features

On-chip Memory
,\?u%'g; OTPROM/EPROM ROM RAM
(Kbytes) (Kbytes) (Bytes)
80C251SB 0 0 1024
80C251SQ 0 0 512
83C251SA 0 8 1024
83C251SB 0 16 1024
83C251SP 0 8 512
83C251SQ 0 16 512
87C251SA 8 0 1024
87C251SB 16 0 1024
87C251SP 8 0 512
87C251SQ 16 0 512
Common features:
Address space 512 Kbytes
External Address bus 16-bit, 17-bit, or 18-bit
Register file 40 bytes
1/0 lines 32
Interrupt sources 11

2-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

The 8XC2518 has two power-saving modes. In idle mode, the CPU clock is stopped, while
clocks to the peripherals continue to run. In powerdown mode, the on-chip oscillator is stopped,
and the chip enters a static state. An enabled interrupt or a hardware reset can bring the chip back
to its normal operating mode from idle or powerdown. See Chapter 12, “Special Operating
Modes,” for details on the power-saving modes.

MCS 251 microcontrollers use an instruction set that has been expanded to include new opera-
tions, addressing modes, and operands. Many instructions can operate on 8-, 16-, or 32-bit oper-
ands, providing easier and more efficient programming in high-level languages such as C.
Additional new features include the TRAP instruction, a new displacement addressing mode, and
several conditional jump instructions. Chapter 5, “Programming,” describes the instruction set
and compares it with the instruction set for MCS 51 microcontrollers.

You can configure the 8XC25%%o run inbinary modeor source modeEither mode executes

all of the MCS 51 architecture instructions and all of the MCS 251 architecture instructions. How-
ever, source mode is more efficient for MCS 251 architecture instructions, and binary mode is
more efficient for MCS 51 architecture instructions. In binary mode, object code for an MCS 51
microcontroller runs on the 8XC25g &ithout recompiling.

If a system was originally developed using an MCS 51 microcontroller, and if the new
8XC251%-based system will run code written for the MCS 51 microcontroller, performance will
be better with the 8XC25%3unning in binary mode. Object code written for the MCS 51 mi-
crocontroller runs faster on the 8XC2%1S

However, if most of the code is rewritten using the new instruction set, performance will be better
with the 8XC2518running in source mode. In this case the 8XCX&HB run significantly fast-

er than the MCS 51 microcontroller. See Chapter 4, “Device Configuration,” for a discussion of
binary mode and source mode.

MCS 251 microcontrollers store both code and data in a single, linear 16-Mbyte memory space.
The 8XC251% can address up to 256 Kbytes of external memory. The special function registers
(SFRs) and the register file have separate address spaces. See Chapter 3, “Address Spaces,” for
description.

2.2 MCS 251 MICROCONTROLLER CORE
The MCS 251 microcontroller core contains the CPU, the clock and reset unit, the interrupt han-

dler, the bus interface, and the peripheral interface. The CPU contains the instruction sequencer,
ALU, register file, and data memory interface.

2-4 I

Int6|® ARCHITECTURAL OVERVIEW

221 CPU

Figure 2-2 is a functional block diagram of the CPU (central processor unit). The 8%C251S
fetches instructions from on-chip code memory two bytes at a time, or from external memory in
single bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can con-
figure the 8XC251%to operate irpage moddor accelerated instruction fetches from external
memory. In page mode, if an instruction fetch is to the same 256-byte “page” as the previous
fetch, the fetch requires one state (two clocks) rather than two states (four clocks).

The 8XC2518register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MCS 51 architecture, registers 0—7 consist of four banks of eight registers each,
where the active bank is selected by the program status word (PSW) for fast context switches.

The 8XC2518Kis a single-pipeline machine. When the pipeline is full and code is executing from
on-chip code memory, an instruction is completed every state time. When the pipeline is full and
code is executing from external memory (with no wait states and no extension of the ALE signal),
an instruction is completed every two state times.

Code Bus ilﬁ 24? Code Address

Instruction Sequencer 3
Interrupt
¢ Handler
SRC1 I 8
SRC2 * 8, Y
\/ i T l V 8 Data Bus
Register Data
ALU I?ile Memory 24
Interface [
Data Address

DST 16 , T T
7 &

Figure 2-2. The CPU

2-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

2.2.2 Clock and Reset Unit

The timing source for the 8XC2528an be an external oscillator or an internal oscillator with

an external crystal/resonator (see Chapter 11, “Minimum Hardware Setup”). The basic unit of
time in MCS 251 microcontrollers is tistate timgor statg, which is two oscillator periods (see
Figure 2-3). The state time is divided imoase landphase 2

The 8XC2518 peripherals operate orparipheral cyclewhich is six state times. (This periph-

eral cycle is particular to the 8XC2548nd not a characteristic of the MCS 251 architecture.) A
one-clock interval in a peripheral cycle is denoted by its state and phase. For example, the PCA
timer is incremented once each peripheral cycle in phase 2 of state 5 (denoted as S5P2).

The reset unit places the 8XC2XliBto a known state. A chip reset is initiated by asserting the
RST pin or allowing the watchdog timer to time out (see Chapter 11, “Minimum Hardware Set-

up”).

Phase 1 Phase 2
P1 P2
XTAL1L |
| —>|
Tosc

2 Tosc = State Time

| State 1 | State 2 | State 3 | State 4 | State 5 | State 6 |

PLIP2 [PLIP2 |[PLIP2 |[PL|P2|PL|P2|PL]|P2
I: Peripheral Cycle >|

A2604-02

Figure 2-3. Clocking Definitions

2-6

Int6|® ARCHITECTURAL OVERVIEW

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven sources: seven maskable sources
and the TRAP instruction. When the interrupt handler grants an interrupt request, the CPU dis-
continues the normal flow of instructions and branches to a routine that services the source that
requested the interrupt. You can enable or disable the interrupts individually (except for TRAP)
and you can assign one of four priority levels to each interrupt. See Chapter 6, “Interrupt System,”
for a detailed description.

2.2.4 On-chip Code Memory

For 83C251SA (ROM) and 87C251SA (OTPROM/EPROM) devices, memory locations
FF:0000H-FF:1FFFH are implemented with 8-Kbytes of on-chip code memory. For 83C251SB
and 87C251SB devices, memory locations FF:0000H-FF:3FFFH are implemented with 16-
Kbytes of on-chip code memory.

Following a reset, the first instruction is fetched from location FF:0000H. For 80€ZB4S
ROM/OTPROM/EPROM) devices, location FF:0000H is always in external memory.

2.2.5 On-chip RAM

The 8XC251SA and 8XC251SB have 1-Kbyte of on-chip data RAM at locations 20H-41FH. The
8XC251SP and 8XC251SQ have 512 bytes of on-chip data RAM at locations 20H—21FH. These
RAM locations can be accessed with direct, indirect, and displacement addressing. Ninety-six of
these locations (20H-7FH) are bit addressable. An additional 32 bytes of on-chip RAM (00H-
1FH) provide storage for the four banks of registers RO-R7.

2.3 ON-CHIP PERIPHERALS

The on-chip peripherals, which lie outside the core, perform specialized functions. Software ac-
cesses the peripherals via their special function registers (SFRs). The 8X@asI&ur periph-

erals: the watchdog timer, the timer/counters, the programmable counter array (PCA), and the
serial 1/0 port.

2.3.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter, and you can program them for special applications, such as capturing the time
of an event on an external pin, outputting a programmable clock signal on an external pin, or gen-
erating a baud rate for the serial I/O port. Timer/counter events can generate interrupt requests.

I 2-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

The watchdog timer is a circuit that automatically resets the 8XGdB18e event of a hardware

or software upset. When enabled by software, the watchdog timer begins running, and unless
software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal op-
eration, software periodically clears the timer register to prevent the reset. If an upset occurs and
software fails to clear the timer, the resulting chip reset disables the timer and returns the system
to a known state. The watchdog and the timer/counters are described in Chapter 8, “Tim-

er/Counters and WatchDog Timer.”

2.3.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in-

put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod-

ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 9, “Program-

mable Counter Array,” describes this peripheral in detail.

2.3.3 Serial I/O Port

The serial 1/0 port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used
for parity checking or to specify that the frame contains an address and data. In mode 2, you can
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow
from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to anothe
slave.

2-8

intel.

Address Spaces

intel.

MCS® 251 microcontrollers have three address spaces: a memory space, a special function reg-
ister (SFR) space, and a register file. This chapter describes these address spaces as they apply t
all MCS 251 microcontrollers and to the 8XC2%1 particular. It also discusses the compati-

bility of the MCS 251 architecture and the MESL1 architecture in terms of their address spaces.

CHAPTER 3
ADDRESS SPACES

3.1 ADDRESS SPACES FOR MCS® 251 MICROCONTROLLERS

Figure 3-1 shows the memory space, the SFR space, and the register file for MCS 251 microcon-
trollers. (The address spaces are depicted as being eight bytes wide with addresses increasing

from left to right and from bottom to top.)

Memory Address Space
16 Mbytes

FF:FFFFH

00:0000H 00:0007H

SFR Space
512 Bytes
S:1FFH
S:000H S:007H
Register File
64 Bytes
63
0 7

A4100-01

Figure 3-1. Address Spaces for MCS ® 251 Microcontrollers

3-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

It is convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE
The memory space in the MCS 251 architecture is unsegmented. The 64-
Kbyte “regions” 00:, 01, ..., FF: are introduced only as a convenience for

discussions. Addressing in the MCS 251 architecture is linear; theme are
segment registers.

MCS 251 microcontrollers can have up to 64 Kbytes of on-chip code memory in region FF:. On-
chip data RAM begins at location 00:0000H. The first 32 bytes (00:0000H-00:001FH) provide

storage for a part of the register file. On-chip, general-purpose data RAM begins at 00:0020H.
The sizes of the on-chip code memory and on-chip RAM depend on the particular device.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from O to 63. Locations 0—7 represent one of four switchable register banks,

each having 8 registers. The 32 bytes required for these banks occupy locations 00:0000H—
00:001FH in the memory space. Register file locations 8—63 do not appear in the memory space.
See “8XC251SA, SB, SP, SQ Register File” on page 3-10 for a further description of the register

file.

The SFR space can accommodate up to 512 8-bit special function registers with addresses
S:000H-S:1FFH. Some of these locations may be unimplemented in a particular device. In the
MCS 251 architecture, the prefix “S:” is used with SFR addresses to distinguish them from the
memory space addresses 00:0000H-00:01FFH. See “Special Function Registers (SFRs)” on page
3-16 for details on the SFR space.

3.1.1 Compatibility with the MCS ® 51 Architecture

The address spaces in the MCS 51 architecturet are mapped into the address spaces in the MC¥
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 5, “Programming,” discusses the compatibility of the two instruc-
tion sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory locations
00H-7FH can be addressed directly and indirectly. Internal data locations 80H-FFH can only be
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code
memory has a separate memory space. Data in the code memory can be accessed only with the
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with the
MOVX instruction.

T MCS®51 Microcontroller Family User’s Manual

3-2 I

Int6|® ADDRESS SPACES

The register file (registers RO—R7) comprises four switchable register banks, each having eight
registers. The 32 bytes required for the four banks occupy locations 00H-1FH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address space
in the MCS 251 architecture; details are listed in Table 3-1.

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans-
parent to the user; code executes just as before, without modification.

FFFFH
Code
(MOVC)
0000H
FFFFH RO Register File R7
External Data
(MOVX)
0000H
FFH FFH
Internal Data SFRs
(indirect) (direct)
80H 80H
7FH
Internal Data
(direct, indirect)
00H
A4139-01

Figure 3-2. Address Spaces for the MCS ® 51 Architecture

3-3

8XC251SA, SB, SP, SQ USER’S MANUAL

Memory Address Space

16 Mbytes
FFFFH
McsU 51 Architecture
Code Memory
FF:0000H] 0000H
02:0000H
FFFFH
MCS 51 Architecture
External Data Memory
01:0000H | 0000H
MCS 51 Architecture FFH
) Internal Data Memory
00:0000H | O0H

S:100H

S:000H

SFR Space
512 Bytes
S:1FFH
FFH
MCS 51 Architecture
80H SFRs
S:07FH
Register File
64 Bytes
63

0 MCS51 Architecture R. F. 7

A4133-01

Figure 3-3. Address Space Mappings MCS ® 51 Architecture to MCS ® 251 Architecture

Table 3-1. Address Mappings

MCS® 51 Architecture MCS ® 251 Architecture
Memory Type
. . Data :
Size Location Addressing Location
Indirect using . .
Code 64 Kbytes 0000H-FFFFH MOVG instr. FF:0000H-FF:FFFFH
Indirect using . .
External Data 64 Kbytes 0000H-FFFFH MOVX instr. 01:0000H-01:FFFFH
128 bytes 00H-7FH Direct, Indirect | 00:0000H-00:007FH
Internal Data -
128 bytes 80H-FFH Indirect 00:0080H-00:00FFH
SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:0FFH
Register File 8 bytes RO-R7 Register RO-R7

3-4

Int6|® ADDRESS SPACES

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory
region specified by bits 16—23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-13). The re-
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi-
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (OOH-FFH) are mapped to
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51 archi-
tecture, the lower 128 bytes (00H-7FH) are directly and indirectly addressable; however the up-
per 128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all
locations in region 00: are accessible by direct, indirect, and displacement addressing (see
“BXC251SA, SB, SP, SQ Memory Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com-
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad-
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8XC251SA, SB, SP, SQ MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8XCR&ii&ocontroller. The usable mem-

ory space of the 8XC25k®onsists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can
execute from all four regions; code execution begins at FF:0000H. Regions 02:—FD: are reserved.
Reading a location in the reserved area returns an unspecified value. Software can execute a write
to the reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum number of
external address lines is 18, which limits external memory to a maximum of four regions (256
Kbytes). See “Configuring the External Memory Interface” on page 4-8 and “External Memory
Design Examples” on page 13-18.

I 3-5

8XC251SA, SB, SP, SQ USER’S MANUAL

Register Addressing
(32 Bytes)

Memory Address Space

[£

16 Mbytes
FF:FFFFH
FF:0000H
FE:FFFFH
FE:0000H
Regions 02—-FD
K are Reserved N
OL:FFFFH
01:0000H
00:FFFFH
00:0080H _ _ _____ _ __
00:007FH
00:0020H _ _ _____ _ __
00:0000H 00:001FH

Indirect and
Displacement
Addressing
(16 Mbytes)

Direct Addressing
(64 Kbytes)

Bit Addressing
¥ (96 Bytes)

A4385-01

Figure 3-4. 8XC251SA, SB, SP, SQ Address Space

I ntGI ® ADDRESS S

PACES

FF:FFF7H

External Memory

On-chip ROM
8 or 16 Kbytes
FF:0000H

FE:FFFFH

External Memory

FE:0000H

J Regions 02-FD L
are Reserved

01:FFFFH

External Memory

01:0000H

00:FFFFH
External Memory

On-chip RAM
512 or 1024 Bytes

+1t] 00:0000H Registers RO-R7

T Eight-byte configuration array (FF:FFF8H - FF:FFFFH)
T Four banks of registers RO-R7 (32 bytes, 00:0000H - 00:001FH)

A4382-02

Figure 3-5. Hardware Implementation of the 8XC251SA, SB, SP, SQ Address Space

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Locations FF:FFF8H-FF:FFFFH are reserved for the configuration array (see Chapter 4, “Device
Configuration™). The two configuration bytes for the 8XC2k1&8e accessed at locations
FF:FFF8H and FF:FFF9H; locations FF:FFFAH-FF:FFFFH are reserved for configuration bytes
in future products. Do not attempt to execute code from locations FF:FFF8H—FF:FFFFH. Also,
see the caution on page 4-2 regarding execution of code from locations immediately below the
configuration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas of mem
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose RAM
(00:0020H-00:007FH) are bit addressable. Chapter 5, “Programming,” discusses addressing
modes.

Figure 3-5 on page 3-7 shows how areas of the memory space are implemented by on-chip RAM,
on-chip ROM/OTPROM/EPROM, and external memory. The first 32 bytes of on-chip RAM
store banks 0-3 of the register file (see “8XC251SA, SB, SP, SQ Register File” on page 3-10).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM (512 bytes or 1 Kbyte) is provided for general data storage (Figure 3-5). Instruc-
tions cannot execute from on-chip data RAM. The data is accessible by direct, indirect, and dis-
placement addressing. Locations 00:0020H—00:007FH are also bit addressable.

3.2.2 On-chip Code Memory (83C251SA, SB, SP, SQ/87C251SA, SB, SP, SQ)

The 8XC2518 is available with 8 Kbytes or 16 Khbytes of on-chip ROM (83C23%1&
OTPROM/EPROM (87C252% as well as without on-chip code memory (Figure 3-5). Table 2-1

on page 2-3 lists the amount of on-chip code memory for each device. The on-chip
ROM/OTPROM/EPROM is intended primarily for code storage, although its contents can also
be read as data with the indirect and displacement addressing modes. Following a chip reset, pro-
gram execution begins at FF:0000H. Chapter 14, “Programming and Verifying Nonvolatile
Memory,” describes programming and verification of the ROM/OTPROM/EPROM.

A code fetch within the address range of the on-chip ROM/OTPROM/EPROM accesses the on-
chip ROM/OTPROM/EPROM only if EA# = 1. For EA# = 0, a code fetch in this address range
accesses external memory. The value of EA# is latched when the chip leaves the reset state. Code
is fetched faster from on-chip code memory than from external memory. Table 3-2 lists the min-
imum times to fetch two bytes of code from on-chip memory and external memory.

3-8 I

Int6|® ADDRESS SPACES

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times
On-chip Code Memory 1
External Memory (page mode) 2
External Memory (nonpage mode) 4

NOTE

If your program executes exclusively from on-chip ROM/OTPROM/EPROM
(not from external memory), beware of executing code from the upper eight
bytes of the on-chip ROM/OTPROM/EPROM (FF:1FF8H-FF:1FFFH for 8
Kbytes, FF:3FF8H-FF:3FFFH for 16 Kbytes). Because of its pipeline
capability, the 8XC25186may attempt to prefetch code from external memory
(at an address above FF:1FFFH/FF:3FFFH) and thereby disrupt I/O ports O
and 2. Fetching code constants from these eight bytes does not affect ports 0
and 2.

If your program executes from both on-chip ROM/OTPROM/EPROM and
external memory, your code can be placed in the upper eight bytes of the on-
chip ROM/OTPROM/EPROM. As the 8XC254 ftches bytes above the top
address in the on-chip ROM/OTPROM/EPROM, the code fetches automati-
cally become external bus cycles. In other words, the rollover from on-chip
ROM/OTPROM/EPROM to external code memory is transparent to the user.

3.2.21 Accessing On-chip Code Memory in Region 00:

The 87C251SB, SQ and the 83C251SB, SQ can be configured so that the upper half of the 16-
Kbyte on-chip code memory can also be read as data at locations in the top of region 00: (see
“Configuration Bytes” on page 14-7). That is, locations FF:2000H—-FF:3FFFH can also be access-
ed at locations 00:EO00H-00:FFFFH. This is useful for accessing code constants stored in
ROM/OTPROM/EPROM. Note, however, that all of the following three conditions must hold for
this mapping to be effective:

* The device is configured with EMAP# = 0 in the UCONFIG1 register (See Chapter 4).
* EA#=1.
* The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are referred
to external memory.

NOTE
Remapping doesot apply to the 87C251SA, SP and the 83C251SA, SP.

I 3-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5 on page 3-7). For discussions of external memory see “Configuring
the External Memory Interface” on page 4-8 and Chapter 13, “External Memory Interface.”

3.3 8XC251SA, SB, SP, SQ REGISTER FILE

The 8XC2518 register file consists of 40 locations: 0—31 and 56-63, as shown in Figure 3-6.
These locations are accessible as bytes, words, and dwords, as described in “Byte, Word, and
Dword Registers” on page 3-13. Several locations are dedicated to special registers (see “Dedi-
cated Registers” on page 3-13); the others are general-purpose registers.

3-10 I

Int6|® ADDRESS SPACES

Byte Registers

Note: R10=B
R11 =ACC

R8 | R9 |R10|R11|R12|R13|R14|R15
RO|R1|R2|R3|R4|R5|R6|R7

Register File
56 [57 |58 | 59|60 61]62]63

Word Registers

Locations 32-55 are Reserved

2412512627128 [29]30|31 WR24 | WR26 | WR28 | WR30
16 |17 1181920 21|22 |23 WR16 | WR18 | WR20 | WR22
819 |10]|11|12]|13|14]15 WR8 WR10 | WR12 | WR14
0O|]1|2]|3|4]|]5]|6]|7 WRO WR2 WRA4 WR6

Dword Registers

e T DR56 = DPX DRG0 = SPX
| | | | | | | |
[o]1]2[3]4a]5[6]7

Banks 0-3
DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4

A4099-01

Figure 3-6. The Register File

3-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Register file locations 0—7 actually consist of four switchable banks of eight registers each, as il-
lustrated in Figure 3-7. The four banks are implemented as the first 32 bytes of on-chip RAM and
are always accessible as locations 00:0000H—00:001FH in the memory address space.t Only one
of the four banks is accessible via the register file at a given time. The accessible, or “active,”
bank is selected by bits RS1 and RSO0 in the PSW register, as shown in Table 3-3. (The PSW is
described in “Program Status Words” on page 5-16.) This bank selection can be used for fast con-
text switches.

Register file locations 8—31 and 56—63 are always accessible. These locations are implemented
as registers in the CPU. Register file locations 32-55 are reserved and cannot be accessed.

Register File Memory Address Space
63 FF:FFFFH

8
ol1]2]3]4]5]6]7 L ~

)

b}
>

7 \ 00:0020H
PSW bits RS1:0 of12[a]a s 67}~ ~———>f18d 1EH] Banks 0-3
select one bank ke 03 ‘\\\\\\\\\\\\\s>10H 17H| accessible
to be accessed via 08H OFH IndZIEmOFy
the register file. 00H 07H| address space

A4215-01

Figure 3-7. Register File Locations 0-7

Table 3-3. Register Bank Selection

PSW Selection Bits

Bank Address Range
RS1 RSO

Bank 0 00H-07H 0
Bank 1 08H-OFH 0
1
1

Bank 2 10H-17H
Bank 3 18H-1FH

0
1
0
1

Tt Because these locations are dedicated to the register file, they are not considered a part of the general-
purpose, 1-Kbyte, on-chip RAM (locations 00:0020H-00:041FH).

3-12

Inu® ADDRESS SPACES

3.3.1 Byte, Word, and Dword Registers

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbered byte
location. For example:

R4 is the byte register consisting of location 4.
WRA4 is the word register consisting of registers 4 and 5.
DR4 is the dword register consisting of registers 4—7.

Locations RO—R15 are addressable as bytes, words, or dwords. Locations 16—31 are addressable
only as words or dwords. Locations 56-63 are addressable only as dwords. Registers are ad-
dressed only by the names shown in Figure 3-6 — except for the 32 registers that comprise the
four banks of registers RO—R7, which can also be accessed as locations 00:0000H—-00:001FH in
the memory space.

3.3.2 Dedicated Registers

The register file has four dedicated registers:

¢ R10 is the B-register

¢ RI11 is the accumulator (ACC)

* DR56 is the extended data pointer, DPX

* DRG60 is the extended stack pointer, SPX
These registers are located in the register file; however, R10, R11, and some bytes of DR56 and
DR60 are also accessible as SFRs. The bytes of DPX and SPX can be accessed in the register file

only by addressing the dword registers. The dedicated registers in the register file and their cor-
responding SFRs are illustrated in Figure 3-8 and listed in Table 3-4.

3321 Accumulator and B Register

The 8-bitaccumulator(ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:EOH (Figure 3-8). Th®ister used in multiplies and divides, is register R10, which

is also accessible in the SFR space as B at S:FOH. Accessing ACC or B as a register is one state
faster than accessing them as SFRs.

I 3-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int9|®

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However, in the MCS 251 architecture, any of registers R1-R15 can
serve for these taskst. As a result, the accumulator does not play the central role that it has in
MCS 51 microcontrollers.

Register File SFRs

Stack Pointer, High

>| SPH | S:BEH

IStack Pointer > El S:81H
| | [spe | sp |

60 61 62 63
DR60 = Extended Stack Pointer, SPX

Data Pointer Extended, Low :l

: > DPXL | S:84H

Data Pointer, High :l .
>| DPH | S:83H

Data Pointer, Low - .
[,I DPL IS.82H

| | opxe | opH | or |
56 57 58 59

DR56 = Extended Data Pointer, DPX

;I B IS:FOH
[:I ACC IS:EOH

IB |Acc|

R10, B Register R11, Accumulator, ACC
G J . J

A4152-02

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs

T Bits in the PSW and PSW1 registers reflect the status of the accumulator. There are no equivalent status
indicators for the other registers.

3-14

Int€|® ADDRESS SPACES

3.3.2.2 Extended Data Pointer, DPX

Dword register DR56 is thextended data pointeDPX (Figure 3-8). The lower three bytes of

DPX (DPL, DPH, and DPXL) are accessible as SFRs. DPL and DPH comprise thelabit
pointerDPTR. While instructions in the MCS 51 architecture always use DPTR as the data point-
er, instructions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:—FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external mem-
ory. The reset value of DPXL is 01H.

3.3.2.3 Extended Stack Pointer, SPX

Dword register DR60 is thetack pointerSPX (Figure 3-8). The byte at location 63 is the 8-bit
stack pointer, SP, in the MCS 51 architecture. The byte at location 62s&thkepointer high

SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,

ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic |Reg. |Location Mnemonic Address
— — 60 — —
Stack — — 61 — —
Pointer - - DR60
(SPX) | Stack Pointer, High SPH 62 SPH S:BEH
Stack Pointer, Low SP 63 SP S:81H
— — 56 — —
Data Data Pointer, Extended Low DPXL 57 DPXL S:84H
Pointer - - DR56
(DPX) DPTR Data Pointer, High DPH 58 DPH S:83H
Data Pointer, Low DPL 59 DPL S:82H
Accumulator (A Register) A R11 11 ACC S:EOH
B Register B R10 10 B S:FOH

I 3-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

3.4 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in their associated on-chip peripherals or in the core.
Table 3-5 shows the SFR address space with the SFR mnemonics and reset values. SFR addresse
are preceded by “S:” to differentiate them from addresses in the memory space. Unoccupied lo-
cations in the SFR space (the shaded locations in Table 3-5) are unimplemented, i.e., no register
exists. If an instruction attempts to write to an unimplemented SFR location, the instruction exe-
cutes, but nothing is actually written. If an unimplemented SFR location is read, it returns an un-
specified value.

NOTE

SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

3-16 I

F8

FO

E8

EO

D8

DO

Cc8

CO

B8

BO

A8

AO

98

90

88

80

ADDRESS SPACES

Table 3-5. 8XC251SA, SB, SP, SQ SFR Map and Reset Values
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
CH CCAPOH | CCAP1H | CCAP2H | CCAP3H | CCAP4H FE
00000000 | XXXXXXXX | XXXXXXXX | XXXXXXXX [XXXXXXXX | XXXXXXXX
B
00000000 F
CL CCAPOL | CCAP1L | CCAP2L | CCAP3L | CCAP4AL EF
00000000 | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX
ACC
00000000 £
CCON CMOD CCAPMO | CCAPM1 | CCAPM2 | CCAPM3 | CCAPM4 DF
00x00000 | 00xxx000 | x0000000 | x0000000 | x0000000 | x0000000 | x0000000
PSW PSW1 D7
00000000 | 00000000
T2CON T2MOD RCAP2L | RCAP2H TL2 TH2 CF
00000000 | xxxxxx00 | 00000000 | 00000000 | 00000000 | 00000000
Cc7
IPLO SADEN SPH BE
x0000000 | 00000000 00000000
P3 IPHO |
11111111 x0000000
IEO SADDR AF
00000000 | 00000000
P2 WDTRST WCON A7
11111111 XXXXXXXX | XXXXXX00
SCON SBUF oF
00000000 | XXXXXXXX
P1
11111111 o7
TCON TMOD TLO TL1 THO TH1 oF
00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000
PO SP DPL DPH DPXL PCON 87
11111111 | 00000111 | 00000000 | 00000000 | 00000001 00xx0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E s

NOTE: Shaded areas represent unimplemented SFR locations. Locations S:000H-S:07FH and

S:100H-S:1FFH are also unimplemented.

3-17

8XC251SA, SB, SP, SQ USER’S MANUAL

The following tables list the mnemonics, names, and addresses of the SFRs:

Table 3-6 — Core SFRs
Table 3-7 — I/O Port SFRs
Table 3-8 — Serial I/O SFRs
Table 3-9 — Timer/Counter and Watchdog Timer SFRs

Table 3-10 — Programmable Counter Array (PCA) SFRs

Table 3-6. Core SFRs

Mnemonic Name Address
ACCT Accumulator S:EOH
Bf B Register S:FOH
PSW Program Status Word S:DOH
PSW1 Program Status Word 1 S:D1H
Spt Stack Pointer — LSB of SPX S:81H
SPH* Stack Pointer High — MSB of SPX S:BEH
DPTR? Data Pointer (2 bytes) —
DPL* Low Byte of DPTR S:82H
DPH? High Byte of DPTR S:83H
DPXL?T Data Pointer, Extended Low S:84H
PCON Power Control S:87H
IEO Interrupt Enable Control 0 S:A8H
IPHO Interrupt Priority Control High O S:B7H
IPLO Interrupt Priority Control Low 0O S:B8H

T These SFRs can also be accessed by their corresponding registers in the

register file (see Table 3-4 on page 3-15).

3-18

Table 3-7. I/O Port SFRs

Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 Port 3 S:BOH

intel.

intel.

Table 3-8. Serial I/O SFRs

ADDRESS SPACES

Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table 3-9. Timer/Counter and Watchdog Timer SFRs
Mnemonic Name Address
TLO Timer/Counter 0 Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H
Table 3-10. Programmable Counter Array (PCA) SFRs
Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH

3-19

8XC251SA, SB, SP, SQ USER’S MANUAL

3-20

Table 3-10. Programmable Counter Array (PCA) SFRs (Continued)

intel.

Mnemonic Name Address
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:FOH
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

intel.

Device
Configuration

intel.

CHAPTER 4
DEVICE CONFIGURATION

The 8XC2518 provides user design flexibility by configuring certain operating features at de-
vice reset. These features fall into the following categories:

¢ external memory interface (page mode, address bits, pre-programmed wait states and the
address range for RD#, WR#, and PSEN#)

¢ source mode/binary mode opcodes
¢ selection of bytes stored on the stack by an interrupt

* mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external address bus (256 Kbyte external address
space). Wait state configurations provide pre-programmed 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of 8XCRB{Evice configuration. It describes the
configuration bytes and provides information to aid you in selecting a suitable configuration for
your application. It discusses the choices involved in configuring the external memory interface
and shows how the internal memory maps into the external memory. See 4.5, “Configuring the
External Memory Interface.” Section 4.6, “Opcode Configurations (SRC),” discusses the choice
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the MC%251 microcontroller is established by the reset routine based on
information stored in configuration bytes. The 8XC26h3crocontrollers store configuration
information in two configuration bytes located in code memory. Devices with no on-chip code
memory fetch configuration data from external memory. Factory programmed ROM devices use
customer provided configuration data supplied on floppy disc.

4.2 DEVICE CONFIGURATION

The 8XC2518 reserves the top eight bytes of the memory address map (FF:FFF8H—FF:FFFFH)
for an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration array
are assigned to the user configuration bytes UCONFIGO (FF:FFF8H) and UCONFIG1
(FF:FFF9H). For ROM/OTPROM/EPROM devices, configuration information is stored in on-
chip non-volatie memory at these addresses. For devices without on-chip
ROM/OTPROM/EPROM, configuration information is accessed from external memory.

I 4-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

For ROM/OTPROM/EPROM devices, user configuration bytes UCONFIGO and UCONFIG1
can be programmed at the factory or on-site using the procedures provided in Chapter 14, “Pro-
gramming and Verifying Nonvolatile Memory.” For devices without ROM/OTPROM/ EPROM,

the designer should store configuration information in an eight-byte configuration array located
at the highest addresses implemented in external code memory. See Table 4-1 and Figure 4-2.

Bit definitions of UCONFIGO and UCONFIG1 are provided in Figures 4-3 and 4-4. The upper 6
bytes of the configuration array are reserved for future use. When EA# = 1, the 8X0R&ifSs
configuration information at reset from on-chip non-volatile memory at addresses FF:FFF8H and
FF:FFFOH. When EA# = 0, the microcontroller obtains configuration information at reset from
the external memory system using internal addresses FF:FFF8H and FF:FFF9H.

CAUTION

The eight highest addresses in the memory address space (FF:FFF8H—
FF:FFFFH) are reserved for the configuration array. Do not read or write these
locations. These addresses are also used to access the configuration array in
external memory, so the same restrictions apply to the eight highest addresses
implemented in external memory. Instructions that might inadvertently cause
these addresses to be accessed due to call returns or prefetches should not be
located at addresses immediately below the configuration array. Use an EJMP
instruction, five or more addresses below the configuration array, to continue
execution in other areas of memory.

83C251SA, SP 83C251SB, SQ
87C2515A, 5Py 87C2515B, 5Q)
FF: —f FF: —f
FF:FFFFH
8 Kbytes 16 Kbytes
FF:FFFEH
~. FF:FFFDH

FF:FFFCH

FF:FFFBH

FF:FFFAH

FF:FFF9H | UCONFIG1
FF:FFFgH | UCONFIGO

For EA# = 1, the 8XC251Sx obtains configuration information
from on-chip nonvolatile memory at addresses FF:FFF8H
and FF:FFF9H.

Detail. On-chip configuration array.
A4237-01

Figure 4-1. Configuration Array (On-chip)

4-2

Int6|® DEVICE CONFIGURATION

8 Kbytes 16 Kbytes 32 Kbytes 64 Kbytes
FFF9H
FFF8H

>l

4 +
3FF9H
1FFOH ¥ _ 3FF8H —f—‘ D
1FF8H
1:FFF9H 128 Kbytes ¥ | 3FrFon 256 Kbytes j XXFFFH
1:FFF8H —f 3:FFF8H 3 .

X:XFFEH

X:XFFDH

X:XFFCH

X:XFFBH

X:XFFAH

XxxFF9H | UCONFIG1
xxFF8H | UCONFIGO

Detail.
Configuration array in external memory.

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIGO in external memory for

several memory implementations. For EA# = 0, the 8XC251Sx obtains configuration information from configuration
bytes in external memory using internal addresses FF:FFF8H and FF:FFF9OH. In external memory, the eight-byte
configuration array is located at the highest addresses implemented.

A4236-01

Figure 4-2. Configuration Array (External)

4-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table 4-1. External Addresses for Configuration Array

Size of External Address of Address of
Address Bus Configuration Array on Configuration Bytes
(Bits) External Bus (2) on External Bus (1)
16 FFF8H-FFFFH UCONFIG1: FFF9H
UCONFIGO: FFF8H
17 1FFF8H-1FFFFH UCONFIG1: 1FFF9H
UCONFIGO: 1FFF8H
18 3FFF8H-3FFFFH UCONFIG1: 3FFF9H
UCONFIGO: 3FFF8H

NOTES:

1. When EA# = 0, the reset routine retrieves UCONFIGO and UCONFIG1 from
external memory using internal addresses FF:FFF8H and FF:FFF9H, which
appear on the microcontroller external address bus (A17, A16, A15:0).

2. The upper six bytes of the configuration array are reserved for future use.

4.3 THE CONFIGURATION BITS

This section provides a brief description of the configuration bits contained in the configuration
bytes (Figures 4-3 and 4-4). UCONFIGO and UCONFIG1 have five wait state bits: WSA1:0#,
WSBL1:0#, and WSB.

* UCON. Configuration byte location selector.

* SRC. Selects source mode or binary mode opcode configuration.

* INTR. Selects the bytes pushed onto the stack by interrupts.

* EMAP#. Maps on-chip code memory (16-Kbyte devices only) to memory region 00:.

The following bits configure the external memory interface.
* PAGE#. Selects page/nonpage mode and specifies the data port.

* RD1:0. Selects the number of external address bus pins and the address range for RD#, WR,
and PSEN#. See Table 4-2.

e XALE#. Extends the ALE pulse.
* WSAL:0#. Selects 0, 1, 2, or 3 pre-programmed wait states for all regions except 01:.
¢ WSBL1:0#. Selects 0 - 3 pre-programmed wait states for memory region 01.:.

* EMAP#. Affects the external memory interface in that, when asserted, addresses in the
range 00:EO000H—-00:FFFH access on-chip memory.

4-4

Int6|® DEVICE CONFIGURATION

4.4 CONFIGURATION BYTE LOCATION SELECTOR (UCON)

The Configuration Byte Location Selector (UCON) applies only to OTPROM and EPROM prod-
ucts. In conjunction with EA#, UCON specifies whether the configuration array is accessed from
on-chip memory or external memory.

If the UCON bit is clear (e.g., UCON=0), the configuration array is fetched from on-chip nonvol-
atile memory at addresses FF:FFF8H to FF:FFFFH. The configuration bytes are located at loca-
tions FF:FFF8H and FF:FFF9H.

If UCON is set (e.g., UCON=1), the state of the EA# pin at device reset determines whether the
configuration array is accessed from on-chip memory or external memory. If EA# is connected
to Ve, the configuration array is accessed from on-chip nonvolatile memory at addresses
FF:FFF8H through FF:FFFFH (same as for UCON=0). If EA# is connecteggdhé configu-

ration array is obtained from external memory (e.g., a 27512 EPROM).

I 4-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

UCONFIGO Address:FF:FFF8H (2)
1), (3
7 0
UCON WSAL# | WSAO# | XALE# ‘ ‘ RD1 RDO PAGE# SRC
Bit Bit Function

Number | Mnemonic

7 UCON Configuration Byte Location Selector (OTPROM/EPROM products only):

87C251Sx | Clearing this bit causes the 8XC251Sx to fetch configuration information
from on-chip memory. Leaving this bit unprogrammed (logic 1) causes the
8XC251Sx to fetch configuration information from on-chip memory if EA# =
1 or from external memory if EA# = 0.

— Reserved:
80C251Sx | Write a 1 to this bit when programming UCONFIGO.
83C251Sx
6:5 WSAL:0# | Wait State A (all regions except 01:):
For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.
WSA1# WSAO#
0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:
4 XALE# Extend ALE:
Set this bit for ALE = Tggc.
Clear this bit for ALE = 3T4 (adds one external wait state).
3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2.

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on PO
(compatible with 44-pin PLCC and 40-pin DIP MCS 51 microcontrollers).

0 SRC Source Mode/Binary Mode Select:

Clear this bit for binary mode (compatible with MCS 51 microcontrollers).
Set this bit for source mode.

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8XC251Sx.

2. Address. UCONFIGO is the second-lowest byte of the 8-byte configuration array. As determined by
UCON and EA#, the 8XC251Sx fetches configuration information from on-chip nonvolatile memory at
addresses FF:FFF8H and FF:FFF9H or from external memory using these same addresses. In exter-
nal memory, configuration information is obtained from an 8-byte configuration array located at the
highest addresses implemented. The location of the configuration array in external memory depends
on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for programming and verifying on-chip configuration bytes are given in Chapter 14.

Figure 4-3. Configuration Byte UCONFIGO

4-6

Int6|® DEVICE CONFIGURATION

UCONFIG1 Address:FF:FFF9H (2)

1), 3

7 0
— — — INTR ‘ ‘ WSB WSB1# | WSBO# | EMAP#
Bit Bit Function

Number | Mnemonic
75 — Reserved for internal or future use. Set these bits when programming
UCONFIGL1.
4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See 4.8, “Interrupt Mode (INTR).”

3 WSB Wait State B. Use only for A-step compatibility:

Clear this bit to generate one external wait state for memory region 01:. Set
this bit for no wait states for region 01:.

2:1 WSB1:0# | External Wait State B (Region 01:):
WSB1# WSBO#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). Maps
FF:2000H-FF:3FFFH to 00:EO00H-00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:EO000H-00:FFFFH access
external RAM. See 4.7, “Mapping On-chip Code Memory to Data Memory
(EMAP#).”

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8XC251Sx.

2. Address. UCONFIG1 is the second-lowest byte of the 8-byte configuration array. As determined by
UCON and EA#, the 8XC251SA, SB, SP, SQ fetches configuration information from on-chip nonvolatile
memory at addresses FF:FFF8H and FF:FFFOH or from external memory using these same
addresses. In external memory, configuration information is obtained from an 8-byte configuration
array located at the highest addresses implemented. The physical location of the configuration array in
external memory depends on the size and decode arrangement of the external memory (Table 4-1 and
Figure 4-2).

3. Instructions for programming and verifying on-chip configuration bytes are given in Chapter 14.

Figure 4-4. Configuration Byte UCONFIG1

4-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table 4-2. Memory Signal Selections (RD1:0)

. P1.7/ICEX/
RD1:0 AL7/WCLK P3.7/RD#/A16 PSEN# WR# Features
0 0 |[Al7 Al16 Asserted for | Asserted for writes to | 256-Kbyte external
all addresses | all memory locations | memory
01 P1.7/CEX4/ Al6 Asserted for | Asserted for writes to | 128-Kbyte external
WCLK all addresses | all memory locations | memory
10 P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64-Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
1 1 |P1.7/CEX4l RD# asserted | Asserted for | Asserted only for 64-Kbyte external
WCLK for addresses | = 80:0000H writes to MCS 51 memory. Compatible
< 7F:FFFFH microcontroller data with MCS 51 micro-
memory locations. controllers.
45 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. The
configuration bits described here determine the following interface features:

page mode or nonpage mode (PAGE#)

the number of external address pins (16, 17, or 18) (RD1:0)

the memory regions assigned to the read signals RD# and PSEN# (RD1:0)
the external wait states (WSA1:0#, WSB1:0#, XALE#)

mapping a portion of on-chip code memory to data memory (EMAP#)

4.5.1 Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIGO0.1) determines whether code fetches use page mode or nonpage
mode and whether data is transmitted on P2 or PO. See Figure 13-1 on page 13-1 and section
13.2.3, “Page Mode Bus Cycles,” for a description of the bus structure and page mode operation.

4-8

Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 architecture
with data D7:0 multiplexed with A7:0 on PO. External code fetches require two state times
(4Tos0-

Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, external
code fetches require only one state time, (2T

Int6|® DEVICE CONFIGURATION

4.5.2 Configuration Bits RD1:0

The RD1:0 configuration bits (UCONFIGO.3:2) determine the number of external address signals
and the address ranges for asserting the read signals PSEN#/RD# and the write sighal WR#.
Theseselectionsoffer different ways of addressing external memory. Figures 4-5 and 4-6 show
how internal memory maps into external memory for the four values of RD1:0. Section 13.8, “Ex-
ternal Memory Design Examples,” provides examples of external memory designs for each
choice of RD1:0.

A key to the memory interface is the relationship between internal memory addresses and exter-
nal memory addresses. While the 8XC26h8s 24 internal address bits, the number of external
address lines is less than 24 (i.e., 16, 17, or 18 depending on the values of RD1:0). This means
that reads/writes to different internal memory addresses can access the same location in external
memory.

For example, if the 8XC25XSs configured for 17 external address lines, a write to location
01:6000H and a write to location FF:6000H accesses the same 17-bit external address (1:6000H)
because A16 = 1 for both internal addresses. In other words, regions 01: and FF: map into the
same 64-Kbyte region in external memory.

In some situations, however, a multiple mapping from internal memory to external memory does
not preclude using more than one region. For example, for a device with on-chip ROM/

OTPROM/EPROM configured for 17 address bits and with EA# = 1, an access to FF:0000H—
FF:3FFFH (16 Kbytes) accesses the on-chip ROM/OTPROM/EPROM, while an access to
01:0000H-01:3FFFH is to external memory. In this case, you could execute code from these lo-
cations in region FF: and store data in the corresponding locations in region 01: without conflict.
See Figure 4-5 and section 13.8.3, “Example 3: RD1:0 = 01, 17-bit Bus, External RAM.”

45.2.1 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports PO and P2), A16 (from
P3.7/RD#/A16), and A17 (from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four 64-
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is the
largest possible external memory space. See section 13.8.1, “Example 1: RD1:0 = 00, 18-bit Bus,
External Flash and RAM.”

4522 RD1:0 = 01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports PO and P2) and A16
(from P3.7/RD#/A16). Bit A16 can select two 64-Kbyte regions of external memory for a total
of 128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map into
the same 64-Kbyte region in external memory. This duplication also occurs for regions 01: and
FF:

I 4-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

This selection provides a 128-Kbyte external address space. The advantage of this selection, in
comparison with the 256-Kbyte external memory space with RD1:0 = 00, is the availability of
pin P1.7/CEX4/A17/WCLK for general I/O, PCA I/O, and real-time wait clock output. I/O P3.7

is unavailable. All four 64-Kbyte regions are strobed by PSEN# and WR#. Sections 13.8.2 and
13.8.3 show examples of memory designs with this option.

RD1:0 =00
18 external address bits: Internal Memory with External
PO, P2, Al6, A17 Read/Write Signals Memory
256 Kbytes
Notes: Er: Al7:16
1. Maximum external PSEN#, WR# : 11 FF:
memory FE:
2. Single read signal 10 FE:
01 01
PSEN#, WR# ot:
' 00: 00 00
RD1:0=01
17 external address bits: Internal Memory with External
PO, P2, A16 Read/Write Signals Memory
Note: 128 Kbytes
i i FF:
Single read signal PSEN#, WR# Al
FE: 1 01:, FF:
0 00:, FE:
01:
PSEN#, WR#
00:
A4218-02

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

4-10

intel.

DEVICE CONFIGURATION

RD1:0 = 10

16 external address bits:

16 external address bits:
PO, P2

Note:

1. Compatible with MCS® 51
microcontrollers

2. Cannot write to regions FC:—FF:

Internal Memory with
Read/Write Signals

PO, P2
Notes:
1. Single read signal PSEN#. WR#
2. P3.7/RD#/A16 functions '
only as P3.7
PSEN#, WR#
RD1:0=11

Internal Memory with
Read/Write Signals

PSEN#

RD#, WR#

FF:

FE:

01:

00:

FF:

FE:

01:

00:

External
Memory

64 Kbytes

|:| 00:, 01, FE:, FF:

External
Memory

128 Kbytes

FE:, FF:
00:, 01:

A4217-02

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)

4-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

4523 RD1:0 = 10 (16 External Address Bits)

For RD1:0 = 10, the 16 external address bits (A15:0 on ports PO and P2) provide a single 64-
Kbyte region in external memory (top of Figure 4-6). This selection provides the smallest exter-
nal memory space; however, pin P3.7/RD#/A16 is available for general I/O and pin
P1.7/CEX4/A17/WCLK is available for general 1/0, PCA 1/O, and real-time wait clock output.
This selection is useful when the availability of these pins is required and/or a small amount of
external memory is sufficient.

4524 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports PO and P2).
However, PSEN# is the read signal for regions FE:—FF:, while RD# is the read signal for regions
00:-01: (bottom of Figure 4-6). The two read signals effectively expand the external memory
space to two 64-Kbyte regions. WR# is asserted only for writes to regions 00:—01:. This selection
provides compatibility with MCS 51 microcontrollers, which have separate external memory
spaces for code and data.

4.5.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD#WR#/PSEN# pulse and/or
extending the ALE pulse. Each additional wait state extends the pulse hy 2 Beparate wait

state specification for external accesses via region 01: permits a slow external device to be ad-
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summarizes
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait states, see
section 13.4, “External Bus Cycles with Configurable Wait States.”

4531 Configuration Bits WSA1:0#, WSB1:#

The WSA1L:0# wait state bits (UCONFIGO0.6:5) permit RD#, WR#, and PSEN# to be extended by
1, 2, or 3 wait states for accesses to external memory via all regions except region 01:. The
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended by 1,
2, or 3 wait states for accesses to external memory via region 01:.

45.3.2 Configuration Bit WSB

Use the WSB bit only for A-stepping compatibility. The WSB wait state bit (UCONFIG1.3) per-
mits RD#, WR#, and PSEN# to be extended by one wait state for accesses to external memory
via region 01:.

4-12 I

Int6|® DEVICE CONFIGURATION

45.3.3 Configuration Bit XALE#

Clearing XALE# (UCONFIGO0.4) extends the time ALE is asserted frggpt® 3Ty This ac-
commodates an address latch that is too slow for the normal ALE signal. Section 13.4.2, “Extend-
ing ALE,” shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8XC251Sx

Regions WSALl# WSAO#

00: FE: FF: 0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

Region 01: WSB1# WSBO#
0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

4.6 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIGO0.0) selects the source mode or binary mode opcode ar-
rangement. Opcodes for the MCS 251 architecture are listed in Table A-6 on page A-4 and Table
A-7 on page A-5. Note that in Table A-6 every opcode (OOH-FFH), is used for an instruction ex-
cept ASH (ESC) which provides an alternative set of opcodes for columns 6H through FH. The
SRC bit selects which set of opcodes is assigned to columns 6H through FH and which set is the
alternative.

Binary modeandsource modeefer to two ways of assigning opcodes to the instruction set for
the MCS 251 architecture. One of these modes must be selected when the chip is configured. De-
pending on the application, binary mode or source mode may produce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.
The MCS 251 architecture has two types of instructions:

¢ instructions that originate in the MCS 51 architecture

* instructions that are unique to the MCS 251 architecture

I 4-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Figure 4-7 shows the opcode map for binary mode. Area | (columns 1 through 5 in Table A-6 on
page A-4) and area Il (columns 6 through F) make up the opcode map for the instructions that
originate in the MCS 51 architecture. Area Il in Figure 4-7 represents the opcode map for the
instructions that are unique to the MCS 251 architecture (Table A-7 on page A-5). Note that some
of these opcodes are reserved for future instructions. The opcode values for areas Il and Il are
identical (06H—FFH). To distinguish between the two areas in binary mode, the opcodes in area
[l are given the prefix ASH. The area Il opcodes are thus AS06H-A5FFH.

Figure 4-8 shows the opcode map for source mode. Areas Il and Il have switched places (com-
pare with Figure 4-7). In source mode, opcodes for instructions in area Il require the A5F escape
prefix while opcodes for instructions in area Ill (MCS 251 architecture) do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4 shows
the opcode assignments for three sample instructions.

Table 4-4. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction

Binary Mode Source Mode

DECA 14H 14H
SUBB A,R4 9CH A59CH
SUB R4,R4 A59CH 9CH

4.6.1 Selecting Binary Mode or Source Mode

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod-
ified on an MCS 251 microcontroller, choose binary mode. You can use the object code without
reassembling the source code. You can also assemble the source code with an assembler for the
MCS 251 architecture and have it produce object code that is binary-compatible with MCS 51
microcontrollers. The remainder of this section discusses the selection of binary mode or source
mode for code that may contain instructions from both architectures.

An instruction with a prefixed opcode requires one more byte for code storage, and if an addition-
al fetch is required for the extra byte, the execution time is increased by one state. This means that
using fewer prefixed opcodes produces more efficient code.

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef-
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with a simulator.

4-14

DEVICE CONFIGURATION

A5H Prefix
OH 5H 6H FH 6H FH
OH) OH
| : I Il
FH ' FH
MCS® 51 MCS 51 MCS 251
Architecture Architecture Architecture
A4131-01
Figure 4-7. Binary Mode Opcode Map
A5H Prefix
OH 5H 6H FH 6H FH
OH) OH
| : Il I
FH ' FH
MCS® 51 MCS 251 MCS 51
Architecture Architecture Architecture
A4130-01

Figure 4-8. Source Mode Opcode Map

4-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

4.7 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For devices with 16 Kbytes of on-chip code memory (87C251SB, SQ and 83C251SB, SQ), the
EMAP# bit (UCONFIG1.0) provides the option of accessing the upper half of on-chip code mem-
ory as data memory. This allows code constants to be accessed as data in region 00: using direct
addressing. See section 3.2.2.1, “Accessing On-chip Code Memory in Region 00:,” for the exact
conditions required for this mapping to be effective.

EMAP# = 0. For 87C251SB/83C251SB and 87C251SQ/83C251SQ, the upper 8 Kbytes of on-
chip code memory (FF:2000—FF:3FFFH) are mapped to locations 00:E000H—-00:FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses in the
range 00:EO000H—-00:FFFFH access external RAM.

4.8 INTERRUPT MODE (INTR)

The INTR bit (UCONFIG1.4) determines what bytes are stored on the stack when an interrupt
occurs and how the RETI (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order and uses
them as the 16-bit return address in region FF:.

For INTR =1, an interrupt pushes the three PC bytes and the PSW1 register onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes
and then returns to the specified 24-bit address, which can be anywhere in the 16-Mbyte address
space.

4-16 I

intel.

Programming

intel.

CHAPTER 5
PROGRAMMING

The instruction set for the M@®S251 architecture is a superset of the instruction set for the
MCSP® 51 architecture. This chapter describes the addressing modes and summarizes the instruc-
tion set, which is divided into data instructions, bit instructions, and control instructions. Appen-
dix A, “Instruction Set Reference,” contains an opcode map and a detailed description of each
instruction. The program status words PSW and PSW1 are also described.

NOTE
The instruction execution times given in Appendix A are for code executing
from on-chip code memory and for data that is read from and written to on-
chip RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, accessing data in external memory, using
real time wait states, using RD#/WR#/PSEN# preprogrammed wait states, or
extending the ALE pulse.

For some instructions, accessing the port SFR(P 3:0) increases the
execution time. These cases are noted individually in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source modandBinary moderefer to the two ways of assigning opcodes to the instruction set

of the MCS 251 architecture. Depending on the application, one mode or the other may produce
more efficient code. The mode is established during device reset based on the value of the SRC
bit in configuration byte UCONFIGO. For information regarding the selection of the opcode
mode, see section 4.6, “Opcode Configurations (SRC).”

5.2 PROGRAMMING FEATURES OF THE MCS® 251 ARCHITECTURE

The instruction set for MCS 251 microcontrollers provides the user with new instructions that ex-
ploit the features of the architecture while maintaining compatibility with the instruction set for
MCS 51 microcontrollers. Many of the new instructions operate on 8-bit, 16-bit, or 32-bit oper-
ands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are accessed with fewer ad-
dressing modes.) This capability increases the ease and efficiency of programming MCS 251
microcontrollers in a high-level language such as C.

The instruction set is divided into data (refer to section 5.3, “Data Instructions”), bits (see section
5.4, “Bit Instructions”), and control instructions (see section 5.5, “Control Instructions”). Data in-
structions process 8-bit, 16-bit, and 32-bit data; bit instructions manipulate bits; and control in-
structions manage program flow.

I 5-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte
boundaries is not required. Words and dwords are stored in memory and the registdidile in
endienform.

Table 5-1. Data Types

Data Type Number of Bits
Bit
Byte 8
Word 16
Dword (Double Word) 32

5.2.1.1 Order of Byte Storage for Words and Double Words

MCS 251 microcontrollers store words (2 bytes) and double words (4 bytes) in memory and in
the register file in big endieform. In memory storage, the most significant byte (MSB) of the
word or double word is stored in the memory byte specified in the instruction; the remaining bytes
are stored at higher addresses, with the least significant byte (LSB) at the highest address. Words
and double words can be stored in memory starting at any byte address. In the register file, the
MSB is stored in the lowest byte of the register specified in the instruction. For a description of
the register file, see section 3.3, “8XC251SA, SB, SP, SQ Register File.” The code fragment in
Figure 5-1 illustrates the storage of words and double words in big endien form.

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of RO, R1, ...,
R7; i.e., the range of n is 0-7. The instruction ADD Rm #data uses “Rm” to denote RO, R1, ...,
R15; i.e., the range of m is 0—15. Table 5-2 summarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the MCS 251 architecture, memory addresses include a region number (00:, 01;, ..., FF:) (Fig-
ure 3-4 on page 3-6). SFR addresses have a prefix “S:” (S:000H-S:1FFH). The distinction be-
tween memory addresses and SFR addresses is necessary because memory locations 00:0000H
00:01FFH and SFR locations S:000H-S:1FFH can both be directly addressed in an instruction.

5-2 I

PROGRAMMING

Memory
200H 201H 202H 203H
MOV WRO,#A3B6H
| ENES | MOV 00:0201H,WR0
MOV DR4,#0000C4D7H
Register File
0 1 2 3 4 5 6 7
[AsH | BeH | | [oon | ooH [can [o7+ |
_ | J
—_—
WRO DR4
Contents of register file and memory after execution
A4242-01

Figure 5-1. Word and Double-word Storage in Big Endien Form

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers
Register Register Destin_ation Sou_rce Register Range
Type Symbol Register Register
Ri — — RO, R1
Byte Rn — — RO-R7
Rm Rmd Rms RO-R15
Word WR;j WRjd WRijs WRO, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DRS, ..., DR28, DR56, DR60

Instructions in the MCS 51 architecture use 80H—FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad-
dressed only directly. For compatibility, software tools for MCS 251 controllers recognize this
notation for instructions in the MCS 51 architecture. No change is necessary in any code written
for MCS 51 controllers.

For new instructions in the MCS 251 architecture, the memory region prefixes (00:, 01, ..., FF:)
and the SFR prefix (S:) are required. Also, software tools for the MCS 251 architecture permit
00: to be used for memory addresses 00H-FFH and permit the prefix S: to be used for SFR ad-
dresses in instructions in the MCS 51 architecture.

5-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

5.2.4 Addressing Modes

The MCS 251 architecture supports the following addressing modes:
¢ register addressing: The instruction specifies the register that contains the operand.
¢ immediate addressing: The instruction contains the operand.
¢ direct addressing: The instruction contains the operand address.
* indirect addressing: The instruction specifies the register that contains the operand address.

¢ displacement addressing: The instruction specifies a register and an offset. The operand
address is the sum of the register contents (the base address) and the offset.

¢ relative addressing: The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

¢ bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in sections 5.3.1, “Data Addressing
Modes," 5.4.1, “Bit Addressing," and 5.5.1, “Addressing Modes for Control Instructions.”

5.3 DATA INSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 5-3
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the new data in-
structions in the MCS 251 architecture.

NOTE

References to registers RO—R7, WR0-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
section 5.6, “Program Status Words”). Registers in all banks (active and
inactive) can be accessed as memory locations in the range O0OH-1FH.

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DR56 or the DPXL SFR. See section 3.3.2, “Dedicated Registers.”

5-4 I

Int6|® PROGRAMMING

5.3.1.1 Register Addressing

Both architectures address registers directly.

* MCS 251 architecture. In the register addressing mode, the operand(s) in a data instruction
are in byte registers (R0O—R15), word registers (WR0, WR2, ..., WR30), or dword registers
(DRO, DR4, ..., DR28, DR56, DR60).

* MCS 51 architecture. Instructions address registers RO—R7 only.

5.3.1.2 Immediate

Both architectures use immediate addressing.

* MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#datal6). Dword operations use 16-bit immediate data in the lower word,
and either zeros in the upper word (denoted by #0datal6), or ones in the upper word
(denoted by #1datal6). MOV instructions that place 16-bit immediate data into a dword
register (DRK), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sigh extension or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4) that
specifies the amount of the increment/decrement.

* MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3 Direct

* MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = 00:0000H-
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H-S:1FFH) as
bytes only. (See the notes in section 5.3.1, “Data Addressing Modes,” regarding SFRs in the
MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words in memory
(dirl6 = 00:0000H-00:FFFFH).

* MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

I 5-5

8XC251SA, SB, SP, SQ USER’S MANUAL

Table 5-3. Addressing Modes for Data Instructions in the MCS

intel.

® 51 Architecture

Address Range of

Assembly Language

Mode Operand Reference Comments
. RO-R7
Register OOH—LFH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H—7FH On-chip RAM
Direct ir8 = —
SFRs dirg = 80H—FFH . SFR address
or SFR mnemonic.
Accesses on-chip RAM or the
O0H-FFH @RO, @R1 lowest 256 bytes of external
data memory (MOVX).
Indirect Accesses external data
0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
Accesses region FF: of code
0000H-FFFFH @A+DPTR, @A+PC memory (MOVC).
53.14 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (RO—R15). The source address
is a byte, word, or dword. The two architectures do indirect addressing via different registers:

* MCS 251 architecture. Memory is indirectly addressed via word and dword registers:

— Word register (@WRj, j = 0, 2, 4, ..., 30). The 16-bit address in WRj can access

locations 00:0000H—-00:FFFFH.

— Dword register (@DRk, k=0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack

pointer register SPX.

* MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. See the notes in section 5.3.1, “Data Addressing Modes,”
regarding the region of external data RAM that is addressed by instructions in the MCS 51

architecture.

— Byte register (@RI, i = 1, 2). Registers RO and R1 indirectly address on-chip memory

locations 0OH—FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructions use

these indirect modes to access code memory and external data RAM.

— 16-hit program counter (@A+PC). The MOVC instruction uses this indirect mode to

access code memory.

5-6

PROGRAMMING

Table 5-4. Addressing Modes for Data Instructions in the MCS ~ ® 251 Architecture
Mode Address Range of Assembly L‘_amguage Comments
Operand Notation
00:0000H—00:001FH RO~R7, WRO-WRE, DRO, and
Register o 0 3 R0O—R15, WR0—WR30, DR2 are in the register bank
9 (RO-R7, WRO-WR3, | pro—DR28, DR56, DR60 currently selected by the
DRO, DR2) (1) PSW and PSW1.
Imr_nedlate, N.A. (_Operanq is in the #short=1, 2, or 4 Used only in increment and
2 bits instruction) decrement instructions.
Immediate, N.A. (Operand is in the _
8 bits instruction) #datag = #00H-#FFH
Immediate, N.A. (Operand is in the _ .
16 bits instruction) #datal6 = #0000H—#FFFFH
Direct 00:0000H-00:007FH dir8 = 00:0000H-00:007FH On-chip RAM
irect,

8 address bits

SFRs

dir8 = S:080H—S:1FFH (2)
or SFR mnemonic

SFR address

Direct,
16 address bits

00:0000H-00:FFFFH

dirl6 = 00:0000H-00:FFFFH

Indirect,
16 address bits

00:0000H-00:FFFFH

@WRO-@WR30

Indirect,
24 address bits

00:0000H-FF:FFFFH

@DRO-@DR30, @DR56,
@DR60

Upper 8 bits of DRk must be
OOH.

Displacement,
16 address bits

00:0000H-00:FFFFH

@WR] + dis16 =

@WRO + OH through
@WR30 + FFFFH

Offset is signed; address
wraps around in region 00:.

Displacement,
24 address bits

00:0000H—FF:FFFFH

@DRK + dis24 =

@DRO + OH through
@DR28 + FFFFH,
@DR56 + (OH-FFFFH),
@DR60 + (OH-FFFFH)

Offset is signed, upper 8 bits
of DRk must be O0H.

NOTES:

1. These registers are accessible in the memory space as well as in the register file (see section 3.3,
“8XC251SA, SB, SP, SQ Register File.”
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8XC251Sx,
all SFRs are in the range S:080H-S:0FFH.

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

5.3.1.5 Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@WRj+dis16) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WRj. The instruction contains
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceed
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com-
puted address wraps around the top of region 00: (e.g., 2005H + FOOOH becomes 1005H).

Twenty-four-bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DRO, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Table A-19 on page A-14) operate on byte and word data that is accessed in
several ways:

* as the contents of the accumulator, a byte register (Rn), or a word register (WRj)
* in the instruction itself (immediate data)
* in memory via direct or indirect addressing

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontrol-
lers.

The CMP (compare) instruction (Table A-20 on page A-15) calculates the difference of two bytes
or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. The
difference is not stored. The operands can be addressed in a variety of modes. The most frequent
use of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-16 lists the INC (increment) and DEC (decrement) instructions. The in-

structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers and loop counters.

5-8 I

Int6|® PROGRAMMING

The MCS 251 architecture provides the MUL (multiply) and DIV (divide) instructions for un-
signed 8-bit and 16-bit data (Table A-22 on page A-16). Signed multiply and divide are left for
the user to manage through a conversion process. The following operations are implemented:

¢ eight-bit multiplication: 8 bits 8 bits » 16 bits

¢ sixteen-bit multiplication: 16 bitg 16 bits . 32 bits

* eight-bit division: 8 bits- 8 bits — 16 bits (8-bit quotient, 8-bit remainder)

* sixteen-bit division: 16 bits 16 bits » 32 bits (16-bit quotient, 16-bit remainder)

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in the word
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword
register that contains the first operand register. For example, the product from the instruction
MUL WR6,WR18 is stored in DR4.

For 8-bit divides, the operands are byte registers. The result is stored in the word register that con-
tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result is
stored in the double word register that contains that word register. If the second operand (the di-
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meaningless.

5.3.3 Logical Instructions

The MCS 251 architecture provides a set of instructions that perform logical operations. The
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate

on bytes and words that are accessed via several addressing modes (Table A-23 on page A-17).
A byte register, word register, or the accumulator can be logically combined with a register, im-
mediate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulator, MCS 251 microcontrollers have three shift commands for byte and
word registers:

e SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0
* SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0
¢ SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

I 5-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

5.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and
pop instructions (Table A-25 on page A-22). Instructions that move only a single bit are listed
with the other bit instructions in Table A-26 on page A-23.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
MCS 251 architecture. MOV can transfer a byte, word, or dword between any two registers or
between a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H. See section 3.3.2, “Dedicated Registers.”

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu-
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi-
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg-
ister or to memory.

5-10 I

Int6|® PROGRAMMING

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions:

e SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set, clear
or complement any addressable bit.

¢ ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement)These instructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

* MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

¢ Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are described
in section 5.5.2, “Conditional Jumps.”

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5). The
bit instructions that are unique to the MCS 251 architecture can address a wider range of bits than
the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within

a certain register, or it can be specified by a bit address in the range 00H-7FH. The MCS 251
architecture does not have bit addresses as such. A bit can be addressed by name or by its locatior
within a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

¢ RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG” are
assumed to be defined in user code.

* [T1is bit 2 in TCON, which is an SFR at location 88H.
Table 5-5. Bit-addressable Locations

Bit-addressable Locations
Architecture

On-chip RAM SFRs

MCS® 251 Architecture 20H-7FH All defined SFRs

SFRs with addresses ending in OH or 8H:
80H, 88H, 90H, 98H, ..., F8H

MCS 51 Architecture 20H-2FH

I 5-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table 5-7 lists the addressing modes for bit instructions and Table A-26 on page A-23 summarizes
the bit instructions. “Bit” denotes a bit that is addressed by a new instruction in the MCS 251 ar-
chitecture and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 architecture.

Table 5-6. Addressing Two Sample Bits

Location Addressing MCS® 51 MCS 251
Mode Architecture Architecture
Register Name RAMREG.5 RAMREG.5
) Register Address 23H.5 23H.5
On-chip RAM -
Bit Name RAMBIT RAMBIT
Bit Address 1DH NA
Register Name TCON.2 TCON.2
Register Address 88.2H S:88.2H
SFR
Bit Name IT1 IT1
Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Architecture |Variants |Bit Address Memory/SFR Address Comments
MCSP 251 Memory | NA 20H.0—7FH.7
Architecture -
(bit) SFR NA All defined SFRs
Memory | OOH-7FH 20H.0—7FH.7
Nehioe SFR defined
Architecture - - s are not define
(bit51) SFR 80H-F8H NARLO-JXH.7, where XX =80, | at all bit-addressable
T T e locations.

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and condi-
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the next in-
struction in the queue, the processor executes a target instruction. The control instruction provides
the address of a target instruction either implicitly, as in a return from a subroutine, or explicitly,
in the form of a relative, direct, or indirect address.

MCS 251 microcontrollers have a 24-bit program counter (PC), which allows a target instruction

to be anywhere in the 16-Mbyte address space. However, as discussed in this section, some con-
trol instructions restrict the target address to the current 2-Kbyte or 64-Kbyte address range by
allowing only the lowest 11 or lowest 16 bits of the program counter to change.

5-12

Int6|® PROGRAMMING

5.5.1 Addressing Modes for Control Instructions

Table 5-8 lists the addressing modes for the control instructions.

Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

Direct addressing: The control instruction provides a target address, which can have 11 bits

(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addrll: Only the lower 11 bits of the PC are changed; i.e., the target address must be in
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addr16: Only the lower 16 bits of the PC are changed; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.

Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LIMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

— For the instruction IMP @A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.

Table 5-8. Addressing Modes for Control Instructions

Description Adgrrgz\?izfc;ts Address Range
Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction
Direct, 11-bit target address (addr11) 11 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24)* 24 00:0000H-FF:FFFFH
Indirect (@WR]j)* 16 Current 64 Kbytes
Indirect (@A+DPTR) 16 Sg[febztg{ag);ion specified by DPXL (reset

tThese modes are not used by instructions in the MCS® 51 architecture.

5-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

5.5.2 Conditional Jumps

The MCS 251 architecture supports bit-conditional jumps, compare-conditional jumps, and

jumps based on the value of the accumulator. A bit-conditional jump is based on the state of a bit.
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi-
tional jumps are relative, and the target address (rel) must be in the current 256-byte block of
code. The instruction set includes three kinds of bit-conditional jumps:

¢ JB (Jump on Bit): Jump if the bit is set.
¢ JNB (Jump on Not Bit): Jump if the bit is clear.
¢ JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

Section 5.4.1, “Bit Addressing,” describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW1 reg-
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.
The condition flags are used to test one of the following six relations between the operands:

¢ equal (=), not equakj

¢ greater than (>), less than (<)

¢ greater than or equat), less than or equat)

For each relation there are two instructions, one for signed operands and one for unsigned oper-
ands (Table 5-9).

Table 5-9. Compare-conditional Jump Instructions

Operand Relation
Type - P > < > <
Unsigned JG JL JGE JLE
JE INE
Signed JSG JSL JSGE JSLE

5-14

Int6|® PROGRAMMING

5.5.3 Unconditional Jumps
There are five unconditional jumps. NOP and SIJMP jump to addresses relative to the program
counter. AJMP, LIMP, and EJMP jump to direct or indirect addresses.

* NOP (No Operation) is an unconditional jump to the next instruction.

* SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

¢ AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of memory. The address can be direct or indirect.

¢ LIMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

* EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

5.5.4 Calls and Returns
The MCS 251 architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub-
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow-
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

I 5-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation
of RETI depends on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

* For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept
additional interrupts at the same priority level as the one just processed.

* For INTR = 1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETI also clears the interrupt request line. (See the note in Table 5-8
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations of an MCS 251 microcontrol-
ler.

5.6 PROGRAM STATUS WORDS
The Program Status Word (PSW) register and the Program Status Word 1 (PSW1) register contain
four types of bits (Figures 5-2 and 5-3):

* CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.

* The P bit indicates the parity of the accumulator.

¢ Bits RSO and RS1 are programmed by software to select the active register bank for
registers RO—R7.

* FO0 and UD are available to the user as general-purpose flags.

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions (section 5.4, “Bit
Instructions”). The PSW and PSW1 bits are used implicitly in the conditional jump instructions
(section 5.5.2, “Conditional Jumps”).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 regis-
ter exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are iden-
tical to the corresponding bits in PSW; i.e., the same bit can be accessed in either register. Table
5-10 lists the instructions that affect the CY, AC, OV, N, and Z bits.

5-16 I

intel.

PROGRAMMING

Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

Flags Affected (1), (5)

Instruction Type Instruction
CcY OV | AC(2) N z

ADD, ADDC, SUB, X X X X X
SUBB, CMP

Arithmetic INC, DEC X X
MUL, DIV (3) 0 X X X
DA X X
ANL, ORL, XRL, CLR A, X X

) CPL A, RL, RR, SWAP

Logical
RLC, RRC, SRL, SLL, X X X
SRA (4)
CJINE X X X

Program Control
DJNE X X

NOTES:

1. X =the flag can be affected by the instruction.
0 = the flag is cleared by the instruction.

arwd

accumulator (ACC, Register R11).

The AC flag is affected only by operations on 8-bit operands.

If the divisor is zero, the OV flag is set and the other bits are meaningless.
For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
The parity bit (PSW.0) is set or cleared by instructions that change the contents of the

5-17

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

PSW Address: S:DOH
Reset State: 0000 0000B
7 0
cy AC FO RSL || RsO ov uD P
Bit Bit Function
Number Mnemonic
7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by some rotate and shift instructions, logical bit instructions, bit move
instructions, and the multiply (MUL) and decimal adjust (DA) instructions
(see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 FO Flag 0:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0O:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-OFH

1 0 2 10H-17H

1 1 3 18H-1FH
2 oV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all instruc-
tions update the parity bit. The parity bit is set or cleared by instructions

that change the contents of the accumulator (ACC, Register R11).

Figure 5-2. Program Status Word Register

5-18

PROGRAMMING

PSW1 Address: S:D1H
Reset State: 0000 0000B
7 0
cy AC N RSL || RSO ov z —
Bit Bit) Function
Number Mnemonic

7 CY Carry Flag:
Identical to the CY bit in the PSW register (Figure 5-2).

6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register (Figure 5-2).

5 N Negative Flag:
This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4-3 RS1:0 Register Bank Select Bits 0 and 1:
Identical to the RS1:0 bits in the PSW register (Figure 5-2).

2 oV Overflow Flag:
Identical to the OV bit in the PSW register (Figure 5-2).

1 z Zero Flag:
This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:
The value read from this bit is indeterminate. Write a “0” to this bit.

Figure 5-3. Program Status Word 1 Register

5-19

intel.

Interrupt System

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The 8XC2518, like other control-oriented computer architectures, employs a program interrupt
method. This operation branches to a subroutine and performs some service in response to the
interrupt. When the subroutine completes, execution resumes at the point where the interrupt oc-
curred. Interrupts may occur as a result of internal 8XCRat8vity (e.g., timer overflow) or at

the initiation of electrical signals external to the microcontroller (e.g., serial port communication).

In all cases, interrupt operation is programmed by the system designer, who determines priority
of interrupt service relative to normal code execution and other interrupt service routines. Seven
of the eight interrupts are enabled or disabled by the system designer and may be manipulated
dynamically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam-
pled by the 8XC251§ latches the event into a flag buffer. The priority of the flag (see Table 6-2,
Interrupt System Special Function Registers) is compared to the priority of other interrupts by the
interrupt handler. A high priority causes the handler to set an interrupt flag. This signals the in-
struction execution unit to execute a context switch. This context switch breaks the current flow
of instruction sequences. The execution unit completes the current instruction prior to a save of
the program counter (PC) and reloads the PC with the start address of a software service routine.
The software service routine executes assigned tasks and as a final activity performs a RETI (re-
turn from interrupt) instruction. This instruction signals completion of the interrupt, resets the in-
terrupt-in-progress priority, and reloads the program counter. Program operation then continues
from the original point of interruption.

Table 6-1. Interrupt System Pin Signals

Signal - Multiplexed
Name Type Description With
INT1:0# | External Interrupts 0 and 1 . These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
INT1:0# are clear, bits IE1:0 are controlled by a low level trigger on
INT1:04.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”

6-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Interrupt Enable

Priority Enable

IiD_, Highest
1 P Priority
0 1 *— Interrupt
T o
INTO# ITO IEO te__—o—eo Lo1—e o

1 T__ ¢

. 1 o=
Timer 0 > @_)M_”l: s o Ne
ETO ! ~ «y
1
1 o—1>
INTL#[]—o/o IT1 Lo f LT o
e_o—o o X
EX1 X o);,
1 r__ 1)
o
1 c
a N (]
! 7 o1l || &
Timer 1 :E'—)M—_ﬁ": s o | | 2
ET1 [-— &
1 ~ 3 =
PCA 0 : %
a
Counter ECF 1 g
Overflow 1 ; —l> =
! I o] |]| &
0 e oo Lol e =
PCA EC [-1
Match or ECCFx ¢ o

Capture 1

*0
b4
v." Vw

Timer 2 ————————> TF2

T2EX [}——Exr2

5
Receive > RI E
Transmit ——————> TI ES ®

m

N

p
Y

Lowest
Priority
Interrupt

A4149-01

Figure 6-1. Interrupt Control System

6-2

Int6|® INTERRUPT SYSTEM

Table 6-2. Interrupt System Special Function Registers

Mnemonic Description Address

IEO Interrupt Enable Register . Used to enable and disable programmable S:A8H
interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register . Establishes relative four-level priority for S:B8H
programmable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register . Establishes relative four-level priority for S:B7H
programmable interrupts. Used in conjunction with IPLO.

NOTE: Other special function registers are described in their respective chapters.

6.2 8XC251SA, SB, SP, SQ INTERRUPT SOURCES

Figure 6-1 illustrates the interrupt control system. The 8XC25ES eight interrupt sources;

seven maskable sources and the TRAP instruction (always enabled). The maskable sources in-
clude two external interrupts (INTO# and INT1#), three timer interrupts (timers 0, 1, and 2), one
programmable counter array (PCA) interrupt, and one serial port interrupt. Each interrupt (except
TRAP) has an interrupt request flag, which can be set by software as well as by hardware (see
Table 6-3, “Interrupt Control Matrix”). For some interrupts, hardware clears the request flag
when it grants an interrupt. Software can clear any request flag to cancel an impending interrupt.

6.2.1 External Interrupts

External interrupts INTO# and INT1# (IN#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits ITO and IT1 in the TCON register (see Figure 8-6
on page 8-8). If IX= 0, INTx#is triggered by a detected low at the pin. K 81, INTx#is neg-
ative-edge triggered. External interrupts are enabled with bits EX0 and EX}Li(EKe IEO reg-

ister (see Figure 6-2, “Interrupt Enable Register”). Events on the external interrupt pins set the
interrupt request flags ¥n TCON. These request bits are cleared by hardware vectors to service
routines only if the interrupt is negative-edge triggered. If the interrupt is level-triggered, the in-
terrupt service routine must clear the request bit. External hardware must deassert INTx# before
the service routine completes, or an additional interrupt is requested. External interrupt pins must
be deasserted for at least four state times prior to a request.

External interrupt pins are sampled once every four state times (a frame length of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt requesixbfEEXCPU clears EXau-
tomatically during service routine fetch cycles for edge-triggered interrupts.

6-3

8XC251SA, SB, SP, SQ USER’S MANUAL

Table 6-3. Interrupt Control Matrix

Global Timer Serial Timer Timer

Interrupt Name Enable PCA 2 Port 1 INT1# 0 INTO#
Bit Name in IEO EA EC ET2 ES ET1 EX1 ETO EXO0
Register
Interrupt Priority-
Within-Level
(7 = Low Priority, NA 7 6 5 4 3 2 L
1 = High Priority)
Bit Names in:

IPHO Reserved | IPH0.6 | IPHO0.5 | IPHO.4 | IPHO.3 IPHO.2 IPHO.1 IPHO.0

IPLO Reserved | IPL0O.6 | IPLO.5 | IPLO.4 | IPLO.3 IPLO.2 IPLO.1 IPLO.O
Programmable for
Negative-edge
Triggered or Level- NA Edge No No No Yes No Yes
triggered Detect?
Interrupt Request
Flag in CCON, CF, TF2,
T2CON, SCON, or NA CCFx | EXF2 RI, TI TFL IE1 TFO IEO
TCON Register
Interrupt Request Edge Edge
Flag Cleared by No No No No Yes Yes, Yes Yes,
Hardware? Level No Level No
ISR Vector Address NA FF: FF: FF: FF: FF: FF: FF:

0033H | 002BH | 0023H | 001BH 0013H 000BH 0003H

6.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 8-6 on page 8-8) are set
by timer overflow (the exception is Timer 0 in Mode 3, see Figure 8-4 on page 8-6). When a timer
interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt service rou-
tine. Timer interrupts are enabled by bits ETO, ET1, and ET2 in the IEO register (see Figure 6-2,
"Interrupt Enable Register”).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 8-12 on page 8-17). Neither flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then

clear the bit. Timer 2 interrupt is enabled by ET2 in register IEO.

Int6|® INTERRUPT SYSTEM

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five event
flags (CCK) and the PCA timer overflow flag (CF) in the CCON register (see Figure 9-8 on page
9-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hardware vec-
tors to service routines. Normally, interrupt service routines resolve interrupt requests and clear
flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

The PCA interrupt is enabled by bit EC in the IEO register (see Figure 6-1). In addition, the CF
flag and each of the C@Flags must also be individually enabled by bits ECF and EGEreg-

isters CMOD and CCAPMIrespectively for the flag to generate an interrupt (see Figure 9-8 on
page 9-14 and Figure 9-9 on page 9-15).

NOTE
CCFxrefers to 5 separate bits, one for each PCA module (CCF0, CCF1, CCF2,

CCF3, CCF4). CCAPMrefers to 5 separate registers, one for each PCA
module (CCAPMO, CCAPM1, CCAPM2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits Rl and Tl in the SCON register (see
Figure 10-2 on page 10-3). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves RI or Tl interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the IEO register (see Figure 6-2).

6.5 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by

the appropriate interrupt enable bit in the IEO register at S:A8H (see Figure 6-2). Note IEO also
contains a global disable bit (EA). If EA is set, interrupts are individually enabled or disabled by

bits in IEO. If EA is clear, all interrupts are disabled.

I 6-5

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

IEO Address: S:A8H
Reset State: 0000 0000B
7 0
EA EC ET2 Es || Em EX1 ETO EX0
Bit Bit . Function
Number Mnemonic
7 EA Global Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.
6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.
5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial I/0 Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.
3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.
2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.
1 ETO Timer 0 Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.
0 EXO External Interrupt O Enable:

Setting this bit enables external interrupt 0.

6-6

Figure 6-2. Interrupt Enable Register

Int6|® INTERRUPT SYSTEM

6.6 INTERRUPT PRIORITIES

Each of the seven 8XC25% terrupt sources may be individually programmed to one of four
priority levels. This is accomplished with the IPIOPLO0.x bit pairs in the interrupt priority high
(IPHO) and interrupt priority low (IPLO) registers (Figures 6-3 and 6-4 on page 6-8). Specify the
priority level as shown in Table 6-4 using IPkl@s the MSB and IPL®as the LSB.

Table 6-4. Level of Priority

IPHO.X (MSB) IPLO. X (LSB) Priority Level
0 0 0 Lowest Priority
0 1 1
1 0 2
1 1 3 Highest Priority

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in-
terrupt source. Higher priority interrupts are serviced before lower priority interrupts. The
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same
four state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table
6-5).

Table 6-5. Interrupt Priority Within Level

Priority Number Interrupt Name
1 (Highest Priority) INTO#
2 Timer O
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7 (Lowest Priority) PCA
NOTE

The 8XC2518 Interrupt Priority Within Level table (Table 6-5) differs from
MCS® 51 microcontrollers. Other MCZ51 microcontrollers may have unique
interrupt priority within level tables.

I 6-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

IPHO Address: S:B7H
Reset State: X000 0000B

7 0
— IPHO.6 IPHO.5 IPHO.4 ‘ ‘ IPHO.3 IPHO.2 IPHO.1 IPHO.0
Bit Bit . Function

Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Write a “0” to
this bit.

6 IPHO.6 PCA Interrupt Priority Bit High

5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPHO.4 Serial I/0 Port Interrupt Priority Bit High

3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPHO.2 External Interrupt 1 Priority Bit High

1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPHO0.0 External Interrupt O Priority Bit High

Figure 6-3. Interrupt Priority High Register

IPLO Address: S:B8H
Reset State: X000 0000B

7 0
— IPLO.6 IPLO.5 IPLO.4 ‘ ‘ IPLO.3 IPLO.2 IPLO.1 IPLO.O
Bit Bit . Function

Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Write a “0” to
this bit.

6 IPLO.6 PCA Interrupt Priority Bit Low

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPLO.4 Serial /0 Port Interrupt Priority Bit Low

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPLO.2 External Interrupt 1 Priority Bit Low

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPLO.0 External Interrupt O Priority Bit Low

Figure 6-4. Interrupt Priority Low Register

6-8

Int6|® INTERRUPT SYSTEM

6.7 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-5).
Response timis the amount of time between the interrupt request and the resulting break in the
current instruction strearhatencyis the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

Response Time
osc MR AR AR LA
Siave (gig Ny N p NNy g NNy Ny NN Ny NN NN p NNy p Ny RNyl Rp Nyl RyNgipRpipipipipipliy
Time
External !
Interrupt B\ S ///

Request ' 1

S ! Ending Instructions Push PC || Call ISR | ISR

'
! '

-
”

Latency

A4153-01

Figure 6-5. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meetWand M. specifications prior to any state time

under discussion. This setup state time is not included in examples or calcula-
tions for either response or latency.

6-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

6.7.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state times (see Figure 6-5). Two of eight inter-
rupts are latched and polled per state time within any given four state time window. One addition-
al state time is required for a context switch request. For code branches to jump locations in the
current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context switch
time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll states +
1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

* The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

* The request is coincident with internal execution and needs no instruction completion time,
* The program uses an internal stack location, and
* The ISR is in on-chip OTPROM/ROM.

6.7.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari-
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architecture’s
code set. In the case of the 8XC2%1iBe longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects both response time and la-
tency.

6.7.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 6-5). Re-
sponse time (and therefore latency) is affected by two primary factors: the incidence of the re-
quest relative to the four-state-time sample window and the completion time of instructions in the
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency

6-10

Int6|® INTERRUPT SYSTEM

time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-6).

Response Time = 6

0oscC
State Time igigigigiphi

INTO# “;S [22

Sample INTO# L L L L
Request LI
Ten State
Instruction S Push PC S

A4155-02

Figure 6-6. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state asserts the request, one state samples, and one state reques
the context switch. If at that point the same instruction conditions exist, one additional state time

is needed to complete the 10-state instruction prior to the context switch (see Figure 6-7). The
total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

6-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Response Time = 4
osC
State Time [igigigigigigigh
INTO# QSS; [227
Sample INTO# — L | | L
Request LI
Ten State
Instruction S Push PC S
A4154-02

Figure 6-7. Response Time Example #2

6.7.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the longest 8X€#&sk&iction used in the pro-

gram must fully execute prior to a context switch. The instruction execution time is reduced by
one state with the assumption the instruction state overlaps the request state (therefore, 16-bit
DIV is 21 state times - 1 = 20 states for latency calculations). The calculations add fixed and vari-
able interrupt times (see Table 6-6) to this instruction time to predict latency. The worst-case la-
tency (both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

6-12

]
Int6|® INTERRUPT SYSTEM
Table 6-6. Interrupt Latency Variables
External
INTO#, >64K External External External
Variable | INT1#, E?gf&gzln 1\3232 Jump to M\e;\rgi)try Stack Stack Stack
T2EX ISR (1) State <64K (1) >64K (1) | Wait State
Number
of 1 per 1 per
States L 2 L 8 bus cycle 4 8 bus cycle
Added
NOTES:

1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte.
— <64K jump to ISR
— Internal peripheral interrupt

6.7.2.3

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memaory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO# has made the request one
state prior to the sample state (as in Figure 6-7). Unlike in Figure 6-7, the response time for this
assumption is three state times as the current instruction completes in time for the branch to occur.
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-6, one state
is added for an INTO# request from external hardware; two states are added for external execu-
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added for the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less

Latency Calculations

one state).

— Internal execution
— Internal stack

Table 6-7. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted
Base Case Minimum Fixed Time 16 16
INTO# External Request 1 1
External Execution
<64K Byte Stack Location
Execution Time for Current DIV Instruction | 3 20
TOTAL 26 43

6-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

6.7.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (refer to the CALL instructions in Ap-

pendix A, “Instruction Set Reference”). There are three causes of blocking conditions with hard-

ware-generated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction in progress is RETI or any write to the IEO, IPHO, or IPLO registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in-
struction in progress completes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additional interrupts if the in-
struction in progress is a RETI or any write to IEO, IPHO, or IPLO. The complete polling cycle is
repeated every four state times.

6.7.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re-
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the

stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the UCONFIG1 configuration byte (see

Figure 4-4 on page 4-7). The complete sample, poll, request and context switch vector sequence
is illustrated in the interrupt latency timing diagram (Figure.6-5

NOTE

If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.

6-14

Int6|® INTERRUPT SYSTEM

6.7.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETI instruction in the ISR pops PC
address bytes off the stack (as well as PSW1 for INTR = 1) and execution resumes at the suspend-
ed instruction stream.

NOTE
Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In the 8XC2X] 8his causes a compatibility
problem if INTR =1 in configuration byte CONFIGL1. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routine is called and pops the same four bytes when the RETI is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8XC254®&ith INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and IE1), the
first interrupt routine (if more than seven bytes long) must execute a jump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.

I 6-15

intel.

Input/Output Ports

intel.

CHAPTER 7
INPUT/OUTPUT PORTS

7.1 INPUT/OUTPUT PORT OVERVIEW

The 8XC2518 uses input/output (I/O) ports to exchange data with external devices. In addition

to performing general-purpose 1/O, some ports are capable of external memory operations (see
Chapter 13, “External Memory Interface”); others allow for alternate functions. All four
8XC251 I/O ports are bidirectional. Each port contains a latch, an output driver, and an input
buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory operations.
Port O drives the lower address byte onto the parallel address bus, and port 2 drives the upper ad-
dress byte onto the bus. In nonpage mode, the data is multiplexed with the lower address byte on
port 0. In page mode, the data is multiplexed with the upper address byte on port 2. All port 1 and
port 3 pins serve for both general-purpose I/O and alternate functions (see Table 7-1).

Table 7-1. Input/Output Port Pin Descriptions

Nzir?1e Type él;e’(lnae;;ee Alternate Description Alt%tgz;te
P0.7:.0 | I/O |AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) /0
P1.0 /10 | T2 Timer 2 Clock Input/Output 110
P11 /10 | T2EX Timer 2 External Input |
P1.2 /0 | ECI PCA External Clock Input |
P1.3 /0 | CEXO PCA Module 0 1/O I/0
P1.4 /0 | CEX1 PCA Module 1 1/0 I/0
P1.5 /0 |CEX2 PCA Module 2 I/O 110
P1.6 /0 | CEX3/WAIT# PCA Module 3 1/0 /10
P1.7 /0 | CEX4/A17/WCLK | PCA Module 4 I/O or 18th Address Bit 1/0(0)
P2.7:0 | I/O |A15:8 Address (Nonpage Mode), Address/Data (Page Mode) 110
P3.0 /0 |RXD Serial Port Receive Data Input 1 (1/0)
P3.1 /0 | TXD Serial Port Transmit Data Output 0O (0)
P3.2 /10 | INTO# External Interrupt O |
P3.3 /O | INT1# External Interrupt 1 |
P3.4 /0 | TO Timer O Input |
P3.5 /10 |T1 Timer 1 Input |
P3.6 /10 | WR# Write Signal to External Memory (@]
P3.7 /0 | RD#/A16 Read Signal to External Memory or 17th Address Bit (@)

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

7.2 1/0 CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 7-1 for ports 1 and 3. A CPU
“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “read
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal
transfers the logical level of the port pin. Some port data instructions activate the “read latch” sig-
nal while others activate the “read pin” signal. Latch instructions are referred to as read-modify-
write instructions (see section 7.5, “Read-Modify-Write Instructions”). Each 1/O line may be in-
dependently programmed as input or output.

7.3 PORT 1 AND PORT 3

Figure 7-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose 1/O or for its al-
ternate input or output function (Table 7-1).

To use a pin for general-purpose output, set or clear the corresponding bit xrélgéster x =
1, 3). To use a pin for general-purpose input, set the bit irdtheggi3ter. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in theegister. When the latch is set, the
“alternate output function” signal controls the output level (Figure 7-1). The operation of ports 1
and 3 is discussed further in section 7.6, “Quasi-bidirectional Port Operation.”

7.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, showr
in Figure 7-2, differs from the other ports in not having internal pullups. Figure 7-3 shows the
structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit xréléster x =

0, 2). To use a pin for general-purpose input set the bit inxhledister to turn off the output
driver FET.

7-2 I

INPUT/OUTPUT PORTS

Vee
Alternate |
Read Output Inte”rna
Latch I/I Function Pullup
N | P3.x
Internal 0
Bus P3.x
: Latch
Write to
Latch CcL Q#
1 . 1
) loo
Re;d Alternate
in
Input
Function
A2239-01
Figure 7-1. Port 1 and Port 3 Structure
Address/
Read Data Control Vee
Latch LI
;; PO.x
Internal _D
Bus pox 2 N\
. Latch 1
Write to 0
Latch CL Q#
-1
Read l\l
Pin

A2238-01

Figure 7-2. Port 0 Structure

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

Read
Latch

Internal
Bus

Write to
Latch

Read
Pin

Lx—

CL

P2.x
Latch

Q#

Address Vee
l Control
Internal
Pullup
N\ P2.x

)

A2240-01

Figure 7-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. Section 7.8, “Exter-
nal Memory Access,” discusses the operation of port 0 and port 2 as the external address/data bus.

NOTE

Port 0 and port 2 are precluded from use as general purpose 1/O ports when

used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port 0 outputs are

open drain.

7-4

Int6|® INPUT/OUTPUT PORTS

7.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called “read-modify-write” in-
structions. Below is a complete list of these special instructions. When the destination operand is
a port, or a port bit, these instructions read the latch rather than the pin:

ANL (logical AND, e.g., ANL P1, A)

ORL (logical OR, e.g., ORL P2, A)

XRL (logical EX-OR, e.g., XRL P3, A)

JBC (jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL)
CPL (complement bit, e.g., CPL P3.0)

INC (increment, e.g., INC P2)

DEC (decrement, e.g., DEC P2)

DJINZ (decrement and jump if not zero, e.g., DJNZ P3, LABEL)

MOV PX.Y, C (move carry bit to bit Y of port X)
CLR PX.Y (clear bit Y of port X)
SETB PX.Y (setbit Y of port x)

It is not obvious that the last three instructions in this list are read-modify-write instructions.
These instructions read the port (all 8 bits), modify the specifically addressed bit, and write the
new byte back to the latch. These read-modify-write instructions are directed to the latch rather
than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at
the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot rise
above the transistor’s base-emitter junction voltage (a value lower thatWith a logic one

written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logic zero.
A read of the latch rather than the pin returns the correct logic-one value.

7-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

7.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirectional”
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see the 8XC25D2&datasheet) in response to an external logic-zero condition. Port 0 is a “true
bidirectional” pin. The pin floats when configured as input. Resets write logical one to all port
latches. If logical zero is subsequently written to a port latch, it can be returned to input conditions
by a logical one written to the latch. For additional electrical information, refer to the 8XC251SA,
SB, SP, SQ High-Performance CHMOS Microcontroller Datasheet.

NOTE
Port latch values change near the end of read-modify-write instruction cycles.

Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 7-4). This increases switch speed. The extra pullup briefly sources 100
times the normal internal circuit current. The internal pullups are field-effect transistors rather
than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associ-
ated nFET is switched off. This is the traditional CMOS switch convention. Current strengths are
1/10 that of pFET #3.

7-6 I

Int6|® INPUT/OUTPUT PORTS

2 Osc. Periods Vee Vee Vee

n e L

Port

Q#
From
. | [n

Port !

Latch
Input Data "} oﬂ o<}
Read Port Pin | >

A2242-01

Figure 7-4. Internal Pullup Configurations

7.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zerq,(sgee¥ifica-

tions in the 8XC2516data sheet). These port pins can be driven by open-collector and open-
drain devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a log-
ic-one condition (Figure 7-4). A logic-zero input turns off pFET #3. This leaves only pFET #2
weakly in support of the transition. In external bus mode, port 0 output buffers each sink 3.2 mA
at logic zero (seejy; in the 8XC251% data sheet). However, the port O pins require external
pullups to drive external gate inputs. See the latest revision of the 8XxcaatEsheet for com-

plete electrical design information. External circuits must be designed to limit current require-
ments to these conditions.

7.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi-
plexed on port 2, while port 0 outputs the lower address byte.

I 77

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

The 8XC2518 CPU writes FFH to the PO register for all external memory bus cycles. This over-
writes previous information in PO. In contrast, the P2 register is unmodified for external bus cy-
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input.

In page mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte; port 0 also uses a strong internal pulldown
FET to output zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull-

down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup FET to output ones or a strong internal pulldown FET to output zeros for the upper address

byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 13, “External Memory Interface”). External program memories utilize sig-
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RD1:0 configuration bits, the 8XQR&S
PSEN# or RD# for data reads (see section 4.5.2, “Configuration Bits RD1:0").

During instruction fetches, external program memory can transfer instructions with 16-bit ad-
dresses for binary-compatible code or with the external bus configured for extended memory ad-
dressing (17-bit or 18-bit).

External data memory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on the in-

struction and the configuration of the external bus. Table 7-2 lists the instructions that can be used
for these bus widths.

7-8 I

Int6|® INPUT/OUTPUT PORTS

Table 7-2. Instructions for External Data Moves

Bus Width Instructions
8 MOVX @Ri; MOV @Rm; MOV dir8
16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dirl6
17 MOV @DRk; MOV @DRk+dis
18 MOV @DRk; MOV @DRk+dis
NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives,M For write cycles, valid data is written to port O just prior

to the write (WR#) pin asserting, Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port O before the read (RD#) pin is undriven
(refer to the 8XC2526datasheet for exact specifications). Wait states, by definition, affect bus-

timing.

7-9

intel.

8

Timer/Counters and
Watchdog Timer

intel.

CHAPTER 8
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8XC251% When operating as a timer, a timer/counter runs for a programmed length of
time, then issues an interrupt request. When operating as a counter, a timer/counter counts nega-
tive transitions on an external pin. After a preset number of counts, the counter issues an interrupt
request. Timer/counters are covered in sections 8.1 through 8.6.

The watchdog timer provides a way to monitor system operation. It causes a system reset if a soft-
ware malfunction allows it to expire. The watchdog timer is covered in section 8.7, “Watchdog
Timer.”

8.1 TIMER/COUNTER OVERVIEW

The 8XC2518 contains three general-purpose, 16-bit timer/counters. Although they are identi-
fied as timer O, timer 1, and timer 2, you can independently configure each to operate in a variety
of modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used
separately or in cascade, to maintain the count. The timer registers and associated control and cap-
ture registers are implemented as addressable special function registers (SFRs). Table 8-1 briefly
describes the SFRs referred to in this chapter. Four of the SFRs provide programmable control of
the timers as follows:

¢ Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer 0 and timer 1

¢ Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

For a map of the SFR address space, see Table 3-5 on page 3-17. Table 8-2 describes the externs
signals referred to in this chapter.

8.2 TIMER/COUNTER OPERATION

The block diagram in Figure 8-1 depicts the basic logic of the timers. Here timer registers TH
and Tlx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRX) turns the timer on by allowing the selected input to incremert When TLx overflows

it increments TH; when THk overflows it sets the timer overflow flag (XFin the TCON or

T2CON register. Setting the run control bit does not clear theafid Tlx timer registers. The

timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin ¥4To facilitate pulse width measurements.

I 8-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table 8-1. Timer/Counter and Watchdog Timer SFRs

Mnemonic Description Address

TLO Timer O Timer Registers. Used separately as 8-bit counters or in cascade | S:8AH

THO as a 16-bit counter. Counts an internal clock signal with frequency Fys/12 | S:8CH
(timer operation) or an external input (event counter operation).

TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade | S:8BH

TH1 as a 16-bit counter. Counts an internal clock signal with frequency Fysc/12 | S:8DH
(timer operation) or an external input (event counter operation).

TL2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a S:CCH

TH2 16-bit counter. Counts an internal clock signal with frequency Fogc/12 S:CDH
(timer operation) or an external input (event counter operation).

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, | S:88H
interrupt flags, and interrupt-type control bits for timer O and timer 1.

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and | S:C8H

capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.

RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H) . Provide values | S:CAH

RCAP2H to and receive values from the timer registers (TL2,TH2). S:CBH
WDTRST | Watchdog Timer Reset Register (WDTRST). Used to reset and enable S:A6H
the WDT.

XTALL [} +12
Interrupt
> THx : TLx |Overflow Request
(8 Bits) I (8 Bits) TFx
!
Tx G
CITx#
x=0,1,0r2 TRx
A4121-02

Figure 8-1. Basic Logic of the Timer/Counters

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pirkhs the source for the counted signal.

8-2

Int€|® TIMER/COUNTERS AND WATCHDOG TIMER

For timer operation (CK# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e., once every six states (see section
2.2.2, “Clock and Reset Unit"Bince six states equals 12 clock cycles, the timer clock rate is
Fosd12. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

For counter operation (Cf# = 1), the timer register counts the negative transitions orxtae-T

ternal input pin. The external input is sampled during every S5P2 state. Section 2.2.2, “Clock and
Reset Unit,” describes the notation for the states in a peripheral cycle. When the sample is high
in one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3P1 state after the transition was detected. Since it takes 12 states (24
oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the os-
cillator frequency. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Table 8-2. External Signals

Alternate
Function

Signal -
Name Type Description

T2 I/O | Timer 2 Clock Input/Output . This signal is the external clock input P1.0
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

T2EX | Timer 2 External Input . In timer 2 capture mode, a falling edge P1.1
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

INT1:0# | External Interrupts 1:0 . These inputs set the IE1:0 interrupt flags in | P3.3:2
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = O selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

T1:.0 | Timer 1:0 External Clock Inputs . When timer 1:0 operates as a P3.5:4
counter, a falling edge on the T1:0 pin increments the count.

8.3 TIMERO

Timer O functions as either a timer or event counter in four modes of operation. Figures 8-2, 8-3,
and 8-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 8-5) and bits 5, 4,
1, and 0 of the TCON register (Figure 8-6). The TMOD register selects the method of timer gating
(GATEO), timer or counter operation (T/C0#), and mode of operation (M10 and MO0O0). The
TCON register provides timer 0 control functions: overflow flag (TFO), run control (TRO), inter-
rupt flag (IEQ), and interrupt type control (ITO).

8-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by the se-
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See section 8.5.2, “Pulse Width Measure-
ments.”

Timer O overflow (count rolls over from all 1s to all 0s) sets the TFO flag generating an interrupt
request.

8.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer which is set up as an 8-bit timer (THO register) with
a modulo 32 prescalar implemented with the lower five bits of the TLO register (Figure 8-2). The
upper three bits of the TLO register are indeterminate and should be ignored. Prescalar overflow
increments the THO register.

XTALL [}—>{ +12
Interrupt
| Request
THx |, TLx |Overflow a
> (8 Bits) | (8 Bits) TFx >
l
Tx []
CITx#
TR -
X Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
GATEx x=0or1l
INTX#
A4110-02

Figure 8-2. Timer 0/1 in Mode 0 and Mode 1

8.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer O as a 16-bit timer with THO and TLO connected in cascade (Figure 8-2).
The selected input increments TLO.

8-4 I

Int€|® TIMER/COUNTERS AND WATCHDOG TIMER

8.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TLO register) that automatically reloads from the
THO register (Figure 8-3). TLO overflow sets the timer overflow flag (TFO) in the TCON register
and reloads TLO with the contents of THO, which is preset by software. When the interrupt re-
quest is serviced, hardware clears TFO. The reload leaves THO unchanged. See section 8.5.1,
“Auto-load Setup Example.”

XTALL [} =12
Interrupt
TLx Overflow Request
> i TFx
(8 Bits)
™3 Z\
CITx# /\
Reload
TRx
THx
GATEXx (@ Bit)
INTX# Xx=0or1l

A4111-02

Figure 8-3. Timer 0/1 in Mode 2, Auto-Reload

8.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TLO and THO operate as separate 8-bit timers (Fig-
ure 8-4). This mode is provided for applications requiring an additional 8-bit timer or counter.
TLO uses the timer O control bits C/T0# and GATEO in TMOD, and TRO and TFO in TCON in the
normal manner. THO is locked into a timer function (countigg.F.2) and takes over use of the
timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restricted when
timer 0 is in mode 3. See section 8.4, “Timer 1,” and section 8.4.4, “Mode 3 (Halt).”

84 TIMER1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 8-2 and
8-3 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold-count mode.

I 8-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 8-5) and bits 7, 6,
3, and 2 of the TCON register (Figure 8-6). The TMOD register selects the method of timer gating
(GATE1), timer or counter operation (T/C1#), and mode of operation (M11 and MO1). The
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), inter-
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATE1 = 0), setting TR1 allows timer register TL1 to be increment-

ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control timer op-
eration. This setup can be used to make pulse width measurements. See section 8.5.2, “Pulse
Width Measurements.”

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating an interrupt
request.

XTALL [>~ <12 112 Fosc
)\ ::r;terrup:
eques
. D j N (8Té_i(t)s) Overflow TFO
CITO#
TRO
GATEO

Interrupt

Overflow Request
112 F THO
OSsC >
o ﬁ_ — —
TR1

A4112-02

Figure 8-4. Timer 0 in Mode 3, Two 8-bit Timers

8-6 I

intel.

TIMER/COUNTERS AND WATCHDOG TIMER
TMOD Address: S:89H
Reset State: 0000 0000B
7 0
GATE1 CITi# M11 M01 ‘ ‘ GATEO C/To# M10 MO0
Bit Bit Function
Number Mnemonic
7 GATE1 Timer 1 Gate:
When GATEL1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL =1 and TR1 = 1, external signal INT1 gates the
timer input.
6 CIT1# Timer 1 Counter/Timer Select:
C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.
54 M11, MO1 Timer 1 Mode Select:
M11 MO1
0 O Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow
1 1 Mode 3: Timer 1 halted. Retains count.
3 GATEO Timer 0 Gate:
When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.
2 C/TO# Timer 0 Counter/Timer Select:
C/TO# = 0 selects timer operation: timer O counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.
1,0 M10, M0OO Timer 0 Mode Select:
M10 MOO
0 o Mode 0: 8-bit timer/counter (TO) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit timer
using timer 1's TR1 and TF1 bits.

Figure 8-5. TMOD: Timer/Counter Mode Control Register

8-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

TCON Address: S:88H
Reset State: 0000 0000B
7 0
TF1 TR1 TFO TRO || IEI 1 IEO ITO
Bit Bit Function
Number Mnemonic
7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.
5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 0 Run Control Bit:
Set/cleared by software to turn timer 0 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

Figure 8-6. TCON: Timer/Counter Control Register

When timer 0 is in mode 3, it uses timer 1's overflow flag (TF1) and run control bit (TR1). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

Int€|® TIMER/COUNTERS AND WATCHDOG TIMER

8.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register) with
a modulo-32 prescalar implemented with the lower 5 bits of the TL1 register (Figure 8-2). The
upper 3 bits of the TL1 register are ignored. Prescalar overflow increments the TH1 register.

8.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (Figure 8-2).
The selected input increments TL1.

8.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the TH1
register on overflow (Figure 8-3). Overflow from TL1 sets overflow flag TF1 in the TCON reg-
ister and reloads TL1 with the contents of TH1, which is preset by software. The reload leaves
TH1 unchanged. See section 8.5.1, “Auto-load Setup Example.”

8.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TR1 run control bit is not available, i.e., when timer 0 is in mode 3. See the final para-
graph of section 8.4, “Timer 1.”

8.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. The timer

applications presented in this section are intended to demonstrate timer setup, and do not repre-
sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer 0, but timer 1 can be set up in the same manner using the appropriate registers.

8.5.1 Auto-load Setup Example

Timer 0 can be configured as an eight-bit timer (TLO) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 8-5) to specify: mode 2 for
timer O, C/TO# = 0O to seleci /12 as the timer input, and GATEO = 0 to select TRO as
the timer run control.

2. Enter an eight-bit initial value ghin timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

I 8-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

3. Enter an eight-bit reload valuegfnin register THO. This can be the same gson
different, depending on the application.

4. Setthe TRO bit in the TCON register (Figure 8-6) to start the timer. Timer overflow occurs
after FFH + 1 - g peripheral cycles, setting the TFO flag and loadiggnto TLO from
THO. When the interrupt is serviced, hardware clears TFO.

5. The timer continues to overflow and generate interrupt requests every FFH & 1 - n
peripheral cycles.

6. To halt the timer, clear the TRO bit.

8.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GAXEAnd TR allows an external waveform at pin I to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin IN¥#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits of the TMOD register (Figure 8-5) to specify: mode 1 for
timer 0, C/TO# = 0O to select,E/12 as the timer input, and GATEO = 1 to select INTO as
timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

Set the TRO bit in the TCON register (Figure 8-6) to enable INTO.

Apply the pulse to be measured to pin INTO. The timer runs when the waveform is high.
Clear the TRO bit to disable INTO.

Read timer register THO/TLO to obtain the new value.

Calculate pulse width = 12,J. x (new value - initial value).

© N o g &> W

Example: BEg.= 16 MHz and 12J;. = 750 ns. If the new value = 10,0@@&nd the initial
value = 0, the pulse width = 750 ns x 10,000 = 7.5 ms.

8.6 TIMER?2

Timer 2 is a 16-bit timer/counter. The count is maintained by two eight-bit timer registers, TH2
and TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD, as shown in
Figure 8-11 on page 8-16) and the timer/counter 2 control register (T2CON, as shown in Figure
8-12 on page 8-17) control the operation of timer 2.

8-10 I

Int€|® TIMER/COUNTERS AND WATCHDOG TIMER

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud rate gen-
erator mode, and programmable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 8-3 on page 8-15. Auto-reload is the default mode. Setting
RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selegis/E2 (timer operation) or
external pin T2 (counter operation) as the timer register input. Setting TF2 allows TL2 to be in-
cremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figures 8-7
through 8-10 show the timer 2 configuration for each mode.

8.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 8-7). An overflow con-
dition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

1 Overflow
TH2 | TL2
@Bits) | (8Bits) [| TF2
l
M M
Capture Interrupt
v v Request
RCAP2H|RCAP2L
T2EX []—)\
> EXF2 [~
EXEN2
A4113-02

Figure 8-7. Timer 2: Capture Mode

I 8-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

8.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

8.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 8-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 8-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by software.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to-low tran-
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

xTaLL [} +12 0 NG TH2 TL2 | Overflow

(8 Bits)

1 I/I (8 Bits)
T2 D TR2
CiT2#
Reload

I
RCAPZH: RCAP2L

L TF2

EXF2

Interrupt
Request

T2EX []—)\

EXEN2
A4115-02

Figure 8-8. Timer 2: Auto Reload Mode (DCEN = 0)

8-12 I

Int€|® TIMER/COUNTERS AND WATCHDOG TIMER

8.6.2.2 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 8-9). External pin T2EX con-
trols the direction of the count (Table 8-2 on page 8-3). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load-
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

(Down Counting Reload Value)
T
I
FFH | FFH
|
Toggle
XTALL | + 12 v’: \vk ><— EXF2
A4 , N/ Interrupt
—0 TH2 | TL2 Overflow TE> Request
) ; ———>
_ 11 (8 Bits) 1 (8 Bits)
|
T2 D TR2
CiT2# L Count
\ Direction
1=Up
0 = Down
T
I
RCAP2H|RCAP2L @
I T2EX
(Up Counting Reload Value)
A4114-01

Figure 8-9. Timer 2: Auto Reload Mode (DCEN = 1)

I 8-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

8.6.3 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 8-3. For details regarding this mode
of operation, refer to section 10.6, “Baud Rates.”

8.6.4 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
8-10). The input clock increments TLO at frequengyJ2. The timer repeatedly counts to over-

flow from a preloaded value. At overflow, the contents of the RCAP2H and RCAP2L registers
are loaded into TH2/TL2. In this mode, timer 2 overflows do not generate interrupts. The formula
gives the clock-out frequency as a function of the system oscillator frequency and the value in the
RCAP2H and RCAP2L registers:

FOSC
7% (65536 - RCAP2H, RCAP2L)

Clock-out Frequency =

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz to 4 MHz.
The generated clock signal is brought out to the T2 pin.
Timer 2 is programmed for the clock-out mode as follows:

1. Setthe T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clear the C/T2# bitin T2CON to selegj;F2 as the timer input signal. This also gates the
output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the reload
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.
Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates

and clock frequencies are not independent since both functions use the values in the RCAP2H
and RCAP2L registers.

8-14 I

TIMER/COUNTERS AND WATCHDOG TIMER

XTALL[> + 2 0 N TH2 | TL2
1) (8 Bits) | (8 Bits)
|
T2 [3 *
TR2 ¢
I
RCAP2H!RCAP2L
C/TZ#T :
+2 <1
~ ‘I\I
T20E
Interrupt
Request
T2EX [3 \ I/II\ EXF2 1 >
EXEN2
A4116-02
Figure 8-10. Timer 2: Clock Out Mode
Table 8-3. Timer 2 Modes of Operation
Mode RCLK OR TCLK CP/RL2# T20E
(in T2CON) (in T2CON) | (in T2MOD)
Auto-reload Mode 0 0 0
Capture Mode 0 1 0
Baud Rate Generator Mode 1 X X
Programmable Clock-Out X 0 1

8-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

T2MOD Address: S:C9H
Reset State: XXXX XX00B
7 0
— — — - || - — T20E DCEN
Bit Bit Function
Number Mnemonic
7:2 — Reserved:
The values read from these bits are indeterminate. Write zeros to these
bits.
1 T20E Timer 2 Output Enable Bit:
In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.
0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

Figure 8-11. T2MOD: Timer 2 Mode Control Register

8.7 WATCHDOG TIMER

The peripheral section of the 8XC2X&ntains a dedicated, hardware watchdog timer (WDT)
that automatically resets the chip if it is allowed to time out. The WDT provides a means of re-
covering from routines that do not complete successfully due to software malfunctions. The WDT
described in this section is not associated with the PCA watchdog timer, which is implemented
in software.

8.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.e., the system clock divided by
twelve (Fysd12). The WDTRST special function register at address S:A6H provides control ac-
cess to the WDT. Two operations control the WDT:

¢ Device reset clears and disables the WDT (see section 11.4, “Reset”).

* Writing a specific two-byte sequence to the WDTRST register clears and enables the WDT.
If it is not cleared, the WDT overflows on count 3FFFH + 1. Wigh-= 16 MHz, a peripheral
cycle is 750 ns and the WDT overflows in 750 x 16384 = 12.288 ms. The WDTRST is a write-

only register. Attempts to read it return FFH. The WDT itself is not read or write accessible. The
WDT doesnot drive the external RESET pin.

8-16

Int€|® TIMER/COUNTERS AND WATCHDOG TIMER

T2CON Address: S:C8H
Reset State: 0000 0000B
7 0
TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function
Number Mnemonic
7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK=1or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.
3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK =1 or TCLK = 1.

Figure 8-12. T2CON: Timer 2 Control Register

8-17

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

8.7.2 Using the WDT

To use the WDT to recover from software malfunctions, the user program should control the
WDT as follows:

1. Following device reset, write the two-byte sequence 1EH-E1H to the WDTRST register to
enable the WDT. The WDT begins counting from 0.

2. Repeatedly for the duration of program execution, write the two-byte sequence 1EH-E1H
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at O.

If the WDT overflows, it initiates a device reset (see section 11.4, “Reset”). Device reset clears
the WDT and disables it.

8.7.3 WDT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The WDT

continues to count while the microcontroller is in idle mode. This means the user must service the
WDT during idle. One approach is to use a peripheral timer to generate an interrupt request when
the timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral

timer for the next service period, and puts the microcontroller back into idle.

8.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and to hold
its count. The WDT resumes counting from where it left off if the powerdown mode is terminated
by INTO/INT1. To ensure that the WDT does not overflow shortly after exiting the powerdown
mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled if the
powerdown mode is terminated by a reset.

8-18 I

intel.

Programmable
Counter Array

intel.

CHAPTER 9
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripheral of the
8XC251 that performs a variety of timing and counting operations, including pulse width mod-
ulation (PWM). The PCA provides the capability for a software watchdog timer (WDT).

9.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com-
pare/capture modules. The timer/counter serves as a common time base and event counter for the
compare/capture modules, distributing the current count to the modules by means of a 16-bit bus.
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCARH/CCAPXL, store values for the modules (see Figure 9-1). Additional
SFRs provide control and mode select functions as follows:

* The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figure 9-7 on page 9-13 and Figure
9-8 on page 9-14.

* Five PCA module mode registers (CCARMspecify the operating modes of the
compare/capture modules. See Figure 9-9.

For a list of SFRs associated with the PCA, see Table 9-1. For an address map of all SFRs, see
Table 3-5 on page 3-17. Port 1 provides external I/O for the PCA on a shared basis with other
functions. Table 9-2 identifies the port pins associated with the timer/counter and compare/cap-
ture modules. When not used for PCA 1/0, these pins can be used for standard 1/O functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com-
pare, or pulse width modulation. Module 4 only also has a watchdog-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vector. The
EC bit in the IE special function register is a global interrupt enable for the PCA. Capture events,
compare events in some modes, and PCA timer/counter overflow all set flags in the CCON reg-
ister. Setting the overflow flag (CF) generates a PCA interrupt request if the PCA timer/counter
interrupt enable bit (ECF) in the CMOD register is set (Figure 9-1). Setting a compare/capture
flag (CCK) generates a PCA interrupt request if the E€@Rerrupt enable bit in the corre-
sponding CCAPM register is set (Figures 9-2 and 9-3). For a description of the 8X@25%1S
terrupt system see Chapter 6, “Interrupt System.”

I 9-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

9.1.1 Alternate Port Usage

PCA modules 3 and 4 share port pins with the real-time wait state and address functions as fol-
lows:

¢ PCA module 3 — P1.6/CEX3/WAIT#
e PCA module 4 — P1.7/CEX4/A17/WCLK

When the real-time wait state functions are enabled (using the WCON register), the correspond-
ing PCA modules are automatically disabled. Configuring the 8XC2til$se address line A17
(specified by UCONFIGO, bits RD1:0) overrides the PCA module 3 and WCLK functions. When

a real-time wait state function is enabled, do not use the corresponding PCA module.

NOTE

It is not advisable to alternate between PCA operations and real-time wait state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK). See section
13.5, “External Bus Cycles with Real-time Wait States.”

9.2 PCA TIMER/COUNTER

Figure 9-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL special
function register pair operates as a 16-bit timer/counter. The selected input increments the CL
(low byte) register. When CL overflows, the CH (high byte) register increments after two oscil-
lator periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) gen-
erating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPS1 and CPSO bits in the CMOD register select one of four signals as the input to the
timer/counter (Figure 9-7).

* Fosd12. Provides a clock pulse at S5P2 of every peripheral cycle. WitvFL6 MHz, the
time/counter increments every 750 nanoseconds.

* Fosd4. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With
Fosc= 16 MHz, the time/counter increments every 250 nanoseconds.

¢ Timer O overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer O overflows. This selection provides the PCA with a programmable frequency input.

¢ External signal on P1.2/ECI. The CPU samples the ECI pin at S1P2, S3P2, and S5P2 of
every peripheral cycle. The first clock pulse (S1P2, S3P2, or S5P2) that occurs following a
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection ig /8.

For a description of peripheral cycle timing, see section 2.2.2, “Clock and Reset Unit.”

9-2 I

intel.

Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the out-
put of the NAND gate (Figure 9-1) equals logic 1. The PCA timer/counter continues to operate
during idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the contents
of the CH and CL registers at any time. However, writing to them is inhibited while they are

counting (i.e., when the CR bit is set).

PROGRAMMABLE COUNTER ARRAY

Fosc /12
Fosc /4

00
01
Timer 0 Overflow — 10]
p1r.2/ECI [} {

Compare/Capture
Modules

Module 0

Module 1

[) P1.3/CEX0

[) P1.4/CEX1

e | Module 2 |
Bus Module 2 [] P15/CEX2
Module 3 [] P1.6/CEX3/WAIT#
P1.7/CEX4/
Module 4 C Ar7weLk
(16 Bits)
Interrupt
CH : cL o Request
(8 Bits) I (8 Bits) E: ?
l
PCA CCON.7
Timer/Counter Overflow

[cpsi | cpso | cioL |

CMOD.2 CMOD.1 CMOD.7

PCON.O

-

CCON.6

Idle Mode Run Control

ECF

CMOD.0
Enable

A4162-04

Figure 9-1. Programmable Counter Array

9-3

8XC251SA, SB, SP, SQ USER’S MANUAL

Table 9-1. PCA Special Function Registers (SFRs)

intel.

Mnemonic Description Address
CL PCA Timer/Counter. These registers serve as a common 16-bit timer or S:E9H
CH event counter for the five compare/capture modules. Counts Fog-/12, S:F9H
Fosc/4, timer O overflow, or the external signal on P1.2/ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

CCON PCA Timer/Counter Control Register. Contains the run control bit and S:D8H
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA S:D9H
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

CCAPOH PCA Module 0 Compare/Capture Registers . This register pair stores the S:FAH

CCAPOL comparison value or the captured value. In the PWM mode, the low-byte S:EAH
register controls the duty cycle of the output waveform.

CCAP1H PCA Module 1 Compare/Capture Registers . This register pair stores the S:FBH

CCAP1L comparison value or the captured value. In the PWM mode, the low-byte S:EBH
register controls the duty cycle of the output waveform.

CCAP2H PCA Module 2 Compare/Capture Registers . This register pair stores the S:FCH

CCAP2L comparison value or the captured value. In the PWM mode, the low-byte S:ECH
register controls the duty cycle of the output waveform.

CCAP3H PCA Module 3 Compare/Capture Registers . This register pair stores the S:FDH

CCAP3L comparison value or the captured value. In the PWM mode, the low-byte S:EDH
register controls the duty cycle of the output waveform.

CCAP4H PCA Module 4 Compare/Capture Registers . This register pair stores the S:FEH

CCAPA4L comparison value or the captured value. In the PWM mode, the low-byte S:EEH
register controls the duty cycle of the output waveform.

CCAPMO PCA Compare/Capture Module Mode Registers. Contain bits for S:DAH

CCAPM1 | selecting the operating mode of the compare/capture modules and S:DBH

CCAPM2 enabling the compare/capture flag. See Table 9-3 on page 9-14 for mode S:DCH

CCAPM3 select bit combinations. S:DDH

CCAPM4 S:DEH

Table 9-2. External Signals

Signal - Alternate

Name Type Description Function
ECI PCA Timer/counter External Input . This signal is the external P1.2

clock input for the PCA timer/counter.

CEXO0 /O | Compare/Capture Module External I/O. Each compare/capture P1.3
CEX1 module connects to a Port 1 pin for external I/O. When not used by P14
CEX2 the PCA, these pins can handle standard 1/O. P15
CEX3 P1.6/WAIT#
CEX4 P1.7/A17/WCLK

9-4

Int6|® PROGRAMMABLE COUNTER ARRAY

9.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPXH/CCAPXL), a 16-bit comparator, and various logic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, the low-byte register controls the duty cy-
cle of the output waveform.

The logical configuration of a compare/capture module depends on its mode of operation
(Figures 9-2 through 9-5). Each module can be independently programmed for operation in any
of the following modes:

¢ 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

¢ Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module 4
only), or 8-bit pulse width modulation.

* No operation.

Bit combinations programmed into a compare/capture module’s mode register (CL A4 -
mine the operating mode. Figure 9-9 provides bit definitions and Table 9-3 lists the bit combina-
tions of the available modes. Other bit combinations are invalid and produce undefined results.

The compare/capture modules perform their programmed functions when their common time
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit in the
CCON register. To disable any given module, program it for the no operation mode. The occur-
rence of a capture, software timer, or high-speed output event in a compare/capture module sets
the module’s compare/capture flag (G the CCON register and generates a PCA interrupt
request if the corresponding enable bit in the CCAPagister is set.

The CPU can read or write the CO&Pand CCARL registers at any time.

9.3.1 16-bit Capture Mode

The capture mode (Figure 9-2) provides the PCA with the ability to measure periods, pulse

widths, duty cycles, and phase differences at up to five separate inputs. External I/O pins CEX0
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a
compare/capture module programmed for the capture mode detects the specified transition, it
captures the PCA timer/counter value. This records the time at which an external event is detect-
ed, with a resolution equal to the timer/counter clock period.

I 9-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

To program a compare/capture module for the 16-bit capture mode, program the &#aPP
CAPNX bits in the module’s CCAPNIregister as follows:

¢ To trigger the capture on a positive transition, set Cadttel clear CAPKX.
¢ To trigger the capture on a negative transition, set Cadid clear CAPR

¢ To trigger the capture on a positive or negative transition, set both CAPPx and CAPNX.

Table 9-3 on page 9-14 lists the bit combinations for selecting module modes. For modules in the
capture mode, detection of a valid signal transition at the 1/0 pin x{o&&xises hardware to load

the current PCA timer/counter value into the compare/capture registers (&XEAPXL) and

to set the module’s compare/capture flag (€)3R the CCON register. If the corresponding in-
terrupt enable bit (ECCG§in the CCAPM register is set (Figure 9-9), the PCA sends an interrupt
request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user must clear
the flag in software. A subsequent capture by the same module overwrites the existing captured
value. To preserve a captured value, save it in RAM with the interrupt service routine before the
next capture event occurs.

PCA Timer/Counter
1
Count CH : CL
Input (8 Bits) | (8 Bits)
1

BN

CEXx Capture >\ 7 \

External I/O \/ \/
U N \/

I
CCAPxH : CCAPxL

x=0,1,230r4

X = Don't Care Y g‘é‘i‘r&zg:
CCFx DS >
CCON Register VI Enable
X O CAPPx | CAPNXx O O (@] ECCFx
CCAPMx Mode Register 0

A4163-02

Figure 9-2. PCA 16-bit Capture Mode

9-6

Int6|® PROGRAMMABLE COUNTER ARRAY

9.3.2 Compare Modes

The compare function provides the capability for operating the five modules as timers, event
counters, or pulse width modulators. Four modes employ the compare function: 16-bit software
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of these, the
compare/capture module continuously compares the 16-bit PCA timer/counter value with the 16-
bit value pre-loaded into the module’s CCAPxH/CCAPXL register pair. In the PWM mode, the
module continuously compares the value in the low-byte PCA timer/counter register (CL) with
an 8-bit value in the CCAPxL module register. Comparisons are made three times per peripheral
cycle to match the fastest PCA timer/counter clocking raje/é#). For a description of periph-

eral cycle timing, see section 2.2.2, “Clock and Reset Unit.”

Setting the ECOMDbit in a module’s mode register (CCAPMx) selects the compare function for
that module (Figure 9-9 on page 9-15). To use the modules in the compare modes, observe the
following general procedure:

1. Select the module’s mode of operation.

2. Select the input signal for the PCA timer/counter.

3. Load the comparison value into the module’s compare/capture register pair.
4. Setthe PCA timer/counter run control bit.
5

After a match causes an interrupt, clear the module’s compare/capture flag.

9.3.3 16-bit Software Timer Mode

To program a compare/capture module for the 16-bit software timer mode (Figure 9-3), set the
ECOMx and MATX bits in the module’s CCAPMkIregister. Table 9-3 lists the bit combinations
for selecting module modes.

A match between the PCA timer/counter and the compare/capture registerst@CSBRPxL)

sets the module’s compare/capture flag (€@FRhe CCON register). This generates an interrupt
request if the corresponding interrupt enable bit (ECGRhe CCAPM register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the user must
clear the flag in software. During the interrupt routine, a new 16-bit compare value can be written
to the compare/capture registers (CQARCCAPXL).

NOTE

To prevent an invalid match while updating these registers, user software
should write to CCAPXL first, then CCAPxH. A write to CCAFclears the
ECOMx bit disabling the compare function, while a write to CRHARets the
ECOMx bit re-enabling the compare function.

I 9-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Compare/Capture
PCA Timer/Counter Module
Count ; ;
Input
npu 3 CH ! CL CCAPXH:CCAPXL

(8 Bits) | (8 Bits) | | (8 Bits) | (8 Bits)

{} Toggle

16-Bit Match N
—> Comparator [—(JcExx
Interrupt
Enable Request

CCFx
CCON

Enable

X ECOMx 0 0 MATx | TOGx 0 ECCFx

CCAPMx Mode Register 0

Reset

Write to
CCAPxL X =Don't Care
x=0,1,2,3,4

np
Write to CCAPxH

For software timer mode, set ECOMx and MATX.
For high speed output mode, set ECOMx, MATX, and TOGx.

A4164-01

Figure 9-3. PCA Software Timer and High-speed Output Modes

9.3.4 High-speed Output Mode

The high-speed output mode (Figure 9-3) generates an output signal by toggling the module’s 1/0O
pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in software
because the toggle occunsforethe interrupt request is serviced. Thus, interrupt response time
does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the ;MCAIM

TOGx bits in the module’'s CCAPKIregister. Table 9-3 on page 9-14 lists the bit combinations

for selecting module modes. A match between the PCA timer/counter and the compare/capture
registers (CCARH/CCAPXL) toggles the CEX pin and sets the module’s compare/capture flag
(CCKxin the CCON register). By setting or clearing the Q¥ in software, the user selects
whether the match toggles the pin from low to high or vice versa.

9-8

Int6|® PROGRAMMABLE COUNTER ARRAY

The user also has the option of generating an interrupt request when the match occurs by setting
the corresponding interrupt enable bit (EG@GFthe CCAPM register). Since hardware does not

clear the compare/capture flag when the interrupt is processed, the user must clear the flag in soft-
ware.

If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCARH/CCAPXL).

NOTE
To prevent an invalid match while updating these registers, user software
should write to CCAPXL first, then CCAPxH. A write to CCAFclears the
ECOMx bit disabling the compare function, while a write to CQHARets the
ECOMx bit re-enabling the compare function.

9.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) provides the means to recover from routines that do not complete suc-
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec-
trostatic discharges, etc., or where high reliability is required.

In addition to the 8XC252& 14-bit hardware WDT, the PCA provides a programmable-fre-
guency 16-bit WDT as a mode option on compare/capture module 4. This mode generates a de-
vice reset when the count in the PCA timer/counter matches the value stored in the module 4
compare/capture registers. A PCA WDT reset has the same effect as an external reset. Module 4
is the only PCA module that has the WDT mode. When not programmed as a WDT, it can be used
in the other modes.

To program module 4 for the PCA WDT mode (Figure 9-4), set the ECOM4 and MAT4 bits in
the CCAPMA4 register and the WDTE bit in the CMOD register. Table 9-3 lists the bit combina-
tions for selecting module modes. Also select the desired input for the PCA timer/counter by pro-
gramming the CPS0 and CPS1 bits in the CMOD register (see Figure 9-7 on page 9-13). Enter a
16-bit comparison value in the compare/capture registers (CCAP4H/CCAPA4L). Enter a 16-bit
initial value in the PCA timer/counter (CH/CL) or use the reset value (0000H). The difference
between these values multiplied by the PCA input pulse rate determines the running time to “ex-
piration.” Set the timer/counter run control bit (CR in the CCON register) to start the PCA WDT.

I 9-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset,
the user has three options:

¢ periodically change the comparison value in CCAP4H/CCAPA4L so a match never occurs
¢ periodically change the PCA timer/counter value so a match never occurs

¢ disable the module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.

Compare/Capture
PCA Timer/Counter Module
Count ; ,
Input CH ! CL CCAP4H! CCAP4L
> (8 Bits) | (8Bits) | | (8Bits) | (8 Bits)
l l
:’> 16-Bit Match N
Comparator I/I > PCA WDT Reset
Enable| WDTE
CMOD.6
X ECOM4 0 0 1 X 0 X
CCAPM4 Mode Register
Reset
Write to
CCAPAL . E X =Don't Care
Write to CCAP4H
A4165-01

Figure 9-4. PCA Watchdog Timer Mode

9-10

Int6|® PROGRAMMABLE COUNTER ARRAY

9.3.6 Pulse Width Modulation Mode

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 9-5). The modulated output, which has a pulse width resolution
of eight bits, is available at the CEXin. The PWM output can be used to convert digital data to

an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously compared
with the value in the low byte of the compare/capture register (QUAWhen CL < CCARL,

the output waveform (Figure 9-6) is low. When a match occurs (CL = QOA#Re output wave-

form goes high and remains high until CL rolls over from FFH to 00H, ending the period. At roll-
over the output returns to a low, the value in C&IA#s loaded into CCAR_, and a new period
begins.

CCAPxH
CL rollover from FFH to 00H loads
CCAPxH contents into CCAPxL
X = Don't Care CCAPxL

x=0,1,2, 3,4
8
ng

cL 8 &-Bit CL < CCAPxL
(8 Bits) z> Comparator CEXx

CL = CCAPxL

Enable | o
I I
X ECOMx 0 0 0 0 PWMx 0
CCAPMx Mode Register 0

A4166-01

Figure 9-5. PCA 8-bit PWM Mode

9-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

The value in CCARL determines the duty cycle of the current period. The value in GRAlE-
termines the duty cycle of the following period. Changing the value in QCA®er time mod-
ulates the pulse width. As depicted in Figure 9-6, the 8-bit value in &ICA& vary from 0
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE
To change the value in CCAPwithout glitches, write the new value to the

high byte register (CCA®). This value is shifted by hardware into CCAP
when CL rolls over from FFH to O0H.

The frequency of the PWM output equals the frequency of the PCA timer/counter input signal
divided by 256. The highest frequency occurs when gag4input is selected for the PCA tim-
er/counter. For fs.= 16 MHz, this is 15.6 KHz.

To program a compare/capture module for the PWM mode, set the E@aMPWNMK bits in

the module’s CCAPM register. Table 9-3 lists the bit combinations for selecting module modes.
Also select the desired input for the PCA timer/counter by programming the CPS0 and CPS1 bits
in the CMOD register (see Figure 9-7). Enter an 8-bit value in CCAPXL to specify the duty cycle
of the first period of the PWM output waveform. Enter an 8-bit value in GEAP specify the

duty cycle of the second period. Set the timer/counter run control bit (CR in the CCON register)
to start the PCA timer/counter.

Duty
CCAPxL Cycle Output Waveform
255 0.4% ;| | | |
1
230 10%] I I I
1
2 s ML L1
1
25 90% 0]_|]] §
0 100%
0
A4161-01

Figure 9-6. PWM Variable Duty Cycle

9-12 I

Int6|® PROGRAMMABLE COUNTER ARRAY

CMOD Address: S:D9H
Reset State: 00XX X000B
7 0
cIbL WDTE — - || - cPs1 CPS0 ECF
Bit Bit Function
Number Mnemonic
7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL =0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:
The values read from these bits are indeterminate. Write zeros to these
bits.

2:1 CPS1:.0 PCA Timer/Counter Input Select:
CPS1 CPSO

0 0 Fosc /12

0 1 Fosc /4

1 0 Timer O overflow

1 1 External clock at ECI pin (maximum rate = Fog /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 9-7. CMOD: PCA Timer/Counter Mode Register

9-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

CCON Address: S:D8H
Reset State: 00X0 0000B
7 0
CF CR — ccra || ccr3 CCF2 CCF1 CCFO
Bit Bit Function
Number Mnemonic
7 CF PCA Timer/Counter Overflow Flag:
Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.
6 CR PCA Timer/Counter Run Control Bit:
Set and cleared by software to turn the PCA timer/counter on and off.
5 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
4:0 CCF4:0 PCA Module Compare/Capture Flags:
Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMXx register is set. Must be cleared by software.

Figure 9-8. CCON: PCA Timer/Counter Control Register

Table 9-3. PCA Module Modes

ECOMx | CAPPx | CAPNx | MATx | TOGx | PWMx | ECCFx Module Mode
0 0 0 0 0 0 0 No operation
X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXx
X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXx
X 1 1 0 0 0 X 16-bit capture on positive- or
negative-edge trigger at CEXx
1 0 0 1 0 0 X Compare: software timer
1 0 0 1 1 0 X Compare: high-speed output
1 0 0 0 0 1 0 Compare: 8-bit PWM
1 0 0 1 X 0 X Compare: PCA WDT
(CCAPM4 only) (Note 3)
NOTES:

1. This table shows the CCAPMXx register bit combinations for selecting the operating modes of the PCA
compare/capture modules. Other bit combinations are invalid. See Figure 9-9 for bit definitions.

2. x=0-4, X=Don't care.

3. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

9-14

Int6|® PROGRAMMABLE COUNTER ARRAY

CCAPMXx (x = 0-4) Address: ggﬁﬁl\M/l(l) ggg:
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

7 0
— ECOMx | CAPPx | CAPNx |[MATx TOGx PWMx | ECCFx
Bit Bit Function
Number Mnemonic
7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
6 ECOMx Compare Modes:

ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPXx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNXx Capture Mode (Negative):

CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMx and MATx to implement the software timer mode. When
MATXx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.
2 TOGx Toggle:

Set ECOMX, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

Figure 9-9. CCAPM x: PCA Compare/Capture Module Mode Registers

9-15

intel. 1 O

Serial I/0 Port

intel.

CHAPTER 10
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter provides instructions for programming the serial port and generating the se-
rial I/O baud rates with timer 1 and timer 2.

10.1 OVERVIEW

The serial I/O port provides both synchronous and asynchronous communication modes. It oper-
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-
cation, and automatic address recognition. The serial port also operates in a single synchronous
mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 anc
timer 2. Baud rates are detailed in section 10.6, “Baud Rates.”

The serial port signals are defined in Table 10-1, and the serial port special function registers are
described in Table 10-2. Figure 10-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pin and
sends and receives messages on the RXD pin (Figure 10-1). The SBUF register, which holds re-
ceived bytes and bytes to be transmitted, actually consists of two physically different registers.
To send, software writes a byte to SBUF; to receive, software reads SBUF. The receive shift reg-
ister allows reception of a second byte before the first byte has been read from SBUF. However,
if software has not read the first byte by the time the second byte is received, the second byte will
overwrite the first. The UART sets interrupt bits Tl and RI on transmission and reception, respec-
tively. These two bits share a single interrupt request and interrupt vector.

Table 10-1. Serial Port Signals

Function i Multiplexed
Name Type Description With
TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In P3.1

modes 1, 2, and 3, TXD transmits serial data.

RXD 110 Receive Data. In mode 0, RXD transmits and receives serial P3.0
data. In modes 1, 2, and 3, RXD receives serial data.

10-1

8XC251SA, SB, SP, SQ USER’S MANUAL

Table 10-2. Serial Port Special Function Registers

intel.

Serial I/0 SCON
Control

RI TI

Mnemonic Description Address
SBUF Serial Buffer. Two separate registers comprise the SBUF register. Writing 99H
to SBUF loads the transmit buffer; reading SBUF accesses the receive
buffer.
SCON Serial Port Control . Selects the serial port operating mode. SCON enables 98H
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt
bits.
SADDR Serial Address. Defines the individual address for a slave device. A8H
SADEN Serial Address Enable. Specifies the mask byte that is used to define the B8H
given address for a slave device.
IB Bus
Write SBUF- Read SBUF
™D [J= SBUF SBUF
(Transmit) (Receive)
Mode 0 /\
Y Transmit Load SBUF
Receive
RxD [|V Shift Register

! AN . Interrupt

Request

A4123-02

10-2

Figure 10-1. Serial Port Block Diagram

Int6|® SERIAL I/O PORT

The serial port control (SCON) register (Figure 10-2) configures and controls the serial port.

SCON Address: 98H
Reset State: 0000 0000B
7 0
FE/SMO sm1 SM2 REN || TB8 RBS TI RI
Bit Bit Function
Number Mnemonic
7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate

0 0 0 Shift register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/32T or Fog /641
1 1 3 9-bit UART Variable

tSelect by programming the SMOD bit in the PCON register (see section
10.6, “Baud Rates”).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

Figure 10-2. SCON: Serial Port Control Register

10-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

Figure 10-2. SCON: Serial Port Control Register (Continued)

10.2 MODES OF OPERATION

The serial /O port can operate in one synchronous and three asynchronous modes.

10.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSB) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud ratg,@flR. Figure 10-3 shows the timing

for transmission and reception in mode 0.

10.2.1.1 Transmission (Mode 0)

Follow these steps to begin a transmission:
1. Write to the SCON register, clearing bits SM0, SM1, and REN.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the LSB (D0) onto the RXD pin. At S3P1 of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the
tenth cycle, hardware drives the RXD pin high and asserts Tl (S1P1) to indicate the end of the
transmission.

10-4 I

Int6|® SERIAL I/O PORT

Transmit
TXD | | | | I—wJ |_| |_
S3P1 S6P1
Write to
SIBUF Jl_l S
Shift SoPz " " $—H "
S6P2 S6P2 S6P2 S6P2
RXD | N_Do X ot A2):Ds >/
S6P2 S6P2) |_
Tl 5
|
Receive o
TXD | | | | |_”J |_| |_
S3P1 S6P1
Wsrict;%tﬁ | | Set REN, Clear RI (
S6P2
Shift) " " ‘J "
S6P2 S6P2 S6pP2 S6P2
DO D1 Dé D7
RXD T] D ”-D I
S6P2 sep2 I
RI | [qé
S1P1
A4124-02

Figure 10-3. Mode 0 Timing

10.2.1.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1, and Rl and set
the REN bit.

Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (Figure 10-3).
In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the first
clock-signal pulse, and the LSB (DO) is sampled on the RXD pin at S5P2. The DO bit is then shift-
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSB (D7) is shift-
ed into the shift register, and hardware asserts Rl (S1P1) to indicate a completed reception.
Software can then read the received byte from SBUF.

I 10-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

10.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation.

* Mode 1. Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 10-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted
on the TXD pin and received on the RXD pin. When a message is received, the stop bit is
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1
or timer 2 (see section 10.6, “Baud Rates”).

* Modes 2 and 3.Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 10-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB
first), one programmable ninth data bit, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequency.

— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

\ /D°><D1><D2><°3><D“><D5><D6><D7><D8>/
T‘ Data Byte
Start Bit Ninth Data Bit (Modes 2 and 3 only)

Stop Bit

A2261-01

Figure 10-4. Data Frame (Modes 1, 2, and 3)

10.2.2.1 Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SMO and SM1 bits, and clear the
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

10.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is then ini-
tiated by a detected high-to-low transition on the RXD pin.

10-6 I

Int6|® SERIAL I/O PORT

10.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the framing
bit error detection feature, set the SMODO bit in the PCON register (Figure 12-1 on page 12-2).
When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit.
An invalid stop bit may result from noise on the serial lines or from simultaneous transmission
by two CPUs. If a valid stop bit is not found, the software sets the FE bit in the SCON register
(Figure 10-2).

Software may examine the FE bit after each reception to check for data errors. Once set, only soft-
ware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot clear
the FE bit.

10.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (Figure 10-2). When the multiprocessor com-
munication feature is enabled, the serial port can differentiate between data frames (ninth bit
clear) and address frames (ninth bit set). This allows the microcontroller to function as a slave
processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the
received address matches the slave’s address, the receiver hardware sets the RB8 bit and the R
bit in the SCON register, generating an interrupt.

NOTE

The ES bit must be set in the IE register to allow the RI bit to generate an
interrupt. The IE register is described in Chapter 8, Interrupts.

The addressed slave’s software then clears the SM2 bit in the SCON register and prepares to re-

ceive the data bytes. The other slaves are unaffected by these data bytes because they are waitin
to respond to their own addresses.

10.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (i.e., the SM2 bit is set in the SCON register).

I 10-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Implemented in hardware, automatic address recognition enhances the multiprocessor communi-
cation feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configu-
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received
command frame address matches the device’s address and is terminated by a valid stop bit.

NOTE
The multiprocessor communication and automatic address recognition features

cannot be enabled in mode O (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identifiedjlweaaddress and laroad-
castaddress.

10.5.1 Given Address

Each device has andividual address that is specified in the SADDR register; the SADEN reg-
ister is a mask byte that contains don't-care bits (defined by zeros) to form the dpvéress-

dress. These don't-care bits provide the flexibility to address one or more slaves at a time. The
following example illustrates how a given address is formed. Note that to address a device by its
individual address, the SADEN mask byte must be 1111 1111.

SADDR = 0101 0110
SADEN = 1111 1100
Given = 0101 01XX

The following is an example of how to use given addresses to address different slaves:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 11111010 SADEN = 1111 1101
Given = 1111 0X0X Given = 1111 00X1
Slave B: SADDR = 1111 0011
SADEN = 11111001
Given = 1111 OXX1

10-8

Int6|® SERIAL I/O PORT

The SADEN byte is selected so that each slave may be addressed separately. For Slave A, bit 0
(the LSB) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A only,
the master must send an address where bit 0 is clear (e.g., 1111 0000).

For Slave A, bit 1 is a O; for Slaves B and C, bit 1 is a don't-care bit. To communicate with Slaves
B and C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g.,
1111 0011).

For Slaves A and B, bit 2 is a don't-care bit; for Slave C, bit 2 is a 0. To communicate with Slaves
A and B, but not Slave C, the master must send an address with bit O set, bit 1 clear, and bit 2 set
(e.g., 1111 0101).

To communicate with Slaves A, B, and C, the master must send an address with bit O set, bit 1
clear, and bit 2 clear (e.g., 1111 0001).

10.5.2 Broadcast Address

A broadcastaddress is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-care bits, e.g.:

SADDR = 01010110
SADEN = 1111 1100
(SADDR) OR (SADEN) = 1111 111X

The use of don't-care bits provides flexibility in defining the broadcast address, however, in most
applications, a broadcast address is OFFH.

The following is an example of using broadcast addresses:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 1111 1010 SADEN = 1111 1101
Broadcast = 1111 1X11 Broadcast = 1111 1111
Slave B: SADDR = 1111 0011
SADEN = 1111 1001

Broadcast = 1111 1X11

For Slaves A and B, bit 2 is a don’'t-care bit; for Slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH.

I 10-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

10.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00H, i.e., the given and broadcast
addresses are XXXX XXXX (all don't-care bits). This ensures that the serial port is backwards-
compatible with MC® 51 microcontrollers that do not support automatic address recognition.

10.6 BAUD RATES

You must select the baud rate for the serial port transmitter and receiver when operating in modes

1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception

rates can be the same or different. Table 10-3 summarizes the baud rates that can be used for the
four serial I/O modes.

Table 10-3. Summary of Baud Rates

Mode No. of Send and Receive Senq and Receive
Baud Rates | atthe Same Rate | at Different Rates
0 1 N/A N/A
1 Many t Yes Yes
2 2 Yes ?
3 Many t Yes Yes

T Baud rates are determined by overflow of timer 1 and/or timer 2.

10.6.1 Baud Rate for Mode 0

The baud rate for mode 0 is fixed afF12.

10.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by the SMOD1 bit in the PCON register (Figure
12-1 on page 12-2). The following expression defines the baud rate:

SMOD1 < FOSC

Serial /0 Mode 2 Baud Rate = 2 64

10.6.3 Baud Rates for Modes 1 and 3
In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You

may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

10-10

Int6|® SERIAL I/O PORT

10.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

SMOD1 Timer 1 Overflow Rate

Serial /0 Modes 1 and 3 Baud Rate = 2 3

10.6.3.2 Selecting Timer 1 as the Baud Rate Generator

To select timer 1 as the baud rate generator:

¢ Disable the timer interrupt by clearing the ETI bit in the IEO register (Figure 6-2 on page
6-6).

* Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 8-5 on page 8-7).

¢ Select timer mode 0-3 by programming the M1, MO bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD
= 0010B). The resulting baud rate is defined by the following expression:

SMOD1 FOSC

Serial I/0O Modes 1 and 3 Baud Rate = 2 35 X 12X [256 —(THT)]

Timer 1 can generate very low baud rates with the following setup:
¢ Enable the timer 1 interrupt by setting the ET1 bit in the IE register.
¢ Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).

* Use the timer 1 interrupt to initiate a 16-bit software reload.

Table 10-4 lists commonly used baud rates and shows how they are generated by timer 1.

I 10-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table 10-4. Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3

Baud Oscillator Timer 1
Rate Frequency SMOD1 Reload
(Fosc) CIT# | Mode Value
62.5 Kbaud (Max) 12.0 MHz 1 0 2 FFH
19.2 Kbaud 11.059 MHz 1 0 2 FDH
9.6 Kbaud 11.059 MHz 0 0 2 FDH
4.8 Kbaud 11.059 MHz 0 0 2 FAH
2.4 Kbaud 11.059 MHz 0 0 2 F4H
1.2 Kbaud 11.059 MHz 0 0 2 E8H
137.5 Baud 11.986 MHz 0 0 2 1DH
110.0 Baud 6.0 MHz 0 0 2 72H
110.0 Baud 12.0 MHz 0 0 1 FEEBH

10.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure
10-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by software.

The timer 2 baud rate is expressed by the following formula:

Timer 2 Overflow Rate

Serial /0 Modes 1 and 3 Baud Rate = 6

10.6.3.4 Selecting Timer 2 as the Baud Rate Generator

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bits in the T2CON register as shown in Table 10-5. (You may select differ-
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 into its
baud rate generator mode (Figure 10-5). In this mode, a rollover in the TH2 register does not set
the TF2 hit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the EXF2
bit in the T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2).
You can use the T2EX pin as an additional external interrupt by setting the EXEN2 bitin T2CON.

NOTE

Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

10-12

Int6|® SERIAL I/O PORT

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

Table 10-5. Selecting the Baud Rate Generator(s)

RCLCK | TCLCK Receiver Transmitter
Bit Bit Baud Rate Generator | Baud Rate Generator
0 0 Timer 1 Timer 1
0 1 Timer 1 Timer 2
1 0 Timer 2 Timer 1
1 1 Timer 2 Timer 2

Note:
Oscillator frequency Timer 1
is divided by 2, not 12. o\I/ rlow

SMOD1
<16 o RX
+16 Clock
. X
+16 P>
| 0 Clock
RCAP2H : RCAP2L

I TCLCK

NG Interrupt
T2EX |]—)\ I/I, ExF2 [foTE
EXEN2
Note availability of additional external interrupt.

A4120-01

Figure 10-5. Timer 2 in Baud Rate Generator Mode

10-13

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Note that timer 2 increments every state timg,{2Twhen it is in the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L" denotes the contents of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer:

I:OSC

Serial /0 Modes 1 and 3 Baud Rates = 35 X [65536 —(RCAP2H, RCAP20)]

NOTE

When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Table 10-6 lists commonly used baud rates and shows how they are generated by timer 2.

Table 10-6. Timer 2 Generated Baud Rates

Oscillator
Baud Rate Frequency RCAP2H | RCAP2L
(Fosc)

375.0 Kbaud 12 MHz FFH FFH
9.6 Kbaud 12 MHz FFH D9H
4.8 Kbaud 12 MHz FFH B2H
2.4 Kbaud 12 MHz FFH 64H
1.2 Kbaud 12 MHz FEH C8H

300.0 baud 12 MHz FBH 1EH

110.0 baud 12 MHz F2H AFH

300.0 baud 6 MHz FDH 8FH

110.0 baud 6 MHz F9H 57H

10-14

intel.

11

Minimum Hardware
Setup

intel.

CHAPTER 11
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of tH& 28& $nicrocontroller and de-
scribes a minimum hardware setup. Topics covered include power, ground, clock source, and de-
vice reset. For parameter values, refer to the device data sheet.

11.1 MINIMUM HARDWARE SETUP

Figure 11-1 shows a minimum hardware setup that employs the on-chip oscillator for the system
clock and provides power-on reset. Control signals and Ports 0, 1, 2, and 3 are not shown. See
sections 11.3, “Clock Sources” and 11.4.4, “Power-on Reset.”

V,
8XC251Sx =<

VCCZ
—_— 1lpF

XTALL RST _—I_

O
=

—[]
<._|8|_r|

XTAL2

VSSl

VSSZ

Note:

Ve is @ secondary power pin that reduces power supply noise. Vgs; and Vgg, are
secondary ground pins that reduce ground bounce and improve power supply by-passing.
Connections to these pins are not required for proper device operation.

A4141-02

Figure 11-1. Minimum Setup

11-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

11.2 ELECTRICAL ENVIRONMENT

The 8XC2518is a high-speed CHMOS device. To achieve satisfactory performance, its operat-
ing environment should accommodate the device signal waveforms without introducing distor-
tion or noise. Design considerations relating to device performance are discussed in this section.
See the device data sheet for voltage and current requirements, operating frequency, and wave-
form timing.

11.2.1 Power and Ground Pins

Power the 8XC2518from a well-regulated power supply designed for high-speed digital loads.
Use short, low impedance connections to the powgg €Wd V.,) and ground (Vg Vg, and

Vso) pins.

Vc2 iS a secondary power pin that reduces power supply noigeawd Vo are secondary
ground pins that reduce ground bounce and improve power supply bypassing. The secondary
power and ground pins are not substitutes fardhd Vs They are not required for proper de-

vice operation; thus, the 8XC2548 compatible with designs that do not provide connections

to these pins.

11.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pigsdo W... Untermi-
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

11.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.01 puF bypass capacitors betweam each Y;pin. Place

the capacitors close to the device to minimize path lengths.

Multilayer printed circuit boards with separatgMnd ground planes help minimize noise. For

additional information on noise reduction, see Application Note AP-125, “Designing Microcon-
troller Systems for Electrically Noisy Environments.”

11-2 I

Int€|® MINIMUM HARDWARE SETUP

11.3 CLOCK SOURCES

The 8XC2518 can obtain the system clock signal from an external clock source (Figure 11-3) or
it can generate the clock signal using the on-chip oscillator amplifier and external capacitors and
resonator (Figure 11-2).

11.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTAL1 to XTAL2 as the fre-
guency-determining element (Figure 11-2). The crystal operates in its fundamental mode as an
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de-
sign considerations include crystal specifications, operating temperature range, and parasitic
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. With high
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTALZ2 are protected by on-chip electrostatic discharge (ESD) devices, D1 and
D2, which are diodes parasitic to thg RETs. They serve as clamps tg\and Vo Feedback
resistor R in the inverter circuit, formed from paralleled n- and p- channel FETSs, permits the PD
bit in the PCON register (Figure 12-1 on page 12-2) to disable the clock during powerdown.

Noise spikes at XTAL1 and XTAL2 can disrupt microcontroller timing. To minimize coupling
between other digital circuits and the oscillator, locate the crystal and the capacitors near the chip
and connect to XTAL1, XTAL2, and M with short, direct traces. To further reduce the effects of
noise, place guard rings around the oscillator circuitry and ground the metal crystal case.

To Internal
Timing Circuit

Quartz Crystal X
or Ceramic Resonator CTALL D1 PD# —DO—
Y .
\ | @, AW ‘ |
Re

—

T c

8XC251Sx
s
(@]

-

it

—|
N
>
>
5

A4143-02

Figure 11-2. CHMOS On-chip Oscillator

I 11-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Applications Note AP-155, “Oscillators for Microcontrollers,” in the Embedded
Applications handbook.

11.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic
resonator applications may require slightly different capacitor values and circuit configuration.
Consult the manufacturer’s data sheet for specific information.

11.3.3 External Clock

To operate the CHMOS 8XC2523rom an external clock, connect the clock source to the
XTAL1 pin as shown in Figure 11-3. Leave the XTAL2 pin floating. The external clock driver
can be a CMOS gate. If the clock driver is a TTL device, its output must be connectgd to V
through a 4.7 ® pullup resistor.

External
Clock —I >o—— XTALL
CMOS
Clock Driver

N/C ———] XTAL2

-

Note: If TTL clock driver is used, connect a 4.7kQ pullup resistor from driver output to Vcc.

A4142-03

Figure 11-3. External Clock Connection

11-4

Int€|® MINIMUM HARDWARE SETUP

For external clock drive requirements, see the device data sheet. Figure 11-4 shows the clock
drive waveform. The external clock source must meet the minimum high and low timgs (T

and T, cx) and the maximum rise and fall times.(d,, and) to minimize the effect of ex-

ternal noise on the clock generator circuit. Long rise and fall times increase the chance that ex-
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 due to the
interaction between the internal amplifier and its feedback capacitance (i.e., the Miller effect) at
power-on. Once the input waveform requirements are met, the input capacitance remains under
20 pF.

TereH —> Terex
Ve —05---—

0.7 Ve
<<— Tgoicx —>
0.45V 0-2Vee=0. \

1
Teho ™ <

-

=< TereL >

A4119-01

Figure 11-4. External Clock Drive Waveforms

11.4 RESET

A device reset initializes the 8XC2548nd vectors the CPU to address FF:0000H. A reset is re-
quired after applying power at turn-on. A reset is a means of exiting the idle and powerdown
modes or recovering from software malfunctions.

To achieve a valid reset,.¥ must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for 64 clock cyclegd§4iter the oscillator has sta-
bilized.
Device reset is initiated in two ways:

¢ externally, by asserting the RST pin

¢ internally, if the hardware WDT or the PCA WDT expires

11-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold
start. A cold start reset (POF = 1) is a reset that occurs after power has been-gffias Yallen

below 3V, so the contents of volatile memory are indeterminate. POF is set by hardware when
Vc rises from less than 3V to its normal operating level. See section 12.2.2, “Power Off Flag.”
A warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for ex-
ample, a reset initiated by a WDT overflow or an external reset used to terminate the idle or pow-
erdown modes.

11.4.1 Externally Initiated Resets

To reset the 8XC25XGhold the RST pin at a logic high for at least 64 clock cyclesyG#T

while the oscillator is running. Reset can be accomplished automatically at the time power is ap-
plied by capacitively coupling RST to.¥ (see Figure 11-1 and section 11.4.4, “Power-on Re-
set”). The RST pin has a Schmitt trigger input and a pulldown resistor.

11.4.2 WODT Initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) generates a
reset signal. WDT initiated resets have the same effect as an external reset. See section 8.7,
“Watchdog Timer,” and section 9.3.5, “PCA Watchdog Timer Mode.”

11.4.3 Reset Operation

When a reset is initiated, whether externally or by a WDT, the port pins are immediately forced
to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the WDT initiated reset signals are combined internally. For an ex-
ternal reset the voltage on the RST pin must be held high fegg4%r WDT initiated resets, a
5-bit counter in the reset logic maintains the signal for the requireg, 64T

The CPU checks for the presence of the combined reset signal eygry\®tien a reset is de-

tected, the CPU responds by triggering the internal reset routine. The reset routine loads the SFRs
with their reset values (see Table 3-5 on page 3-17). Reset does not affect on-chip data RAM or
the register file. However, following a cold start reset, these are indeterminate begabss V

fallen too low or has been off. Following a synchronizing operation and the configuration fetch,
the CPU vectors to address FF:0000. Figure 11-5 shows the reset timing sequence.

11-6 I

Int€|® MINIMUM HARDWARE SETUP

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first ALE
occurs 324 after the reset signal goes low. For this reason, other devices can not be synchro-
nized to the internal timings of the 8XC251S

NOTE

Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8XC25XSwvithout a reset may improperly initialize the
program counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

11.4.4 Power-on Reset

To automatically generate a reset at power-on, connect the RST pin tg.thia Yhrough a 1-pF
capacitor as shown in Figure 11-1.

When V. is applied, the RST pin rises tg.\ then decays exponentially as the capacitor charg-

es. The time constant must be such that RST remains high (above the turn-off threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plus,64% power-on,

V¢ should rise within approximately 10 ms. Oscillator start-up time is a function the crystal fre-
guency; typical start-up times are 1 ms for a 10 MHz crystal and 10 ms for a 1 Mhz crystal.

During power-on, the port pins are in a random state until forced to their reset state by the asyn-
chronous logic.

Reducing V. quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This volt-
age is internally limited and does not harm the device.

I 11-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

RST ff] N\
S
Internal Reset
" erne}l?ouetisnee —l I_&'g—
PSEN# |

ALE | I | I
First ALE j

A4103-01

Figure 11-5. Reset Timing Sequence

11-8

intel.

12

Special Operating
Modes

intel.

CHAPTER 12
SPECIAL OPERATING MODES

This chapter describes the power control (PCON) register and three special operating modes: idle,
powerdown, and on-circuit emulation (ONCE).

12.1 GENERAL

The idle and powerdown modes are power reduction modes for use in applications where power
consumption is a concern. User instructions activate these modes by setting bits in the PCON reg-
ister. Program execution halts, but resumes when the mode is exited by an interrupt. While in idle
or power-down, the ¥ pin is the input for backup power.

ONCE is a test mode that electrically isolates the 8XC2&b8 the system in which it operates.

12.2 POWER CONTROL REGISTER

The PCON special function register (Figure 12-1) provides two control bits for the serial 1/0
function, bits for selecting the idle and powerdown modes, the power off flag, and two general
purpose flags.

12.2.1 Serial I/O Control Bits

The SMOD1 bit in the PCON register is a factor in determining the serial I/O baud rate. See Fig-
ure 12-1 and section 10.6, “Baud Rates.”

The SMODO bit in the PCON register determines whether bit 7 of the SCON register provides
read/write access to the framing error (FE) bit (SMODO = 1) or to SMO, a serial I/O mode select
bit (SMODO = 0). See Figure 12-1 (PCON) and Figure 10-2 on page 10-3 (SCON).

12.2.2 Power Off Flag

Hardware sets the Power Off Flag (POF) in PCON whgiriges from <3V to > 3 V to indicate

that on-chip volatile memory is indeterminate (e.g., at power-on). The POF can be set or cleared
by software. After a reset, check the status of this bit to determine whether a cold start reset or a
warm start reset occurred (see section 11.4, “Reset”). After a cold start, user software should clear
the POF. If POF = 1 is detected at other times, do a reset to reinitialize the chip, singe<for V

3 V data may have been lost or some logic may have malfunctioned.

I 12-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

PCON Address: S:87H
Reset State: 00XX 0000B
7 0
sMoD1 | SMoDo _ POF ‘ ‘ GF1 GFO PD IDL
Bit Bit Function
Number Mnemonic
7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See section 10.6, “Baud Rates.”

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See Figure 10-2 on page 10-3 (SCON).

5 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

4 POF Power Off Flag:

Set by hardware as V rises above 3 V to indicate that power has been
off or V¢ had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

Figure 12-1. Power Control (PCON) Register

12-2

intel.

SPECIAL OPERATING MODES

Table 12-1. Pin Conditions in Various Modes

Mode Program ALE PSEN# Port 0 Port 1 Port 2 Port 3
Memory Pin Pin Pins Pins Pins Pins
Reset Don't Care | Weak High | Weak High | Floating Weak High | Weak High | Weak High
Idle Internal 1 1 Data Data Data Data
Idle External 1 1 Floating Data Data Data
Powerdown | Internal 0 0 Data Data Data Data
Powerdown | External 0 0 Floating Data Data Data
ONCE Don'’t Care Floating Floating Floating Weak High | Weak High | Weak High
' XTAL1
> ® Interrupt,
| L Cc1 ' DO— %Z?]k Serial Port,
= I__L : 0S¢ Timer Block
C2 = |XTAL2
| T ~ A cPU
* @, |_
' [
: PD# IDL#

A4160-01

Figure 12-2. Idle and Powerdown Clock Control

12-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

12.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to about 40% of normal.

In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known states
while the peripherals continue to be clocked (Figure 12-2). The CPU status before entering idle

mode is preserved; i.e., the program counter, program status word register, and register file retain
their data for the duration of idle mode. The contents of the SFRs and RAM are also retained. The
status of the port pins depends upon the location of the program memory.

* Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are reading data (Table 12-1).

¢ External program memory: the ALE and PSEN# pins are pulled high; the port O pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 12-1).

NOTE

If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bit in the CMOD register (Figure 9-7 on page 9-13).

12.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. The 8XC28&h&ers idle mode upon execu-
tion of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last instruc-

tion executed.

CAUTION

If the IDL bit and the PD bit are set simultaneously, the 8XCR&hEers
powerdown mode.

12-4 I

Int6|® SPECIAL OPERATING MODES

12.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

* Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose flags
(GF1 and GFO in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GFO.

* Reset the chip. See section 11.4, “Reset.” A logic high on the RST pin clears the IDL bit in
the PCON register directly and asynchronously. This restores the clocks to the CPU.
Program execution momentarily resumes with the instruction immediately following the
instruction that activated the idle mode and may continue for a number of clock cycles
before the internal reset algorithm takes control. Reset initializes the 8XKabd Sectors
the CPU to address FF:0000H.

NOTE

During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

12.4 POWERDOWN MODE

The powerdown mode places the 8XC26ir5a very low power state. Powerdown mode stops
the oscillator and freezes all clocks at known states (Figure 12-2). The CPU status prior to enter-
ing powerdown mode is preserved, i.e., the program counter, program status word register, and
register file retain their data for the duration of powerdown mode. In addition, the SFRs and RAM
contents are preserved. The status of the port pins depends on the location of the program mem-
ory:

* Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1, 2,

and 3 pins are reading data (Table 12-1).

* External program memory: the ALE and PSEN# pins are pulled low; the port O pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 12-1).

NOTE

Vcc may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, that Vcc is not reduced until power-
down is invoked.

I 12-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

12.4.1 Entering Powerdown Mode

To enter powerdown mode, set the PCON register PD bit. The 8X&251's the power-down
mode upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is
the last instruction executed.

12.4.2 Exiting Powerdown Mode

CAUTION

If V c was reduced during the powerdown mode, do not exit powerdown until
Vcis restored to the normal operating level.

There are two ways to exit the powerdown mode:

* Generate an enabled external interrupt. Hardware clears the PD bit in the PCON register
which starts the oscillator and restores the clocks to the CPU and peripherals. Execution
resumes with the interrupt service routine. Upon completion of the interrupt service routine,
program execution resumes with the instruction immediately following the instruction that
activated powerdown mode.

NOTE
To enable an external interrupt, set the IE register EX0 and/or EX1 bit[s]. The
external interrupt used to exit powerdown mode must be configured as level
sensitive and must be assigned the highest priority. In addition, the duration of
the interrupt must be of sufficient length to allow the oscillator to stabilize.

* Generate a reset. See section 11.4, “Reset.” A logic high on the RST pin clears the PD bit in
the PCON register directly and asynchronously. This starts the oscillator and restores the
clocks to the CPU and peripherals. Program execution momentarily resumes with the
instruction immediately following the instruction that activated powerdown and may
continue for a number of clock cycles before the internal reset algorithm takes control.
Reset initializes the 8XC25%%nd vectors the CPU to address FF:0000H.

NOTE

During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powerdown mode should not write to a port pin or to the
external RAM.

12-6

Int6|® SPECIAL OPERATING MODES

12.5 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8XC251S
based systems without removing the chip from the circuit board. A clamp-on emulator or test
CPU is used in place of the 8XC2X1\8hich is electrically isolated from the system.

12.5.1 Entering ONCE Mode

To enter the ONCE mode:

1. Assert RST to initiate a device reset. See section 11.4.1, “Externally Initiated Resets,” and
the reset waveforms in Figure 11-5 on page 11-8.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN# =
low, P0.7:5 = low, P0.4 = high, P0.3:0 = low (i.e., port 0 = 10H).

3. Deassert RST, then remove the logic levels from PSEN# and port O.
These actions cause the 8XC2%18& enter the ONCE mode. Port 1, 2, and 3 pins are weakly
pulled high and port 0, ALE, and PSEN# pins are floating (Table 12-1). Thus the device is elec-

trically isolated from the remainder of the system which can then be tested by an emulator or test
CPU. Note that in the ONCE mode the device oscillator remains active.

12.5.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

I 12-7

intel.

13

External Memory
Interface

CHAPTER 13
EXTERNAL MEMORY INTERFACE

13.1 OVERVIEW

The external memory interface comprises the external bus (ports 0 and 2, and when enabled also
includes port 1.7:6) as well as the bus control signals (RD#, WR#, PSEN# and ALE). Chip con-
figuration bytes (see Chapter 4, “Device Configuration”) determine several interface options:
page mode or nonpage mode for external code fetches; the number of external address bits (16,
17, or 18); the address ranges for RD#, WR#, and PSEN#; and the number of preprogrammed
external wait states to extend RD#, WR#, PSEN# or ALE. Real-time wait states can be enabled
with special function register WCON.1:0. You can use these options to tailor the interface to your
application. See also section 4.5, “Configuring the External Memory Interface.”

The external memory interface operates in either page mode or nonpage mode. Page mode pro-
vides increased performance by reducing the time for external code fetches. Page mode does not
apply to code fetches from on-chip memory. The reset routine configures the 8%GabaS-

eration in page mode or nonpage mode according to bit 1 of configuration byte UCONFIGO. Fig-
ure 13-1 shows the structure of the external address bus for page and nonpage mode operation.
PO carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on
PO in nonpage mode and with A15:8 on P2 in page mode.

Table 13-1 describes the external memory interface signals. The address and data signals (AD7:0
on port 0 and A15:8 on port 2) are defined for nonpage mode.

8XC251SA RAM/ 8XC251SA RAM/
8XC251SB EPROM/ 8XC251SB EPROM/
8XC251SP Flash 8XC251SP Flash
8XC251S 8XC251S .
Q A15:8 . Q pr.o
P2 M A15:8
v
ADT:0 AT:0) Latch :> A15:8
PO Latch :> AT:0 A15:8/D7:0 A15.8
N
D7:0 PO | A0
A7:0
Nonpage Mode Page Mode
A4159-02

Figure 13-1. Bus Structure in Nonpage Mode and Page Mode

I 13-1

8XC251SA, SB, SP, SQ USER’S MANUAL

Table 13-1. External Memory Interface Signals

intel.

Signal
Name

Type

Description

Alternate
Function

Al7

Address Line 17 .

P1.7/CEX4/WCLK

Al6

Address Line 16 . See RD#.

P3.7/RD#

A15:8t

Address Lines . Upper address for external bus (non-page mode).

P2.7:0

AD7:0f

Address/Data Lines . Multiplexed lower address and data for the
external bus (non-page mode).

P0.7:0

ALE

Address Latch Enable . ALE signals the start of an external bus
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0.

PROG#

EA#

External Access . For EA# strapped to ground, all program
memory accesses are off-chip. For EA# = strapped to V¢, an
access is to on-chip OTPROM/ROM if the address is within the
range of the on-chip OTPROM/ROM,; otherwise the access is off-
chip. The value of EA# is latched at reset. For a ROMless device,
strap EA# to ground.

Vep

PSEN#

Program Store Enable . Read signal output. This output is
asserted for a memory address range that depends on bits RDO
and RD1 in the configuration byte (see also RD#):

RD1 RDO Address Range for Assertion
0 0 All addresses
0 1 All addresses
1 0 All addresses
1 1 All addresses = 80:0000H

RD#

Read or 17th Address Bit (A16) . Read signal output to external
data memory or 17th external address bit (A16), depending on the
values of bits RDO and RD1 in configuration byte. (See PSEN#):

RD1 RDO
0 0
0 1
1 0
1 1

Function

The pin functions as A16 only.
The pin functions as A16 only.
The pin functions as P3.7 only.

RD# asserted for reads at all addresses <7F:FFFFH.

P3.7/A16

WAIT#

Real-time Wait State Input . The real-time WAIT # input is
enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit at
S:A7H. During bus cycles, the external memory system can signal
‘system ready’ to the microcontroller in real time by controlling the
WAIT# input signal on the port 1.6 input.

P1.6/CEX3

WCLK

Wait Clock Output . The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit at
S:A7H. When enabled, the WCLK output produces a square wave
signal with a period of one-half the oscillator frequency.

Al17/P1.7/CEX4

WR#

(0]

Write . Write signal output to external memory. WR# is asserted for
writes to all valid memory locations.

P3.6

T If the chip is configured for page-mode operation, port O carries the lower address bits (A7:0), and port 2
carries the upper address bits (A15:8) and the data (D7:0).

13-2

Int€|® EXTERNAL MEMORY INTERFACE

13.2 EXTERNAL BUS CYCLES

The section describes the bus cycles the 8XC28%8cutes to fetch code, read data, and write
data in external memory. Both page mode and nonpage mode are described and illustrated. For
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not
provide precise timing information. This section does not cover wait states (see section 13.4, “Ex-
ternal Bus Cycles with Configurable Wait States”) or configuration byte bus cycles (see section
13.6, “Configuration Byte Bus Cycles”). For bus cycle timing parameters refer to the datasheet.

An “inactive external bus” exists when the 8XC2%1Snot executing external bus cycles. This
occurs under any of the three following conditions:
* Bus Idle (The chip is in normal operating mode but no external bus cycles are executing)
* The chipis in idle mode
* The chip is in powerdown mode

13.2.1 Bus Cycle Definitions

Table 13-2 lists the types of external bus cycles. It also shows the activity on the bus for nonpage

mode and page mode bus cycles with no wait states. There are three types of nonpage mode bus
cycles: code read, data read, and data write. There are four types of page mode bus cycles: code
fetch (page miss), code read (page hit), data read, and data write. The data read and data write
cycles are the same for page mode and nonpage mode (except the multiplexing of D7:0 on ports

0 and 2).

Table 13-2. Bus Cycle Definitions (No Wait States)

Bus Activity
Mode Bus Cycle
State 1 State 2 State 3
Code Read ALE RD#/PSEN#, code in
N&”é’;ge Data Read (2) ALE RD#/PSEN# data in
Data Write (2) ALE WR# WR# high, data out
Code Read, Page Miss ALE RD#/PSEN#, code in
Page Code Read, Page Hit (3) | PSEN#, code in
Mode Data Read (2) ALE RD#/PSEN# data in
Data Write (2) ALE WR# WR# high, data out
NOTES:

1. Signal timing implied by this table is approximate (idealized).

2. Dataread (page mode) = data read (nonpage mode) and write (page mode) = write (nonpage mode)
except that in page mode data appears on P2 (multiplexed with A15:0), whereas in nonpage mode
data appears on PO (multiplexed with A7:0).

3. The initial code read page hit bus cycle can execute only following a code read page miss cycle.

13-3

8XC251SA, SB, SP, SQ USER’S MANUAL Int9|®

13.2.2 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. The up-
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the
data (D7:0) on port 0. External code read bus cycles execute in approximately two state times.
See Table 13-2 and Figure 13-2. External data read bus cycles (Figure 13-3) and external write
bus cycles (Figure 13-4) execute in approximately three state times. For the write cycle (Figure
13-4), a third state is appended to provide recovery time for the bus. Note that the write signal
WR# is asserted for all memory regions, except for the case of RD1:0 = 11, where WR# is assert-
ed for regions 00:-01: bubt for regions FE:—FF:.

State 1 State 2
sac_ S\ W\
we |/
RD#/PSEN# \ =
PO —(|A7:0 | H D|7:O o

Al17/A16/P2 -(A17/A16/A15:8

A2807-04

Figure 13-2. External Code Fetch (Nonpage Mode)

State 1 State 2 State 3
SO WAL WA A WA WA
ALE /__\ | |
RD#/PSEN# \ ‘
PO —(| Ao — | b7 |)—

A17/A16/P2 A17/A16/A15:8 »
‘ | ‘ | 1 |

A4230-01

Figure 13-3. External Data Read (Nonpage Mode)

13-4

Int€|® EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3
a \ S\
WR# \ ‘
PO ———(| Ao — | 570 |)—

A17/A16/P2 A17/A16/A15:8 *

A2808-03

Figure 13-4. External Data Write (Nonpage Mode)

13.2.3 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under certain
conditions the controller fetches an instruction from external memory in one state time instead of
two (Table 13-2). Page mode does not affect internal code fetches.

The first code fetch to a 256-byte “page” of memory always uses a two-state bus cycle. Subse-
guent successive code fetches to the same page (it require only a one-state bus cycle.
When a subsequent fetch is to a different pagma@e misgit again requires a two-state bus cy-

cle. The following external code fetches are always page-miss cycles:

¢ the first external code fetch after a page rollovert
* the first external code fetch after an external data bus cycle
* the first external code fetch after powerdown or idle mode
¢ the first external code fetch after a branch, return, interrupt, etc.
In page mode, the 8XC25% 8us structure differs from the bus structure in MCS 51 controllers

(Figure 13-1). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2, and the
lower address bits (A7:0) are on port O.

t A page rollover occurs when the address increments from the top of one 256-byte page to the bottom of
the next (e.g., from FF:FAFFH to FF:FBOOH).

13-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Figure 13-5 shows the two types of external bus cycles for code fetches in page mpdgethe
misscycle is the same as a code fetch cycle in nonpage mode (except D7:0 is multiplexed with
A15:8 on P2.). For thpage-hitcycle, the upper eight address bits are the same as for the preced-
ing cycle. Therefore, ALE is not asserted, and the values of A15:8 are retained in the address
latches. In a single state, the new values of A7:0 are placed on port 0, and memory places the in-
struction byte on port 2. Notice that a page hit reduces the available address access time by one
state. Therefore, faster memories may be required to support page mode.

Figure 13-6 and Figure 13-7 show the bus cycles for data reads and data writes in page mode.
These cycles are identical to those for nonpage mode, except for the different signals on ports 0
and 2.

Cycle 1, Page-Miss Cycle 2, Page-Hit

State 1 State 2 State 1
AN AR WY AW WA A
ALE / ! \

PSEN# \ [+

A17/A16/PO A17/AL6/A7:0 H A7ia16/A7:0)

N B B
P2 ——{ Al5:8 H bro — b7o)
1 | 1 | : |

T During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

A2809-04

Figure 13-5. External Code Fetch (Page Mode)

13-6

EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3
XTAL _/__/—_/—_/_\ N -
ALE / \

RD#/PSEN#]

A17/A16/PO H

P2 — Al5:8 — D7:0)

A2811-04
Figure 13-6. External Data Read (Page Mode)
State 1 State 2 State 3
XTAL _/__/—_/—_/_\ _/—_/—_
ALE / ! \ ‘ ‘
WR# : \] :
A17/A16/PO -(A17/A16/AT:0)-
P2 — Al5:8 — D7:0)
1 I 1 I 1 I
A2810-03

Figure 13-7. External Data Write (Page Mode)

13-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.3 WAIT STATES

The 8XC251SA, SB, SP, SQ provides three types of wait state solutions to external memory prob-
lems: real-time, RD#/WR#/PSEN#, and ALE wait states. The 8XC251SA, SB, SP, SQ supports

traditional real-time wait state operations for dynamic bus control. Real-time wait state opera-

tions are controlled by means of the WCON special function register. See section 13.5, “External
Bus Cycles with Real-time Wait States.”

In addition, the 8XC251SA, SB, SP, SQ device can be configured at reset to add wait states to
external bus cycles by extending the ALE or RD#/WR#/PSEN# pulses. See section 4.5.3, “Wait
State Configuration Bits.”

You can configure the chip to use multiple types of wait states. Accesses to on-chip code and data
memory always use zero wait states. The following sections demonstrate wait state usage.

13.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES

Three types of wait state solutions are available; real-time, RD#WR#/PSEN#, and ALE wait
states. The 8XC251SA, SB, SP, SQ supports traditional real-time wait state operations for dy-
namic bus control. The real-time wait state operations are enabled with the WCON SFR bits at
address S:0A7H. The device can also be configured to add wait states to the external bus cycles
by extending the bus timing of the RD#WR#/PSEN# pulses or by extending the ALE pulse or
by adding 0, 1, 2, or 3 wait states to the RD#/WR#/PSEN# pulses.

The XALE# configuration bit specifies 0 or 1 wait state for ALE. The WSAL:0# and WSB1:0#
configuration bits specify the number of wait states for RD/WR/PSEN. See section 4.5.3, “Wait
State Configuration Bits.” You can configure the chip to use multiple types of wait states. Access-
es to on-chip code and data memory always use zero wait states. The following sections describe
each solution.

13.4.1 Extending RD#/WR#/PSEN#

Figure 13-8 shows the nonpage mode code fetch bus cycle with one RD#/PSEN# wait state. The
wait state extends the bus cycle to three states. Figure 13-9 shows the nonpage mode data write
bus cycle with one WR# wait state. The wait state extends the bus cycle to four states. The wave-
forms in Figure 13-9 also apply to the nonpage mode data read external bus cycle if RD#/PSEN#
is substituted for WR#.

13-8 I

Int6|® EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3

XTAL

ALE J_\

RD#/PSEN#

Po — AT:0 — D7::O)

AL7/A16/P2 A17/A16/A15:8 *
I 1 I I I
A2812-04
Figure 13-8. External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)
State 1 State 2 State 3 State 4
S AR A WAL A WA AL WA A W
ALE / ; \ ‘ ‘ ‘
WR# | . | |
PO — AT:0 — D7:0 r—
AL7/AL6P2 K A17/A16/A15:8 *
I I I I I I I
A4174-02

Figure 13-9. External Data Write (Nonpage Mode, One WR# Wait State)

13-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.4.2 Extending ALE

Figure 13-10 shows the nonpage mode code fetch external bus cycle with ALE extended. The
wait state extends the bus cycle from two states to three. For read and write external bus cycles,
the extended ALE extends the bus cycle from three states to four.

State 1 State 2 State 3

T w ?
—
.(

\

ALE

RD#/PSEN#

PO

AT H D7:0)

Al7/A16/P2

A2813-04

Figure 13-10. External Code Fetch (Nonpage Mode, One ALE Wait State)

13.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES

In addition to fixed-length wait states such as RD#WR#/PSEN# and ALE, the 8XC251SA, SB,
SP, SQ offers a real-time wait state. The programmer can dynamically adjust the delay of the real-
time wait state by means of registers.

There are two ways of using real-time wait states; the WAIT# pin used as an input bus control and
the WAIT# signal used in conjunction with the WCLK output signal. These two signals are en-
abled with the WCON special function register in the SFR space at S:0A7H. Refer to Figure
13-11.

13-10 I

Int€|® EXTERNAL MEMORY INTERFACE

WCON Address: S:A7H
Reset State: XXXX XX00B
7 0

_ ‘ _ ‘ _ _ H — — RTWCE RTWE

Bit Bit Function
Number | Mnemonic
7:2 — Reserved:
The values read from these bits are indeterminate. Write “0” to these
bits.
1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT

CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait-
state input on port 1.6 (WAIT#).

Figure 13-11. Real-time Wait State Control Register (WCON)

NOTE

The WAIT# and WCLK signals are alternate functions for the port 1.6:7 input
and output buffers. Use of other alternate functions may conflict with wait
state operation.

When WAIT# is enabled, PCA module 3 is disabled and resumes operation
only when the WAIT# function is disabled. The same relationship exists
between WCLK and PCA module 4. It is not advisable to alternate between
PCA operations and real-time wait-state operations at port 1.6 (CEX3/WAIT#)
or port 1.7 (CEX4/WCLK).

Port 1.7 can also be enabled to drive address signal A17 in some memory
designs. The Al7 address signal always takes priority over other alternate
functions (in this case, both PCA.4 and WCLK). Even if RTWCE is enabled in
WCON.1, the WCLK output does not appear during bus cycles enabled to
drive address A17. The use of WAIT# as an input on port 1.6 is unaffected by
address signals.

13-11

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.5.1 Real-time WAIT# Enable (RTWE)

The real-time WAIT# input is enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit at
S:A7H. During bus cycles, the external memory system can signal “system ready” to the micro-
controller in real time by controlling the WAIT# input signal on the port 1.6 input. Sampling of
WAIT# is coincident with the activation of RD#/PSEN# or WR# signals driven low during a bus
cycle. A ‘not-ready’ condition is recognized by the WAIT# signal held jatby the external
memory system. Use of PCA module 3 may conflict with your design. Do not use CEX3 inter-
changeably with the WAIT# signal on the port 1.3 input. Setup and hold times are illustrated in
the 8XC251SA, SB, SP, SQ High-Performance CHMOS Microcontroller Datasheet.

13.5.2 Real-time WAIT CLOCK Enable (RTWCE)

The real-time WAIT CLOCK output is driven at port 1.7 (WCLK) by writing a logical ‘1’ to the
WCON.1 (RTWCE) bit at S:A7H. When enabled, the WCLK output produces a square wave sig-
nal with a period of one-half the oscillator frequency. Use of the programmable counter array
(module 4) may conflict with your design. Do not use CEX4 interchangeably with WCLK output.
Use of address signal A17 disables both WCLK and CEX4 operation at the port 1.7 output.

13.5.3 Real-time Wait State Bus Cycle Diagrams

Figure 13-12 shows the code fetch/data read bus cycle in nonpage mode. Figure 13-14 depicts the
data read cycle in page mode.

CAUTION

The real-time wait function has critical external timing for code fetch. For this
reason, it is not advisable to use the real-time wait feature for code fetch in
page mode.

The data write bus cycle in nonpage mode is shown in Figure 13-13. Figure 13-15 shows the data
write bus cycle in page mode.

13-12 I

Int6|® EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3 State 1 (next cycle)

wo \ TN T
ALE E / \

RD#/PSEN# .
WAIT# \ \ / 7
PO —(AO-A7)—(D0-D7): stretched AO-A7 }—
P2 ,(A8-A15): stretched).—(A8-A15

A5007-01

Figure 13-12. External Code Fetch/Data Read (Nonpage Mode, RT Wait State)

State 1 State 2 State 3 State 4

ALE / \ E

WR# stretched /

-~ - - - - - -

WR¢ T\

WAIT# \ \ / 7 :
PO i—(AO-A?)—(DOED7) stretched)
P2 -(| ABALS) stretched)

A5009-01

Figure 13-13. External Data Write (Nonpage Mode, RT Wait State)

13-13

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

State 1

State 2

State 3 State 1 (next cycle)

wek ___ [\ /[__/
ALE . [\ l l ./ \
RD#/PSEN# |, \ |/ RD#IPSEN# [stretched
WAIT# \ \ / 7 .
P2 E—(AB-A15)—(DO-D7)' stretched A8-A15)—(
PO o AO-A7) stretched)y AO-A7
A5008-01
Figure 13-14. External Data Read (Page Mode, RT Wait State)
State 1 State 2 State 3 State 4
wew \ /T __ /[/[_ /[
Y E E
WR# \ / WR# stretched /
WAIT# T \ \ / 7 Z
P2 E—(AS—AlS)—(D07) stretched)
PO A AO-A7) stretched *
A5010-01

Figure 13-15. External Data Write (Page Mode, RT Wait State)

13-14

Int€|® EXTERNAL MEMORY INTERFACE

13.6 CONFIGURATION BYTE BUS CYCLES

If EA# = 0, devices obtain configuration information from a configuration array in external mem-
ory. This section describes the bus cycles executed by the reset routine to fetch user configuration
bytes from external memory. Configuration bytes are discussed in Chapter 4, “Device Configu-
ration.”

To determine whether the external memory is set up for page mode or nonpage mode operation,
the 8XC2518 accesses external memory using internal address FF:FFF8H (UCONFIGO). See
states 1-4 in Figure 13-16. If the external memory is set up for page mode, it places UCONFIGO
on P2 as D7:0, overwriting A15:8 (FFH). If external memory is set up for nonpage mode, A15:8
is not overwritten. The 8XC25%k®xamines P2 bit 1. Subsequent configuration byte fetches are

in page mode if P2.1 = 0 and in nonpage mode if P2.1 = 1. The 8Xg&&tBes UCONFIGO

again (states 5-8 in Figure 13-16) and then UCONFIGL1 via internal address FF:FFF9H.

The configuration byte bus cycles always execute with ALE extended and one PSEN# wait state.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

P2 —< A15:8:: FFH >—< D;:O)-(A15:8:: FFH >—< D:7:O)—
| | | IPage Moide

AL5:8 = FFH)—

Nonpage Mode

A4228-01

Figure 13-16. Configuration Byte Bus Cycles

I 13-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.7 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 7,
“Input/Output Ports.”

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig-
inate from three sources:

¢ the 8XC2518 CPU (address bits, data bits)

¢ the port SFRs: PO and P2 (logic levels)

¢ an external device (data bits)
The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Table 13-3

lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the
external bus is idle or executing a bus cycle.

Table 13-3. Port 0 and Port 2 Pin Status In Normal Operating Mode

bort Edz'rtélsilgg Nonpage Mode Page Mode
Bus Cycle Bus Idle Bus Cycle Bus Idle
Port 0 8orl6 AD7:0 (1) High Impedance A7:0 (1) High Impedance
bort 2 8 P2 (2) P2 P2/D7:0 (2) High Impedance
16 A15:8 P2 A15:8/D7:0 High Impedance
NOTES:

1. During external memory accesses, the CPU writes FFH to the PO register and the register con-
tents are lost.
2. The P2 register can be used to select 256-byte pages in external memory.

13.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode, the port pins have the same signals as those on the 8XC51FX. For an external
memory instruction using a 16-bit address, the port pins carry address and data bits during the bus
cycle. However, if the instruction uses an 8-bit address (e.g., MOVX @RIi), the contents of P2 are
driven onto the pins. These pin signals can be used to select 256-bit pages in external memory.

During a bus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A

bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held at high
impedance, and the contents of P2 are driven onto the port 2 pins.

13-16

Int€|® EXTERNAL MEMORY INTERFACE

13.7.2 Port 0 and Port 2 Pin Status in Page Mode

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. However,
if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven onto the
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in external
memory. During bus idle, the port 0 and port 2 pins are held at high impedance.

(For port pin status when the chip in is idle mode, powerdown mode, or reset, see Chapter 12,
“Special Operating Modes.")

I 13-17

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.
13.8 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents several external memory designs for 8X£2§4tems. These examples
illustrate the design flexibility provided by the configuration options, especially for the PSEN#
and RD# signals. Many designs are possible. The examples employ the 8XC251SB but also apply
to SA, SP, and SQ devices if the differences in on-chip memory are allowed for. The first example
is an exception; it employs an 18-bit external address bus. For a general discussion on external
memory see “Configuring the External Memory Interface” on page 4-8. Figure 4-5 on page 4-10
and Figure 4-6 on page 4-11 depict the mapping of internal memory space into external memory.

13.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM

In this example, an 80C251SB operates in page mode with an 18-bit external address bus inter-
faced to 128 Kbytes of external flash memory and 128 Kbytes of external RAM (Figure 13-17).
Figure 13-18 shows how the external flash and RAM are addressed in the internal address space.
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:.

1
]
|
CE# CE#
80C251SB RAM Flash
(128 Kbytes) (128 Kbytes)
AL7 | D7:0 D7:0
) <:: ::) Latch Al5:8 :> A15:8
PO AT7:0 :> AT:0
A16 A16 Al6
EA# _l
WR# PSEN#| = OE# WE# OE# WE#
A4219-01

13-18

Figure 13-17. Bus Diagram for Example 1: 80C251SB in Page Mode

EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

FFFFH

0000H

FFFFH

0420H

128 Kbytes External Flash

128 Kbytes —1056 Bytes
External RAM

1056 Bytes On-chip RAM

A4220-02

Figure 13-18. Address Space for Example 1

13-19

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.
13.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM

In this example, an 80C251SB operates in page mode with a 17-bit external address bus inter-
faced to 64 Kbytes of flash memory for code storage and 32 Kbytes of external RAM (Figure
13-19). The 80C251SB is configured so that PSEN# is asserted for all reads, and RD# functions
as A16 (RD1:0 = 01). Figure 13-20 shows how the external flash and RAM are addressed in the
internal address space. Addresses 0420H-7FFFH in external RAM are addressed in region 00:.
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:.

I :
1
|
80C251SB CE# CE#
RAM FLASH
2K 4K
AL6 (32 Kbytes) (64 Kbytes)
D7:0 D7:0
P2 K M Latch : A15:8 : A15:8
A15:8/D7:0 A15:8 Data Code
N
PO A AT:0 ﬂ- AT7;0
L4
A7:0
L
WR# PSEN# OE# WE# OE# WE#
[[
A4148-01

Figure 13-19. Bus Diagram for Example 2: 80C251SB in Page Mode

13-20 I

EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

FFFFH

0000H

64 Kbytes External Flash

0420H 7FFFH

32 Kbytes —1056 Bytes External RAM

1056 Bytes On-chip RAM

A4168-03

Figure 13-20. Address Space for Example 2

13-21

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM

In this example, an 87C251SB/83C251SB operates in honpage mode with a 17-bit external ad-
dress bus interfaced to 128 Kbytes of external RAM (Figure 13-21). The 87C251SB/83C251SB
is configured so that RD# functions as A16, and PSEN# is asserted for all reads. Figure 13-22
shows how the external RAM is addressed in the internal address space.

RAM
83C251SB
87C251SB Vee (128 Kbytes)
EA# —-I _|: CE#
Al6
Al6 Al6
Data
A15:8 .
P2 M A15:8
L4
AD7:0 A7:0

PO Latch M A70

) p70

WR# PSEN# OE# WE#

A4147-02

Figure 13-21. Bus Diagram for Example 3: 87C251SB/83C251SB in Nonpage Mode

13-22 I

EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

16 Kbytes On-chip Code Memory

128 Kbytes —1056 Bytes External RAM

FFFFH
0000H 3FFEH

FFFFH
0420H

1056 Bytes On-chip RAM

A4169-03

Figure 13-22. Address Space for Example 3

13-23

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM

In this example, an 87C251SB/83C251SB operates in honpage mode with a 16-bit external ad-
dress bus interfaced to 64 Kbytes of RAM (Figure 13-23). This configuration leaves
P3.7/RD#/A16 available for general I/O (RD1:0 = 10). A maximum of 64 Kbytes of external
memory can be used and all regions of internal memory map into the single 64-Kbyte region in
external memory (see Figure 4-6 on page 4-11). User code is stored in on-chip ROM/OT-
PROM/EPROM.

83C251SB V. RAM
87C251SB cc (64 Kbytes)
EA# J CE# 1
P2 ™ a1s:8
v
N
PO Latch A A7:0
'> D7:0
v
WR# PSEN# OE# WE#
A4221-01

Figure 13-23. Bus Diagram for Example 4: 87C251SB/83C251SB in Nonpage Mode

13-24 I

EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

FFFFH
0000H 3FFFH

FFFFH
0420H

16 Kbytes On-chip Code Memory

External RAM 64 Kbytes — 1056 Bytes

1056 Bytes On-chip RAM

A4224-02

Figure 13-24. Address Space for Example 4

13-25

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80C251SB operates in nonpage mode with a 16-bit external address bus in-
terfaced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 13-25). The 80C251SB is con-
figured so that RD# is asserted for addresséis:FFFFH and PSEN# is asserted for addresses
80:0000H. Figure 13-26 shows two ways to address the external memory in the internal memory
space.

Addressing external RAM locations in either region 00: or region 01: produces the same address
at the external bus pins. However, if the external EPROM and the external RAM require different
numbers of wait states, the external RAM must be addressed entirely in region 01:. Recall that
the number of wait states for region 01: is independent of the remaining regions and always have
the same number of wait states (see Table 4-3 on page 4-13) unless the real-time wait states are
selected (see Figure 13-11 on page 13-11).

The examples that follow illustrate two possibilities for addressing the external RAM.

13.8.5.1 An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-chip data
RAM (00:0020H-00:041FH) and, when necessary, roll out into the slower external RAM. See
the left side of Figure 13-26. In this case, the external RAM can have wait states only if the
EPROM has wait states. Otherwise, if the stack rolls out above location 00:041FH, the external
RAM would be accessed with no wait state.

13.8.5.2 An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data can be
stored in the on-chip data RAM, and the stack can be located entirely in external memory. If the
external RAM requires a different number of wait states than the EPROM, address the external
RAM entirely in region 01:. See the right side of Figure 13-26. Addresses above 00:041FH roll
out to external memory beginning at 0420H.

13-26 I

intel.

EXTERNAL MEMORY INTERFACE

80C251SB

EA#

P2

PO

WR# RD# PSEN#

u

Al15:8

A/D7:0

Latch

EPROM
(64 Kbytes)

CE#

Al15:8

Code

A7:0

D7:0

OE#

L]

RAM
(64 Kbytes)

CE#
A15:8

Data

D7:0

OE# WE#

I

A4145-01

Figure 13-25. Bus Diagram for Example 5: 80C251SB in Nonpage Mode

13-27

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Address Space Address Space
(256 Kbytes) (256 Kbytes)
FFFFH | 64 Kbytes FFFFH | 64 Kbytes
FF: External EPROM FF: External
EPROM
0000H 0000H
FE: FE:
FFFFH | 64 Kbytes
01: 01: External
RAM
External RAM 000K
FFFFH T 64 Kbytes —
00: 1056 Bytes 00:
0420H 0420H
1056 Bytes) 1056 Bytes
On-chip RAM 00:0000H On-chip RAM
4175-03

Figure 13-26. Address Space for Examples 5 and 6

13-28

Int€|® EXTERNAL MEMORY INTERFACE

13.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80C251SB operates in page mode with a 16-bit external address bus inter-
faced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 13-27). The 80C251SB is config-
ured so that RD# is asserted for addresséB:FFFFH, and PSEN# is asserted for addresses
80:0000.

This system is the same as Example 5 (Figure 13-25) except that it operates in page mode. Ac-
cordingly, the two systems have the same memory map (Figure 13-26), and the comments on ad-
dressing external RAM apply here also.

EPROM RAM
80C251SB (64 Kbytes) (64 Kbytes)
D7:0 ‘ D7:0
P2 -<:: M Lateh [Z M A15:8 :' A15:8
A15:8/D7:0 A15:8 Code Data
N
PO M a7:0)| A0
A7:0 4
EA# 1 _E CE# _E CE#
WR# RD# psen#] - = OE# | oex we
[

A4146-01

Figure 13-27. Bus Diagram for Example 6: 80C251SB in Page Mode

I 13-29

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

13.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash

In this example, an 80C251SB operates in page mode with a 17-bit external address bus inter-
faced to 128 Kbytes of flash memory (Figure 13-28). Port 2 carries both the upper address bits
(A15:0) and the data (D7:0), while port O carries only the lower address bits (A7:0). The
80C251SB is configured for a single read signal (PSEN#). The 128 Kbytes of external flash are
accessed via internal memory regions FE: and FF: in the internal address space.

80C251SB ELASH
(128 Kbytes)
L I R
Al6
Al6 Al6
Code
D7:0
) Latch :) A15:8
A15:8/D7:0 A15:8
N
PO M A7:0
v
A7:0
WR# PSEN# OE# WE#
A4151-01

Figure 13-28. Bus Diagram for Example 7: 80C251SB in Page Mode

13-30 I

intel.

14

Programming and
Verifying Nonvolatile
Memory

CHAPTER 14
PROGRAMMING AND VERIFYING
NONVOLATILE MEMORY

This chapter provides instructions for programming and verifying on-chip nonvolatile memory
on the 8XC251% The programming instructions cover the entry of program code into on-chip
code memory, configuration information into the on-chip configuration bytes, and other catego-
ries of information into on-chip memory outside the memory address space. The verify instruc-
tions permit reading these memory locations to verify their contents. The operations covered in
this chapter are:

¢ programming and verifying the on-chip code memory (8 Kbytes, 16 Kbytes)
¢ programming and verifying the on-chip configuration bytes (8 bytes)
¢ programming and verifying the lock bits (3 bits)
* programming the encryption array (128 bytes)
¢ verifying the signature bytes (3 bytes)

Programming instructions apply to the 87C2%1&ne-time programmable ROM (OTPROM)
and erasable programmable ROM (EPROM)). Verify instructions apply to the 87¢26&S
83C251% (mask ROM), and the configuration bytes on the 80C251SB, SQ (ho ROM/OTPROM/
EPROM). In the unprogrammed state, EPROM and OTPROM contains all 1s.

14.1 GENERAL

The 87C251%is programmed and verified in the same manner as the 87C51FX, using the same
quick-pulse programming algorithm, which programs gt &% 12.75V using a series of five
100-us PROGH# pulses per byte. This results in a programming time of approximately 16 seconds
for the 16-Kbyte on-chip code memory.

Programming and verifying operations differ from normal microcontroller operation. Memory
accesses are made one byte at a time, input/output ports are used in a different manner, and the
EA#/Vpp and ALE/PROG# pins are used for their alternative (programming) functions. For a
complete list of signal descriptions, see Appendix B.

I 14-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

In some microcontroller applications, it is desirable that user program code be secure from unau-
thorized access. The 8XC254&fers two types of protection for program code stored in the on-
chip array.

* Program code in the on-chip code memory is encrypted when read out for verification if the
encryption array is programmed.

¢ A three-level lock bit system restricts external access to the on-chip code memory.

14.1.1 Programming Considerations for On-chip Code Memory

It is recommended that user program code be located starting at address FF:0100H. Since the first
instruction following device reset is fetched from FF:0000H, use a jump instruction to FF:0100H
to begin execution of the user program. For information on address spaces, see Chapter 3.

The top eight bytes of the memory address space (FF:FFF8H—FF:FFFFH) are reserved for device
configuration. Do not read or write user code at these locations. For EA# = 1, the reset routine
obtains configuration information from a configuration array located these addresses. For
EA# = 0, the reset routine obtains configuration information from a configuration array in exter-
nal memory using these internal addresses. For a detailed discussion of device configuration, see
Chapter 4.

ROM/OTPROM/EPROM devices have on-chip user code memory at FF:0000-FF:1FFFH
(8 Kbytes) or FF:0000H—-FF:3FFFH (16 Kbytes). Addresses outside these ranges access external
memory. With EA# = 1 and both on-chip and external code memory, you can place code at the
highest addresses of the on-chip ROM/OTPROM/EPROM. When the highest on-chip address is
exceeded during execution, code fetches automatically rollover from on-chip memory to external
memory. See the notes on pipelining in section 3.2.2, “On-chip Code Memory (83C251SA, SB,
SP, SQ/87C251SA, SB, SP, SQ).”

With EA# = 1 and only on-chip code memory, multi-byte instructions and instructions that result

in call returns or prefetches should be located a few bytes below the maximum address to avoid
inadvertently exceeding the top address. Use an EJMP instruction, five or more addresses below
the top of memory, to continue execution in other areas of memory. See the note on pipelining in

section 3.2.2, “On-chip Code Memory (83C251SA, SB, SP, SQ/87C251SA, SB, SP, SQ).”

CAUTION

Execution of user code located in the top few bytes of the on-chip user
memory may cause prefetches from the next higher addresses, i.e. external
memory. External memory fetches make use of port 0 and port 3 and may
disrupt program execution if the program uses port 0 or port 3 for a different
purpose.

14-2 I

Int6|® PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

14.1.2 EPROM Devices

On EPROM devices, the quartz window must be covered with an opaque label when the device
is in operation. This is not so much to protect the EPROM array from inadvertent erasure, as to
protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die during
device operation may cause a logical malfunction.

14.2 PROGRAMMING AND VERIFYING MODES

Table 14-1 lists the programming and verifying modes and provides details about the setup. The
value applied to port 0 determines the mode. The upper digit specifies program or verify and the
lower digit selects what memory function is programmed (e.g., on-chip code memory, encryption
array, configuration bytes, etc.). The addresses applied to port 1 and port 3 address locations in
the selected memory function. The encryption array, lock bits, and signature bytes reside in non-
volatile memory outside the memory address space. Configuration bytes (UCONFIGO and
UCONFIG1) reside in nonvolatile memory at top of the memory address space for ROM/OT-
PROM/EPROM devices (Figure 4-1 on page 4-2) and in external memory for devices without
ROM/OTPROM/EPROM (Figure 4-2 on page 4-3).

14.3 GENERAL SETUP

Figure 14-1 shows the general setup for programming and verifying nonvolatile memory on the
87C2518%. The figure also applies to verifying the 83C2%48d reading the configuration bytes
on the 80C251SB, and the 80C251SQ.

The controller must be running with an oscillator frequency of 4 MHz to 6 MHz. To program, set

up the controller as shown in Table 14-1 with the mode of operation (program/verify and memory
area) specified on port 0, the address with respect to the starting address of the memory area ap-
plied to ports 1 and 3, and the data on port 2. Apply a logic high to the RST pin.and V
EA#/Vpp ALE/PSEN#, normally an output pin, must be held low externally.

To perform the write operation, raisg Mo 12.75 V and pulse the PROG# pin per Table 14-1.
Then return Y, to 5 V. Verification is performed in a similar manner but without increasinpg V
and without pulsing PROG#. Figure 14-2 shows the program and verify bus cycle waveforms.
For waveform timing information, refer to the 8XC251SA, SB, SP, SQ High-Performance
CHMOS Microcontroller Datasheet.

CAUTION

The V,psource must be well regulated and free of glitches. The voltage on the
Ve pin must not exceed the specified maximum, even under transient
conditions. See the current data sheet.

I 14-3

8XC251SA, SB, SP, SQ USER’S MANUAL

Table 14-1. Programming and Verifying Modes

intel.

Mode RST | PSEN# Ve PROG# | Port | Port Address Notes
0 2 Port 1 (high)
Port 3 (low)
Program Mode. On-chip High Low 5V, 5 Pulses | 68H | data 1,4
Code Memory 12.75V
8K 87C251SA,SP 0000H-1FFFH
16K 87C251SB,SQ 0000H-3FFFH
Verify Mode. On-chip High Low 5V High 28H | data 4
Code Memory
8K 87/83C251SA,SP 0000H-1FFFH
16K 87/83C251SB,SQ 0000H-3FFFH
Program Mode. Configu- High Low 5V, 5Pulses | 69H | data | FFF8H-FFFFH | 1,4
ration Bytes (UCONFIGO, 12.75V
UCONFIG1)
87C251Sx
Verify Mode. Configuration | High Low 5V High 29H | data | FFF8H-FFFFH 4
Bytes (UCONFIGO,
UCONFIG1)
8XC251Sx
Program Mode. Lock Bits High Low 5V, 25 Pulses | 6BH | data | 0001H-0003H 1,2
87C251Sx 12.75V
Verify Mode. Lock bits High Low 5V High 2BH | data 0000H 3
87C251Sx, 83C251Sx
Program Mode. Encryption | High Low 5V, 25 Pulses | 6CH | data | 0000H-007FH 1
Array 1275V
87C251Sx
Verify Mode. Signature High Low 5V High 29H | data | 0030H, 0031H,
Bytes 0060H,
87C251Sx, 83C251Sx 0061H

NOTES:

1. To program, raise Vpp to 12.75 V and pulse the PROG# pin. See Figure 14-2 for waveforms.
2. No data input. Identify the lock bits with the address lines as follows: LB3 - 0003H, LB2 - 0002H,

LB1 - 0001H.

3. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously
at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.
4. For these modes, the internal address is FF:xxxxH.

14-4

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Yoo
8XC251SX V.
AO - A7 qP3 RST
Address ~ 4
S0 R — Data
A8-Al5 NP1 P2 (8 Bits)
EAHIV,, [€— }Programming
Signals
—I_—h XTALL ALE/PROGH# j€&—— 9
4 MHz PSEN#
to 3 |_
6 MHz T T -
g XTAL2 . Program/Verify Mode
Ve (8 Bits)

A4122-02

Figure 14-1. Setup for Programming and Verifying Nonvolatile Memory

14.4 PROGRAMMING ALGORITHM

The procedure for programming the 87C2%isSas follows:

1.

2
3
4,
5

S

Set up the controller for operation in the appropriate mode according to Table 14-1.
Input the 16-bit address on ports 1 and 3.

Input the data byte on port 2.

Raise the voltage on thgpin from 5V to 12.75 V.

Pulse the PROG# pin 5 times for the on-chip code memory and the configuration bytes,
and 25 times for the encryption array and the lock bits.

Reduce the voltage on thg\pin to 5 V.

If the procedure is program/immediate-verify, go to section 14.5, “Verify Algorithm,” and
perform steps 1 through 4 to verify the currently addressed byte. Make sure the voltage on
the EA#/\,,p pin has been lowered to 5 V before performing the verifying procedure.

Repeat steps 1 through 7 until all memory locations are programmed.

14-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Programming Cycle Verification Cycle

P1,P3 —(Address (16-Bit))—(Address >—
P2 —(Data In (8-Bit) > { DataOut y——

PO :X Mode (8-Bit) X Mode X

A4129-01

Figure 14-2. Program/Verify Bus Cycles

14.5 VERIFY ALGORITHM

Use this procedure to verify user program code, signature bytes, configuration bytes, and lock bits
stored in nonvolatile memory on the 8XC2%1%0 preserve the secrecy of the encryption key
byte sequence, the encryption array cannot be verified. Verification can be performed on bytes as
they are programmed, or on a block of bytes that have been previously programmed. The proce-
dure for verifying the 8XC2528s as follows:

1. Set up the controller for operation in the appropriate mode according to Table 14-1.
2. Input the 16-bit address on ports P1 and P3.

3. Wait for the data on port P2 to become valigygl, = 48 clock cycles — see the
datasheet), then compare the data with the expected value.

4. |If the procedure is program/immediate-verify, return to step 8 of 14.4, “Programming
Algorithm,” to program the next byte.

5. Repeat steps 1 through 5 until all memory locations are verified.

14.6 PROGRAMMABLE FUNCTIONS

This section discusses factors related to programming and verifying the various nonvolatile mem-
ory functions.

14-6 I

Int6|® PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

14.6.1 On-chip Code Memory

On-chip code memory is located in the top region of the memory space starting at address
FF:0000H. At reset, the 87C2548nd 83C251%devices vector to this address. See Chapter 3,
“Address Spaces,” for detailed information on the 8XC2&d®iress space.

To enter user program code and data in the on-chip code memory, perform the procedure de-
scribed in 14.4, “Programming Algorithm,” using the program on-chip code memory mode (Ta-
ble 14-1).

To verify that the on-chip code memory is correctly programmed, perform the procedure de-
scribed in section 14.5, “Verify Algorithm,” using the verify on-chip code memory mode (Table
14-1).

14.6.2 Configuration Bytes

The 87C251%and 83C251%6store configuration information in an eight-byte configuration ar-

ray at FF:FFF8H-FF:FFFFH. UCONFIGO (FF:FFF8H) and UCONFIG1 (FF:FFF9H) are imple-
mented; the remaining bytes are reserved for future use. See Figure 4-1 on page 4-2, Figure 4-3
on page 4-6, and Figure 4-4 on page 4-7.

To program the 87C25%Sonfiguration bytes, perform the procedure described in 14.4, “Pro-
gramming Algorithm,” using the program configuration byte mode (Table 14-1).

To verify the 87C251% 83C2518, or 80C251SB, SQ configuration bytes, perform the proce-
dure described in 14.5, “Verify Algorithm,” using the verify configuration byte mode (Table
14-1).

14.6.3 Lock Bit System

The 87C251%provides a three-level lock system for protecting user program code stored in the
on-chip code memory from unauthorized access. On the 83€251§ L B1 protection is avail-
able. Table 14-2 describes the levels of protection.

To program the lock bits, perform the procedure described in 14.4, “Programming Algorithm,”
using the program lock bits mode (Table 14-1).

To verify that the lock bits are correctly programmed, perform the procedure described in 14.5,
“Verify Algorithm,” using the verify lock bits mode (Table 14-1).

I 14-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table 14-2. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip user code is
encrypted when verified, if encryption array is programmed.

Level 2 U U P External code is prevented from fetching code bytes from on-
chip code memory. Further programming of the on-chip
OTPROM is disabled.

Level 3 U P P Same as level 2, plus on-chip code memory verify is disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.

14.6.4 Encryption Array

The 87C251%and 83C2516controllers include a 128-byte encryption array located in nonvol-

atile memory outside the memory address space. During verification of the on-chip code memory,
the seven low-order address bits also address the encryption array. As the byte of the code mem-
ory is read, it is exclusive-NOR’ed (XNOR) with the key byte from the encryption array. If the
encryption array is not programmed (still all 1s), the user program code is placed on the data bus
in its original, unencrypted form. If the encryption array is programmed with key bytes, the user
program code is encrypted and can’t be used without knowledge of the key byte sequence.

CAUTION

If the encryption feature is implemented, the portion of the on-chip code
memory that does not contain program code should be filled with “random”
byte values other than FFH to prevent the encryption key sequence from being
revealed.

To program the encryption array, perform the procedure described in section 14.4, “Programming
Algorithm,” using the program encryption array mode (Table 14-1).

To preserve the secrecy of the encryption key byte sequence, the encryption array can not be ver-
ified.

14.6.5 Signature Bytes

The 87C2518and 83C2518contain factory-programmed signature bytes. These bytes are lo-
cated in nonvolatile memory outside the memory address space at 30H, 31H, 60H, and 61H. To

read the signature bytes, perform the procedure described in 14.5, “Verify Algorithm,” using the
verify signature mode (Table 14-1). Signature byte values are listed in Table 14-3.

14-8

Int6|® PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Table 14-3. Contents of the Signature Bytes

ADDRESS | CONTENTS DEVICE TYPE
30H 89H Indicates Intel Devices
31H 40H Indicates MCS 251 core product
60H 7AH Indicates 83C251SA device
60H 7BH Indicates 83C251SB device
60H 4AH Indicates 83C251SP device
60H 4BH Indicates 83C251SQ device
60H FAH Indicates 87C251SA device
60H FBH Indicates 87C251SB device
60H CAH Indicates 87C251SP device
60H CBH Indicates 87C251SQ device
61H 55H Indicates 8XC251SA, SB, SP, SQ

14.7 VERIFYING THE 83C251SA, SB, SP, SQ (ROM)

Nonvolatile memory on the 83C254 8ontroller is factory-programmed. The verification proce-
dure for the 83C2529s exactly the same as for the 87C2aIhe setup shown in Figure 14-1
applies, as do the waveform and timing diagrams. Like the 87@2%1& 83C251%8 has 8-
Kbytes or 16-Kbytes of on-chip code memory and a 128-byte encryption array.

For information on verifying the contents of nonvolatile memory on the 83G25&8 14.6,

“Programmable Functions” for each function desired. Or more directly, perform the verification
procedure described in 14.5, “Verify Algorithm,” using the appropriate verify mode (Table 14-1).

14-9

intel.

A

Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the instructions in th€®M&Barchitecture. It
includes an opcode map, a summary of the instructions — with instruction lengths and execution
times — and a detailed description of each instruction. It contains the following tables:

* Tables A-1 through A-4 describe the notation used for the instruction operands. Table A-5
describes the notation used for control instruction destinations.

* Tables A-6 and A-7 comprise the opcode map for the instruction set.
* Tables A-8 through A-17 contain supporting material for the opcode map.
* Table A-18 lists execution times for a group of instructions that access the port SFRs.

* The following tables list the instructions giving length (in bytes) and execution time:
Add and Subtract Instructions, Table A-19
Compare Instructions, Table A-20
Increment and Decrement Instructions, Table A-21
Multiply, Divide, and Decimal-adjust Instructions, Table A-22
Logical Instructions, Table A-23
Move Instructions, Table A-24
Exchange, Push, and Pop Instructions, Table A-25
Bit Instructions, Table A-26
Control Instructions, Table A-27

“Instruction Descriptions” on page A-26 contains a detailed description of each instruction.

NOTE

The instruction execution times given in this appendix are for code executing
from on-chip code memory and for data that is read from and written to on-
chip RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, accessing data in external memory, using
a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs¢ £ 0-3, increases the
execution time. These cases are listed in Table A-18 and are noted in the
instruction summary tables and the instruction descriptions.

I A-1

8XC251SA, SB, SP, SQ USER’S MANUAL

A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

intel.

.) MCS® 251 | MCS 51
Register Notation Arch. Arch.
@RI A memory location (OOH-FFH) addressed indirectly via byte register 0
RO or R1
Rn Byte register RO—R7 of the currently selected register bank
n Byte register index: n = 0-7 O
rrr Binary representation of n
Rm Byte register RO—R15 of the currently selected register file
Rmd Destination register
Rms Source register 0
m, md, ms Byte register index: m, md, ms = 0-15
SSSSs Binary representation of m or md
SSSS Binary representation of ms
WRj Word register WRO0, WR2, ..., WR30 of the currently selected register
file
WRjd Destination register
WRjs Source register
@WR]j A memory location (00:0000H-00:FFFFH) addressed indirectly
through word register WR0-WR30 .
@WR]j Data RAM location (00:0000H-00:FFFFH) addressed indirectly
+dis16 through a word register (WR0-WR30) + displacement value, where
the displacement value is from 0 to 64 Kbytes.
j, id, js Word register index: j, jd, js = 0-30
tttt Binary representation of j or jd
TTTT Binary representation of js
DRk Dword register DRO, DR4, ..., DR28, DR56, DR60 of the currently
selected register file
DRkd Destination Register
DRks Source Register
@DRk A memory location (00:0000H-FF:FFFFH) addressed Indirectly
through dword register DRO-DR28, DR56, DR60 0
@DRk Data RAM location (00:0000H—FF:FFFFH) addressed indirectly
+dis24 through a dword register (DR0-DR28, DR56, DR60) + displacement
value, where the displacement value is from 0 to 64 Kbytes
k, kd, ks Dword register index: k, kd, ks =0, 4, 8, ..., 28, 56, 60
uuuu Binary representation of k or kd
uuuu Binary representation of ks

intel.

INSTRUCTION SET REFERENCE

Table A-2. Notation for Direct Addresses

Direct Descrintion MCS® 251 | MCS 51
Address. P Arch. Arch.
dir8 An 8-bit direct address. This can be a memory address O O

(00:0000H-00:00FFH) or an SFR address (S:00H - S:FFH).
dirl6 A 16-bit memory address (00:0000H-00:FFFFH) used in direct O
addressing.
Table A-3. Notation for Immediate Addressing
Immediate - MCS® 251 | MCS 51
Data Description Arch. Arch.
#data An 8-bit constant that is immediately addressed in an instruction. ad ad
#datal6 A 16-bit constant that is immediately addressed in an instruction. O
#0datal6 A 32-bit constant that is immediately addressed in an instruction. The 0
#ldatal6 upper word is filled with zeros (#0datal6) or ones (#1datal6).
#short A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction. 0
AY, Binary representation of #short.
Table A-4. Notation for Bit Addressing
Bit Description MCS® 251 | MCS 51
Address P Arch. Arch.
bit A directly addressed bit in memory locations 00:0020H-00:007FH or in
any defined SFR. O
yyy A binary representation of the bit number (0-7) within a byte.
bit51 A directly addressed bit (bit number = 00H—FFH) in memory or an SFR.
Bits 00H-7FH are the 128 bits in byte locations 20H—-2FH in the on-chip 0
RAM. Bits 80H-FFH are the 128 bits in the 16 SFR’s with addresses
that end in OH or 8H: S:80H, S:88H, S:90H, . . ., S:FOH, S:F8H.
Table A-5. Notation for Destinations in Control Instructions
Destination - MCS® 251 | MCS 51

Address Description Arch. Arch.

rel A signed (two's complement) 8-bit relative address. The destination is 0 0
-128 to +127 bytes relative to first byte of the next instruction.

addrll An 11-bit destination address. The destination is in the same 2-Kbyte 0 0
block of memory as the first byte of the next instruction.

addrl6 A 16-bit destination address. A destination can be anywhere within 0 0
the same 64-Kbyte region as the first byte of the next instruction.

addr24 A 24-bit destination address. A destination can be anywhere within 0

the 16-Mbyte address space.

A-3

8XC251SA, SB, SP, SQ USER’S MANUAL

A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-6. Instructions for MCS ® 51 Microcontrollers

intel.

Bin. 0 1 2 3 4 5 6-7 8-F
Src. 0 1 2 3 4 5 A5 x6-A5x7 | A5x8-A5xF
0 NOP AIMP LIMP RR INC INC INC INC
addrll | addr16 A A dir8 @RI Rn

1 JBC ACALL | LCALL RRC DEC DEC DEC DEC
bit,rel addrll | addrl6 A A dir8 @Ri Rn

2 |JB AIMP RET RLA ADD ADD ADD ADD
bit,rel addrll A #data A,dir8 A @RI A,Rn

3 JNB ACALL | RETI RLCA ADDC ADDC ADDC ADDC
bit,rel addrll A #data A,dir8 A @RI A,Rn

4 |JC AIMP ORL ORL ORL ORL ORL ORL
rel addrll | dir8A dir8 #data A #data A,dir8 A @RI A,Rn

5 JNC ACALL | ANL ANL ANL ANL ANL ANL
rel addrll | dir8,A dir8,#data A #data A,dir8 A,@Ri A,Rn

6 |JZ AIMP XRL XRL XRL XRL XRL XRL
rel addrll | dir8 A dir8 #data A #data A,dir8 A @RI ARN

7 JNZ ACALL | ORL JMP MOV MOV MOV MOV
rel addrll | CY,bit @A+DPTR A#data dir8 #data | @Ri#data Rn,#data

8 SIMP AIMP ANL MovC DIV MOV MoV MOV
rel addrll | CY,bit A @A+PC AB dir8,dir8 dir8, @Ri dir8,Rn

9 MOV ACALL | MOV MOVC SUBB SUBB SUBB SUBB
DPTR,#datal6 | addrll bit,CY A @A+DPTR A#data A,dir8 A, @RI ARN

A ORL AIMP MOV INC MUL ESC MOV MOV
CY,bit addrll | CY,bit DPTR AB @Ri,dir8 Rn,dir8

B ANL ACALL | CPL CPL CJINE CJINE CJINE CJINE
CY,bit addrll | bit CcY A #data,rel A,dir8,rel @Ri#data,rel | Rn,#data,rel

C PUSH AIMP CLR CLR SWAP XCH XCH XCH
dir8 addrll | bit CY A A,dir8 A @RI ARN

D POP ACALL | SETB SETB DA DJINZ XCHD DJINZ
dir8 addrll | bit CY A dir8,rel A,@Ri Rn,rel

E MOVX AIMP MOVX CLR MOV MOV MOV
A,@DPTR addrll A,@Ri A A,dir8 A,@Ri ARN

F MOV ACALL MOVX CPL MOV MOV MOV
@DPTR,A addr1l @Ri,A A dir8,A @Ri,A Rn,A

A-4

INSTRUCTION SET REFERENCE

Table A-7. New Instructions for the MCS ® 251 Architecture
Bin. | A5 x8 A5Xx9 A5XA A5 xB A5 xC A5XxD A5XE A5XF
Src. X8 X9 XA xB xC xD XE XxF
0 | JSLE | MOV MOVZ INC R,#short (1) SRA
rel Rm,@WRj+dis WRj,Rm MOV reg,ind reg
1 JSG MOV MOVS DEC R,#short (1) SRL
rel @WRj+dis,Rm | WRj,Rm MOV ind,reg reg
2 | JLE MOV ADD ADD ADD ADD
rel Rm,@DRk+dis Rm,Rm WRj,WRj reg,op2 (2) | DRk,DRk
3 JG MOV SLL
rel @DRk+dis,Rm reg
4 | JsL MOV ORL ORL ORL
rel WRj,@WRj+dis Rm,Rm WRj,WRj | reg,op2 (2)
5 JSGE | MOV ANL ANL ANL
rel @WRj+dis,WRj Rm,Rm WRj,WRj reg,op2 (2)
6 |JE MOV XRL XRL XRL
rel WRj, @DRk+dis Rm,Rm WRj,WRj | reg,0p2 (2)
7 JINE MOV MOV MOV MOV MOV MOV
rel @DRk+dis,WRj | opl,reg (2) Rm,Rm WRj,WRj reg,op2 (2) | DRk,DRk
8 LIMP @WRj EJMP DIV DIV
EJMP @DRk addr24 Rm,Rm WRJj,WRj
9 LCALL@WRj ECALL SuUB SuB SUB SUB
ECALL @DRk addr24 Rm,Rm WRj,WRj reg,op2 (2) | DRk,DRk
A Bit ERET MUL MUL
Instructions (3) Rm,Rm WRJj,WRj
B TRAP CMP CMP CMP CMP
Rm,Rm WRj,WRj reg,op2 (2) | DRk,DRk
C PUSH op1 (4)
MOV DRk,PC
D POP
opl (4)
E
F
NOTES:

1. R =Rm/WRj/DRk.
2. opl, op2 are defined in Table A-8.
3. See Tables A-10 and A-11.

4. See Table A-12.

A-5

8XC251SA, SB, SP, SQ USER’S MANUAL

Table A-8. Data Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

Oper Rmd,Rms x | C md ms

Oper WRjd,WRjs x | D jdi2 jsl2

Oper DRkd,DRks x | F kd/4 ks/4

Oper Rm,#data x | E m 0000 #data

Oper WRj,#datal6 x | E 2 0100 #data (high) #data (low)
Oper DRk, #datal6 x | E k/4 1000 #data (high) #data (low)
MOV DRk(h),#datal6 7 A k/4 1100 #data (high) #data (low)
MOV DRk, #1datal6 7| E

CMP DRk, #1datal6 B | E

Oper Rm,dir8 x| E m 0001 dir8 addr

Oper WR;,dir8 x | E 2 0101 dir8 addr

Oper DRK,dir8 x | E ki4 1101 dir8 addr

Oper Rm,dirl6 x | E m 0011 dirl6 addr (high) dirl6 addr (low)
Oper WR;j,dir16 x | E 2 0111 dirl6 addr (high) dirl6 addr (low)
Oper DRK,dirl6 (1) x | E k/4 1111 dirl6 addr (high) dirl6 addr (low)
Oper Rm,@WR}j x | E 2 1001 m 00

Oper Rm,@DRk x | E k/4 1011 m 00

NOTE:

1. For this instruction, the only valid operation is MOV.

Table A-9. High Nibble, Byte 0 of Data Instructions

X Operation Notes
2 ADD reg,op2
9 SUB reg,op2
B CMP reg,op2 (1)
All addressing modes are
4 ORL reg,op2 (2) supported.
5 ANL reg,op2 (2)
6 XRL reg,op2 (2)
7 MOV reg,op2
8 DIV reg,op2 Two modes only:
reg,0p2 = Rmd,Rms
A MUL reg,op2 reg,op2 = Wjd,Wjs
NOTES:
1. The CMP operation does not support DRK, direct16.
2. Forthe ORL, ANL, and XRL operations, neither reg nor op2
can be DRk.

intel.

All of the bit instructions in the MCS 251 architecture (Table A-7) have opcode A9, which serves
as an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as given

in Table A-10.
Table A-10. Bit Instructions
Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
1 | Bit Instr (dir8) A \ 9 XX \ 0 \ bit dir8 addr rel addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

XXXX Bit Instruction
0001 JBC bit
0010 JB bit

0011 JNB bit
0111 ORL CY,bit
1000 ANL CY,bit
1001 MOV bit,CY
1010 MOV CY,bit
1011 CPL bit
1100 CLR bit
1101 SETB bit
1110 ORL CY, /bit
1111 ANL CY, /bit

INSTRUCTION SET REFERENCE

A-7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table A-12. PUSH/PORP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
PUSH #data C A 0000 0010 #data
PUSH #datal6 C A 0000 0110 #datal6 (high) #datal6 (low)
PUSH Rm C A m 1000
PUSH WR;j C A 2 1001
PUSH DRk C A ki4 1011
MOV DRk,PC C A ki4 0001
POP Rm D A m 1000
POP WRj) A il2 1001
POP DRk D A ki4 1011
Table A-13. Control Instructions
Instruction Byte O(x) Byte 1 Byte 2 Byte 3
EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]
ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]
LIMP @WR] 8 9 ir2 0100
LCALL @WRj 9 9 ir2 0100
EJMP @DRk 8 9 k/4 1000
ECALL @DRk 9 9 k/4 1000
ERET A A
JE rel 8 8 rel
JINE rel 7 8 rel
JLE rel 2 8 rel
JG rel 3 8 rel
JSL rel 4 8 rel
JSGE rel 5 8 rel
JSLE rel 0 8 rel
JSG rel 1 8 rel
TRAP B 9

intel.

INSTRUCTION SET REFERENCE

Table A-14. Displacement/Extended MOVs

Instruction Byte 0 Byte 1 Byte 2 Byte 3
MOV Rm,@WRj+dis 0|9 m 2 dis[15:8] dis[7:0]
MOV WRk, @WRj+dis 419 iz | k2 dis[15:8] dis[7:0]
MOV Rm,@DRk+dis 2|09 m | ki4 dis[15:8] dis[7:0]
MOV WRj,@DRk+dis 6 |9 2 | ki dis[15:8] dis[7:0]
MOV @WRj+dis,Rm 119 m j2 dis[15:8] dis[7:0]
MOV @WRj+dis,WRk 519 i2 | k2 dis[15:8] dis[7:0]
MOV @DRKk+dis,Rm 3|9 m | ki4 dis[15:8] dis[7:0]
MOV @DRk+dis,WRj 719 iz | ki4 dis[15:8] dis[7:0]
MOVS WR;j,Rm 1]A i2] m
MOVZ WRj,Rm 0| A 2] m
MOV WRj, @WR;j o|B jl2 | 1000 i2 0000
MOV WRj,@DRk 0| B k/4 | 1010 2 0000
MOV @WRj,WR;j 1|8 jl2 | 1000 jl2 0000
MOV @DRKk,WR]j 1| B k/4 | 1010 2 0000
MOV dir8,Rm 7| A m | 0001 dir8 addr
MOV dir8,WRj 7 1A j2 | 0101 dir8 addr
MOV dir8,DRk 7 1A k/i4 | 1101 dir8 addr
MOV dir16,Rm 7| A m | 0011 dirl6 addr (high) dirl6 addr (low)
MOV dirl6,WRj 71 A 2 | 0111 dirl6 addr (high) dirl6 addr (low)
MOV dir16,DRk 71 A k/i4 | 1111 dirl6 addr (high) dirl6 addr (low)
MOV @WRj,Rm 7| A ji/2 | 1001 m 0000
MOV @DRk,Rm 71 A k/4 | 1011 m 0000

8XC251SA, SB, SP, SQ USER’S MANUAL

A-10

Table A-15. INC/DEC

Instruction Byte 0 Byte 1
1 | INC Rm,#short 0| B m | 00 | ss
2 | INC WRj,#short 0| B 2101 |ss
3 | INC DRKk,#short 0| B k/id| 11 | ss
4 | DEC Rm,#short 1| B m | 00 | ss
5 | DEC WRj,#short 1| B j/2 101 |ss
6 | DEC DRK,#short 1| B k/id| 11 | ss

Table A-16. Encoding for INC/DEC

Ss #short
00 1
01 2
10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1
1| SRARmM 0| E m | 0000
2 | SRA WRj 0| E j/2 | 0100
3 | SRLRm 1| E m | 0000
4 | SRL WRj 1| E j/2 | 0100
5 | SLL Rm 3|E m | 0000
6 | SLL WRj 3|E j/2 | 0100

Int€|® INSTRUCTION SET REFERENCE

A.3 INSTRUCTION SET SUMMARY

This section summarizes the MCS 251 architecture instruction set. Tables A-19 through A-27 list
the instructions by category, providing for each instruction a short description, its length in bytes,
and its execution time in states.

NOTE

The instruction execution times given in the tables are for code executing from
on-chip code memory and for data that is read from and written to on-chip
RAM. Execution times are increased by executing code from external

memory, accessing peripheral SFRs, accessing data in external memory, using
a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRsx £ 0-3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions that Access the Port SFRs

The execution times for some instructions increase when the instruction accesses a post SFR (P
x = 0-3) as opposed to any other SFR. Table A-18 lists these instructions and the execution times
for Case 0O:

* Case 0. Code executes from on-chip ROM/OTPROM/EPROM and accesses locations in
on-chip data RAM. The port SFRs are not accessed.
In Cases 1-4, the instructions access a port SFR:
* Case 1. Code executes from on-chip ROM/OTPROM/EPROM and accesses a port SFR.

* Case 2. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

* Case 3. Code executes from external memory with one wait state and a short ALE (not
extended) and accesses a port SFR.

¢ Case 4. Code executes from external memory with one wait state and an extended ALE, and
accesses a port SFR.

The times for Cases 1 through 4 are expressed as the number of state times to add to the state
times for given for Case 0.

I A-11

8XC251SA, SB, SP, SQ USER’S MANUAL

A-12

Table A-18. State Times to Access the Port SFRs

Instruction

Case 0
Execution Times

Additional State Times

Binary Source

Case 1

Case 2 Case 3

Case 4

ADD A,dir8

[
[

[

N
w

N

ADD Rm,dir8

ADDC A,dir8

ANL A,dir8

ANL CY,bit

ANL CY,bit51

ANL CY,/bit

ANL CY,/bit51

ANL dir8,#data

ANL dir8,A

ANL Rm,dir8

CLR bit

CLR bit51

CMP Rm,dir8

CPL bit

CPL bit51

DEC dir8

INC dir8

MOV A,dir8

MOV bit,CY

MOV bit51,CY

MOV CY,bit

MOV CY,bit51

MOV dir8,#data

MOV dir8,A

MOV dir8,Rm

MOV dir8,Rn

MOV Rm,dir8

MOV Rn,dir8

ORL A,dir8

ORL CY,bit

ORL CY,bit51

ORL CY,/bit

WP W|RP[P[W|INI[ARINWOIRP[W|IN[A[RP|ININMNIN|DR[WO[IN|DRW[NVNW(RP|W|RP[W[RP|PFP|W®W
NIFRP[INIP[I[NIN|WOWIWIN|WOWIFR[IN|IN[W[RP|INI[NIN|WOWININ|WOWIN[N|W[RL[N]P[N[RP]PDN

Rlr|lRr[r|Rr|[r|RrRr[Rr|Rr[Rr|R[NM|NR[NM|IN[N|N R[N RN R R R R R R -

NININ[ININININ|INININININ[BIBAIN|D]BD|BAID(N[BE]BAIN]BA]BIDNIDNDNDINININIDN
WIW|lw|w(w(fw|wjlwlwlw|lw|lwlflojlojw|lo|lo|lo|lolwW(o|lOo|W|Oo|lO|W|IW[lW|lW|lW|W|W

E I I O S R S I S (R S I S (R S I~ [e o B oo B [N~ B o I o o Yo e 2 o o I [N - I o I (e <) I~ (o T I« e 0 IS R I N R S

intel.

INSTRUCTION SET REFERENCE

Table A-18. State Times to Access the Port SFRs (Continued)

Instruction

Case 0
Execution Times

Additional State Times

Binary Source

Case 1

Case 2 Case 3

Case 4

ORL CY,/bit51

[
[

[

N
w

N

ORL dir8,#data

ORL dir8,A

ORL Rm,dir8

SETB bit

SETB bit51

SUB Rm,dir8

SUBB A,dir8

XCH A,dir8

XRL A,dir8

XRL dir8,#data

XRL dir8,A

XRL Rm,dir8

WIN|[W|RP|WRP|WIN|D|W[IN|W
NIN|[W|RP[W[RL|NIN|W|N[IN|W

RPIN|IN|IPFP|INIRP[I[RP[N|INIFP|IN|PF

N BIN|BDINIDN[A]|BAIN]H™MDN
Wlo|lojlw|oflw|(lw|(oj]o|lw|o | w

h|lO|O| ||| DH|[O|O| || D

A-13

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

A.3.2 Instruction Summaries
Table A-19. Summary of Add and Subtract Instructions
Add ADD <dest>,<src> destopnd ~ dest opnd + src opnd
Subtract SUB <dest>,<src> destopnd < destopnd - src opnd
Add with Carry ADDC <dest>,<src> (A) «~ (A) +src opnd + carry bit

Subtract with Borrow SUBB <dest>,<src> (A) ~ (A) - src opnd - carry bit
Binary Mode | Source Mode
Mnemonic | <dest>,<src> Notes
Bytes |States |Bytes PBtates

A,Rn Reg to acc 1 1 2 2

ADD A,dir8 Dir byte to acc 2 1(2) 2 1(2)
A,@Ri Indir addr to acc 1 2 2 3
A #data Immediate data to acc 2 1 2 1
Rmd,Rms Byte reg to/from byte reg 3 2 2 1
WRjd,WRjs Word reg to/from word reg 3 3 2 2
DRkd,DRks Dword reg to/from dword reg 3 5 2 4
Rm, #data Immediate 8-bit data to/from byte reg 4 3 3 2
WRj,#datal6 Immediate 16-bit data to/from word reg 5 4 4 3

ADD: DRk #0datal6 16-bit unsigned immediate data to/from 5 6 4 5

' dword reg

SuB Rm,dir8 Dir addr to/from byte reg 4 3(2) 3 2(2)
WR;j,dir8 Dir addr to/from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to/from byte reg 5 3 4 2
WR;j,dir1l6 Dir addr (64K) to/from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to/from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to/from byte reg 4 4 3 3
A,Rn Reg to/from acc with carry 1 1 2 2

ADDC; A,dir8 Dir byte to/from acc with carry 2 1(2) 2 1(2)

SUBB A, @Ri Indir RAM to/from acc with carry 1 2 2 3
A #data Immediate data to/from acc with carry 2 1 2 1

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.

A-14

intel.

INSTRUCTION SET REFERENCE

Table A-20. Summary of Compare Instructions

Compare CMP <dest>,<src> dest opnd - src opnd
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes Ptates
Rmd,Rms Reg with reg 3 2 2 1
WRjd,WRjs Word reg with word reg 3 3 2 2
DRkd,DRks Dword reg with dword reg 3 5 2 4
Rm, #data Reg with immediate data 4 3 3 2
WRj,#datal6 Word reg with immediate 16-bit data 5 4 4 3
DRk,#0datal6 Dword reg with zero-extended 16-bit 5 6 4 5
immediate data
CMP DRk,#1datal6 Dword reg with one-extended 16-bit 5 6 4 5
immediate data
Rm,dir8 Dir addr from byte reg 4 3t 3 2t
WRj,dir8 Dir addr from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) from byte reg 5 3 4 2
WR;j,dirl6 Dir addr (64K) from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) from byte reg 4 4 3 3

T If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.

A-15

8XC251SA, SB, SP, SQ USER’S MANUAL

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ~ (DPTR) +1
Increment INC byte byte ~ byte+1
Increment INC <dest>,<src> destopnd ~ dest opnd + src opnd
Decrement DEC byte byte « byte—1
Decrement DEC <dest>,<src> destopnd ~ destopnd - src opnd
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes PBtates
A acc 1 1 1 1
RN Reg 1 1 2 2
dir8 Dir byte 2 2(2) 2 2(2)
INC; - -
@Ri Indir RAM 1 3 2 4
DEC
Rm,#short Bytereg by 1, 2, or 4 3 2 2 1
WRj,#short Wordreg by 1, 2, or 4 3 2 2 1
DRK,#short Double word reg by 1, 2, or 4 3 4 2 3
INC DPTR Data pointer 1 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instructions

for Addition (BCD)

Multiply MUL <regl,reg2> 2)

MUL AB (B:A) =AxB
Divide DIV <regl>,<reg2> 2)

DIV AB
Decimal-adjust ACC DA A

(A) =Quotient; (B) =Remainder
2)

Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [States
AB Multiply A and B 1 5 1 5
MUL Rmd,Rms Multiply byte reg and byte reg 3 6 2 5
WRjd,WRjs Multiply word reg and word reg 3 12 2 11
AB Divide A by B 1 10 1 10
DIV Rmd,Rms Divide byte reg by byte reg 3 1 2 10
WRjd,WRjs Divide word reg by word reg 3 21 2 20
DA A Decimal adjust acc 1 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. See section A.4, “Instruction Descriptions.”

A-16

intel.

INSTRUCTION SET REFERENCE

Table A-23. Summary of Logical Instructions

Logical AND ANL <dest>,<src> destopnd ~destopnd A src opnd

Logical OR ORL <dest>,<src> destopnd ~ destopndV src opnd

Logical Exclusive OR XRL <dest>,<src> dest opnd ~ dest opnd 0O src opnd

Clear CLR A (A) -0

Complement CPLA (Ai) < D(A)

Rotate RXX A (1)

Shift SXX Rm or Wj Q)

SWAP A A3:0 -~ A7:4

Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes Ptates

A,Rn Reg to acc 1 1 2 2
A.dir8 Dir byte to acc 2 1(3) 2 1(3)
A @Ri Indir addr to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
dir8,A Acc to dir byte 2 2(4) 2 2(4)
dir8,#data Immediate data to dir byte 3 3(4) 3 3(4)
Rmd,Rms Byte reg to byte reg 3 2 2 1

g":t WRjd,WRjs Word reg to word reg 3 3 2 2

XRL" Rm #data 8-bit data to byte reg 4 3 3 2
WRj,#datal6 | 16-bit data to word reg 5 4 4 3
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WR;j,dir8 Dir addr to word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

CLR A Clear acc 1 1 1 1

CPL A Complement acc 1 1 1 1

RL A Rotate acc left 1 1 1 1

RLC A Rotate acc left through the carry 1 1 1 1

RR A Rotate acc right 1 1 1 1

RRC A Rotate acc right through the carry 1 1 1 1

SLL Rm Shift byte reg left 3 2 2 1
WR]j Shift word reg left 3 2 2 1

NOTES:

1. See section A.4, “Instruction Descriptions.”
2. A shaded cell denotes an instruction in the MCS® 51 architecture.

3. If this instruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-17

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table A-23. Summary of Logical Instructions (Continued)

Logical AND ANL <dest>,<src> destopnd ~destopnd A src opnd
Logical OR ORL <dest>,<src> destopnd ~ destopndV src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ dest opnd 0O src opnd
Clear CLR A (A) -0
Complement CPLA (Ai) < D(A)
Rotate RXX A (1)
Shift SXX Rm or Wj (1)
SWAP A A3:0 -~ A7:4
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes Ptates
SRA Rm Shift byte reg right through the MSB 3 2 2 1
WRj Shift word reg right through the MSB 3 2 2 1
SRL Rm Shift byte reg right 3 2 2 1
WR]j Shift word reg right 3 2 2 1
SWAP A Swap nibbles within the acc 1 2 1 2
NOTES:

1. See section A.4, “Instruction Descriptions.”

2. A shaded cell denotes an instruction in the MCS® 51 architecture.

3. If this instruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-18

intel.

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions

Move (2) MOV <dest>,<src> destination ~ src opnd

Move with Sign Extension MOVS <dest>,<src> destination ~ src opnd with sign extend

Move with Zero Extension MOVZ <dest>,<src> destination ~ src opnd with zero extend

Move Code Byte MOVC <dest>,<src> A < code byte

Move to External Mem MOVX <dest>,<src> external mem ~ (A)

Move from External Mem MOVX <dest>,<src> A < source opnd in external mem

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [Ptates

A,Rn Reg to acc 1 1 2 2
A,dir8 Dir byte to acc 2 1(3) 2 1(3)
A @Ri Indir RAM to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
Rn,A Acc to reg 1 1 2 2
Rn,dir8 Dir byte to reg 2 1(3) 3 2(3)
Rn,#data Immediate data to reg 2 1 3 2
dir8,A Acc to dir byte 2 2(3) 2 2(3)
dir8,Rn Reg to dir byte 2 2(3) 3 3(3)
dir8,dir8 Dir byte to dir byte 3 3 3 3
dir8, @Ri Indir RAM to dir byte 2 3 3 4
dir8,#data Immediate data to dir byte 3 3(3) 3 3(3)

MoV @Ri,A Acc to indir RAM 1 3 2 4
@Ri,dir8 Dir byte to indir RAM 2 3 3 4
@Ri #data Immediate data to indir RAM 2 3 3 4
DPTR,#datal6 Load Data Pointer with a 16-bit const 3 2 3 2
Rmd,Rms Byte reg to byte reg 3 2 2 1
WRjd,WRjs Word reg to word reg 3 2 2 1
DRkd,DRks Dword reg to dword reg 3 3 2 2
Rm, #data 8-bit immediate data to byte reg 4 3 3 2
WRj,#datal6 16-bit immediate data to word reg 5 3 4 2
DRk,#0datal6 zero-extended 16-bit immediate data 5 5 4 4

to dword reg
DRk, #1datal6 one-extended 16-bit immediate data 5 5 4 4
to dword reg

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26 on page A-23.

3. If this instruction addresses an /O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See section 3.1.1, “Compatibility with the MCS® 51 Architecture.”

A-19

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table A-24. Summary of Move Instructions (Continued)

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

Move to External Mem
Move from External Mem

MOV <dest>,<src> destination < src opnd
MOVS <dest>,<src> destination ~ src opnd with sign extend
MOVZ <dest>,<src> destination ~ src opnd with zero extend
MOVC <dest>,<src> A < code byte
MOVX <dest>,<src> external mem ~ (A)
MOVX <dest>,<src> A < source opnd in external mem

Binary Mode | Source Mode

Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [States

DRKk,dir8 Dir addr to dword reg 4 6 3 5
DRK,dirl6 Dir addr (64K) to dword reg 5 6 4 5
Rm,dir8 Dir addr to byte reg 4 33 3 2 (3)
WR;j,dir8 Dir addr to word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to byte reg 5 3 4 2
WRj,dir1l6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3
WRjd,@WRjs Indir addr(64K) to word reg 4 4 3 3
WRj,@DRk Indir addr(16M) to word reg 4 5 3 4
dir8,Rm Byte reg to dir addr 4 4 (3) 3 3(3)
dir8,WRj Word reg to dir addr 4 5 3 4

MOV dirl6,Rm Byte reg to dir addr (64K) 5 4 4 3
dirl6,WRj Word reg to dir addr (64K) 5 5 4 4
@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3
@DRK,Rm Byte reg to indir addr (16M) 4 5 3 4
@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4
@DRK,WRj Word reg to indir addr (16M) 4 6 3 5
dir8,DRk Dword reg to dir addr 4 7 3 6
dirl6,DRk Dword reg to dir addr (64K) 5 7 4 6
Rm,@WRj+dis16 | Indir addr with disp (64K) to byte reg 5 6 4 5
WRj,@WRj+dis16 | Indir addr with disp (64K) to word reg 5 7 4 6
Rm,@DRk+dis24 | Indir addr with disp (16M) to byte reg 5 7 4 6
WRj,@DRk+dis24 | Indir addr with disp (16M) to word reg 5 8 4 7
@WRj+dis16,Rm | Byte reg to Indir addr with disp (64K) 5 6 4 5

NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26 on page A-23.

3. If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See section 3.1.1, “Compatibility with the MCS® 51 Architecture.”

A-20

intel.

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

~ src opnd
~ src opnd with sign extend

~ src opnd with zero extend

MOV <dest>,<src> destination
MOVS <dest>,<src> destination
MOVZ <dest>,<src> destination

MOVC <dest>,<src> A < code byte

Move to External Mem MOVX <dest>,<src> external mem ~ (A)
Move from External Mem MOVX <dest>,<src> A < source opnd in external mem
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [Ptates
@WRj+dis16,WR]j | Word reg to Indir addr with disp (64K) 5 7 4 6
MOV @DRk+dis24,Rm | Byte reg to Indir addr with disp (16M) 5 7 4 6
@DRk+dis24,WRj | Word reg to Indir addr with disp 5 8 4 7
(16M)
DRk(hi), #datal6 16-bit immediate data into upper 5 3 4 2
MOVH
word of dword reg
MOVS WRj,Rm Byte reg to word reg with sign 3 2 2 1
extension
MOVZ WRj,Rm Byte reg to word reg with zeros 3 2 2 1
extension
MOVC A, @A+DPTR Code byte relative to DPTR to acc 1 6 1 6
A @A+PC Code byte relative to PC to acc 1 6 1 6
A @RI External mem (8-bit addr) to acc (4) 1 4 2 5
MOVX A,@DPTR External mem (16-bit addr) to acc (4) 1 5 1 5
@RIi,A Acc to external mem (8-bit addr) (4) 1 4 1 4
@DPTR,A Acc to external mem (16-bit addr) (4) 1 5 1 5
NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26 on page A-23.
3. If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See section 3.1.1, “Compatibility with the MCS® 51 Architecture.”

A-21

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<src> A o srcopnd
Exchange Digit XCHD <dest>,<src> A3:0 - on-chip RAM bits 3:0
Push PUSH <src> SP ~ SP+1;(SP) « src
Pop POP <dest> dest —~ (SP);SP - SP-1
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [Ptates
A,Rn Acc and reg 1 3 2 4
XCH A,dir8 Acc and dir addr 2 3(2) 2 3(2)
A @RI Acc and on-chip RAM (8-bit addr) 1 4 2 5
A @RI Acc and low nibble in on-chip RAM 1 4 2 5
XCHD (8-bit addr)
dir8 Push dir byte onto stack 2 2 2
#data Push immediate data onto stack 4 4
#datal6 Push 16-bit immediate data onto 5 4 5
PUSH stack
Rm Push byte reg onto stack 3 4 2 3
WR]j Push word reg onto stack 3 6 2 5
DRk Push double word reg onto stack 3 10 2 9
dir8 Pop dir byte from stack 2 3 2 3
POP Rm Pop byte reg from stack 3 3 2 2
WRj Pop word reg from stack 3 5 2 4
DRk Pop double word reg from stack 3 9 2 8
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

A-22

intel.

INSTRUCTION SET REFERENCE

Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit <0

Set Bit SETB bit bit ~ 1

Complement Bit CPL bit bit ~ @bit

AND Carry with Bit ANL CY,bit CY « CYAbit

AND Carry with Complement of Bit ~ ANL CY,/bit CY <« CYA @bit

OR Carry with Bit ORL CY,bit CY « CYVhit

ORL Carry with Complement of Bit ~ ORL CY,/bit CY ~ CYV@bit

Move Bit to Carry MOV CY,bit CY « bit

Move Bit from Carry MOV bit,CY bit ~ CY

Binary Mode | Source Mode
Mnemonic |<src>,<dest> Notes
Bytes |States |Bytes [States

CY Clear carry 1 1 1 1

CLR bit51 Clear dir bit 2 2(2) 2 2(2)
bit Clear dir bit 4 4 3 3
CcY Set carry 1 1 1 1

SETB bit51 Set dir bit 2 2(2) 2 2(2)
bit Set dir bit 4 4(2) 3 3(2)
CcY Complement carry 1 1 1 1

CPL bit51 Complement dir bit 2 2(2) 2 2(2)
bit Complement dir bit 4 4(2) 3 3(2)

ANL CY,bit51 AND dir bit to carry 2 1(3) 2 1(3)
CY,bit AND dir bit to carry 4 313 3 23)

ANL/ CY,/bit51 AND complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit AND complemented dir bit to carry 4 33 3 2(3)

ORL CY,bit51 OR dir bit to carry 2 1(3) 2 1(3)
CY,bit OR dir bit to carry 4 3(3) 3 2(3)

ORL/ CY,/bit51 OR complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit OR complemented dir bit to carry 4 33 3 2(3)
CY,bit51 Move dir bit to carry 2 1(3) 2 1)

MOV CY,bit Move dir bit to carry 4 33 3 23
bit51,CY Move carry to dir bit 2 2(2) 2 2(2)
bit,CY Move carry to dir bit 4 4(2) 3 3(2

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.
3. If this instruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.

A-23

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table A-27. Summary of Control Instructions

Binary Mode Source Mode
Mnemonic |<dest>,<src> Notes
Bytes | States (2) |Bytes Btates (2)
ACALL addrll Absolute subroutine call 2 9 2 9
@DRk Extended subroutine call, indirect 3 12 2 11
ECALL
addr24 Extended subroutine call 5 14 4 13
@WR]j Long subroutine call, indirect 3 2 8
LCALL -
addrl6 Long subroutine call 3 3 9
RET Return from subroutine 1 6 1 6
ERET Extended subroutine return 3 10 2 9
RETI Return from interrupt 1 6 1 6
AIMP addrll Absolute jump 2 3 2 3
addr24 Extended jump 5 6 4 5
EJMP - —
@DRk Extended jump, indirect 3 7 2 6
@WR]j Long jump, indirect 3 6 2 5
LIMP -
addrl6 Long jump 3 4 3 4
SIMP rel Short jump (relative addr) 2 3 2 3
JMP @A+DPTR Jump indir relative to the DPTR 1 5 1 5
JC rel Jump if carry is set 2 1/4 2 1/4
JNC rel Jump if carry not set 2 1/4 2 1/4
bit51,rel Jump if dir bit is set 3 2/5 3 2/5
JB bit,rel Jump if dir bit of 8-bit addr location | 5 417 4 3/6
is set
bit51,rel Jump if dir bit is not set 3 2/5 3 2/5
JNB bit,rel Jump if dir bit of 8-bit addr location 5 a7 4 3/6
is not set
bit51,rel Jump if dir bit is set & clear bit 3 a/7 3 a7
JBC bit,rel Jump if dir bit of 8-bit addr location 5 7/10 4 6/9
is set and clear bit
JZ rel Jump if acc is zero 2 2/5 2 2/5
JINZ rel Jump if acc is not zero 2 2/5 2 2/5
JE rel Jump if equal 3 2/5 2 1/4
INE rel Jump if not equal 3 2/5 2 1/4
JG rel Jump if greater than 3 2/5 2 1/4
JLE rel Jump if less than or equal 3 2/5 2 1/4
JSL rel Jump if less than (signed) 3 2/5 2 1/4
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-24

intel.

INSTRUCTION SET REFERENCE

Table A-27. Summary of Control Instructions (Continued)

Binary Mode Source Mode
Mnemonic |<dest>,<src> Notes
Bytes | States (2) |Bytes Btates (2)
JSLE rel Jump if less than or equal (signed) 3 2/5 2 1/4
JSG rel Jump if greater than (signed) 3 2/5 2 1/4
JSGE rel Jump if greater than or equal 3 2/5 2 1/4
(signed)
A,dir8,rel Compare dir byte to acc and jump 3 2/5 3 2/5
if not equal
A #data,rel Compare immediate to acc and 3 2/5 3 2/5
jump if not equal
CJINE - -
Rn,#data,rel Compare immediate to reg and 3 2/5 4 3/6
jump if not equal
@Ri,#data,rel | Compare immediate to indir and 3 3/6 4 a/7
jump if not equal
Rn,rel Decrement reg and jump if not 2 2/5 3 3/6
zero
DJINZ
dir8,rel Decrement dir byte and jump if not 3 3/6 3 3/6
zero
TRAP — Jump to the trap interrupt vector 2 10 1 9
NOP — No operation 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-25

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the MCS 251 architecture. See the note on page A-11
regarding execution times.

Table A-28 defines the symbols, (T, 1, 0,?) used to indicate the effect of the instruction on the
flags in the PSW and PSW1 registers. For a conditional jump instruction, “I” indicates that a flag
influences the decision to jump.

Table A-28. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

The instruction sets or clears the flag, as appropriate.

The instruction sets the flag.

The instruction clears the flag.

N[O+~ | O

The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

ACALL <addr11>
Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags: CY AC oV N z

Example: The stack pointer (SP) contains 07H and the label "SUBRTN" is at program memory location
0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 25H
and 01H, respectively; and the PC contains 0345H.

Binary Mode Source Mode
Bytes: 2 2
States: 9 9

A-26

Int€|® INSTRUCTION SET REFERENCE

[Encoding] | al0a9a8 1 0001 | |a7a6a5a4 |a3a2ala0

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ACALL
(PC) « (PC)+2
(SP) -« (SP) +1
((SP)) « (PC.7:0)
(SP) -« (SP) +1
((SP)) « (PC.15:8)
(PC.10:0) ~ page address

ADD <dest>,<src>
Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu-
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32

bit).
Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.
Flags:
cY AC ov
g g g g g
Example: Register 1 contains 0C3H (11000011B) and register 0 contains OAAH (10101010B). After
executing the instruction
ADD R1,R0
register 1 contains 6DH (01101101B), the AC flag is clear, and the CY and OV flags are set.
Variations
ADD A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0010 0100 | | immed. data

A-27

8XC251SA, SB, SP, SQ USER’S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) < (A) + #data
ADD A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 0101 \ \ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) < (A) + (dir8)
ADD A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0010 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADD
(A) — (A) + ((RD)
ADD ARn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0010 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADD
(A) - (A) +(Rn)
ADD Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1

A-28

Int€|® INSTRUCTION SET REFERENCE

[Encoding] | 0010 1100 | | ssss SSss

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rmd) « (Rmd) + (Rms)

ADD WR]d,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0010 1101 \ \ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRjd) ~ (WRjd) + (WRjs)

ADD DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 0010 1111 ‘ ‘ uuuu Uuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRkd) ~ (DRKkd) + (DRKs)

ADD Rm #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0010 1110 | | ssss 0000 | | #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) < (Rm) + #data

A-29

8XC251SA, SB, SP, SQ USER’S MANUAL

ADD WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 | [et 0100 | | w#datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WR)) « (WRj) + #datal6
ADD DRk,#0datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0010 1110 | | uuuu 1000 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(DRK) ~ (DRk) + #datal6
ADD Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 1110 \ \ ssss 0001 \ \ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rm) — (Rm) + (dir8)
ADD WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0010 1110 | [reet 0101 | | directaddr

A-30

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding
Operation: ADD
(WRj) < (WRj) + (dir8)
ADD Rm,dir1l6
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0010 1110 | [ssss 0011 | | directaddr | | directadd
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rm) — (Rm) + (dir16)
ADD WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 | [ttt 0111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WR)) « (WR]j) + (dir16)
ADD Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0010 1110 | |ttt 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD

(Rm) « (Rm) + ((WR}))

A-31

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

ADD Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0010 1110 | [wuuuu 1011 | [ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]

Operation:

Source Mode = [Encoding]

ADD
(Rm) (Rm) + ((DRK))

ADDC A,<src>
Function:

Description:

Flags:

Example:

Variations

Add with carry

Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit)

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

CY AC oV
O O O

The accumulator contains 0C3H (11000011B), register 0 contains 0AAH (10101010B), and
the CY flag is set. After executing the instruction

ADDC A,RO

the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

ADDC A #data

Bytes:
States:

A-32

Binary Mode Source Mode
2 2
1 1

Int€|® INSTRUCTION SET REFERENCE

[Encoding] | 0011 0100 | | immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADDC
(A) < (A) + (CY) + #data

ADDC A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0011 0101 | | direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) < (A) + (CY) + (dir8)
ADDC A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0011 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) ~ (A) +(CY) + ((Ri))
ADDC A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0011 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) < (A) +(CY) + (Rn)

A-33

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

AJMP addril

Function:

Description:

Flags:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Absolute jump

Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7—
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte “page” of program memory as the first byte of the instruction following AJMP.

CY AC oV N z

The label "JMPADR" is at program memory location 0123H. After executing the instruction
AIMP JMPADR

at location 0345H, the PC contains 0123H.

Binary Mode Source Mode
2 2
3 3
al0 a9 a8 0 0001 ‘ ‘a7a6a5a4 a3 a2 al a0

Binary Mode = [Encoding]

Source Mode = [Encoding]

AIMP
(PC) —~ (PC) +2
(PC.10:0) ~ page address

ANL <dest>,<src>

Function:

Description:

Flags:

A-34

Logical-AND

Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY

AC

ov

Int€|® INSTRUCTION SET REFERENCE

Example: Register 1 contains 0C3H (11000011B) and register 0 contains 55H (01010101B). After
executing the instruction

ANL R1,RO

register 1 contains 41H (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

Variations
ANL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0101 0010 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) « (dir8) A (A)

ANL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0101 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ~ (dir8) A #data
ANL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0101 0100 | | immed. data

A-35

8XC251SA, SB, SP, SQ USER’S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) < (A) A\ #data

ANL A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 0101 \ \ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) < (A) A (dir8)
ANL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0101 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ANL
(A) « (A) A ((Ri))
ANL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0101 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ANL
(A) ~ (A) A (Rn)
ANL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1

A-36

intel.

INSTRUCTION SET REFERENCE

[Encoding] | 0101 1100 | | ssss SSsSsS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rmd) « (Rmd) A (Rms)
ANL WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 0101 1101 | |ttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRjd) ~ (WRjd) A (WRjs)
ANL Rm, #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0101 1110 ‘ ‘ SSSS 0000 #data
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) — (Rm) A #data
ANL WRj #datal6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [et 0100 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL

(WR)) — (WRj) A #datal6

A-37

8XC251SA, SB, SP, SQ USER’S MANUAL

ANL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 1110 ‘ ‘ SSSS 0001 direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) — (Rm) A (dir8)
ANL WRj,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0101 1110 | | teet 0101 direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRj) < (WRj) A (dir8)
ANL Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0101 1110 ‘ ‘ SSss 0011 ‘ ‘ direct ‘ ‘ direct

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A (dir16)
ANL WRj,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3

A-38

Int€|® INSTRUCTION SET REFERENCE

[Encoding]

\ 0101 \ 1110 \\ tttt 0111 \\ direct \\ direct

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WR)j) « (WRj) A (dirl6)

ANL Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0101 1110 | [t 1001 | [ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ~ (Rm) A (WRj))
ANL Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0101 1110 | | wuuuu 1011 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A ((DRK))

ANL CY,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

A-39

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Flags:
CcY AC ov N z
0 — — — —
Example: Set the CY flag if, and only if, P1.0=1, ACC. 7 =1, and OV =0:
MOV CY,P1.0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag
ANL CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1000 0010 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A (bit51)

ANL CY,/bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1011 0000 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A @ (bit51)
ANL CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 \ \ 1000 0 yyy \ \ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-40

Int€|® INSTRUCTION SET REFERENCE

Operation: ANL
(CY) « (CY) A (bit)
ANL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1111 0 Vyy ‘ ‘ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A @ (bit)

CJINE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not
equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

Flags:
CY AC oV
g — — g g
Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence
CJINE R7,#60H,NOT_EQ
; . . ;R7 = 60H
NOT_EQ: JC REQ_LOW ; IF R7 < 60H
; :R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,
WAIT: CINE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

A-41

8XC251SA, SB, SP, SQ USER’S MANUAL

Variations
CJINE A, #data,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 1011 0100 ‘ ‘ immed. data rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: (PC) -« (PC)+3

IF (A) # #data
THEN

(PC) ~ (PC) + relative offset
IF (A) < #data

THEN
(CY) « 1
ELSE
(CY) « 0
CJINE A,dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1011 0101 ‘ ‘ direct addr rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: (PC) -« (PC)+3

IF (A) #dir8
THEN
(PC) ~ (PC) + relative offset
IF (A) < dir8
THEN

CJINE @Ri,#data,rel

Bytes:
States:

A-42

Binary Mode
Not Taken Taken
3 3
3 6

Source Mode
Not Taken
4
4

Taken
4
7

Int€|® INSTRUCTION SET REFERENCE

[Encoding] | 1011 011i | | immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) -« (PC)+3
IF ((Ri)) # #data
THEN
(PC) ~ (PC) + relative offset
IF ((Ri)) < #data

THEN
(CY) « 1
ELSE
(CY) -0
CJINE Rn #data,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 2 5 3 6
[Encoding] 1011 lrrr ‘ ‘ immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) -« (PC)+3
IF (Rn) # #data
THEN
(PC) ~ (PC) + relative offset
IF (Rn) < #data

THEN
(CY) « 1
ELSE
(CY) -0
CLR A
Function: Clear accumulator
Description: Clears the accumulator (i.e., resets all bits to zero).
Flags:
CY AC ov
— — — 0 0
Example: The accumulator contains 5CH (01011100B). The instruction
CLR A

clears the accumulator to 00OH (00000000B).

A-43

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Binary Mode Source Mode

Bytes: 1 1
States: 1 1
[Encoding] 1110 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(A) -0
CLR bit
Function: Clear bit
Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.
Flags: Only for instructions with CY as the operand.
cY AC ov N z
O — — — —
Example: Port 1 contains 5DH (01011101B). After executing the instruction
CLR P1.2

port 1 contains 59H (01011001B).

Variations
CLR bit51
Binary Mode Source Mode
Bytes: 4 3
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0010 | | Bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit51) — O
CLR CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1100 0011

A-44

Int€|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) -0
CLR bit
Binary Mode Source Mode
Bytes: 4 4
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 \ \ 1100 0 yyy \ \ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit) —~ O

CMP <dest>,<src>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.

Flags:
CcY AC oV
O O O 0 0
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). The
instruction
CMP R1,RO
clears the CY and AC flags and sets the OV flag.
Variations
CMP Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1

A-45

8XC251SA, SB, SP, SQ USER’S MANUAL

[Encoding) | 1011 | 1100 | | ssss SSsSsS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rmd) — (Rms)
CMP WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 1011 1110 | |ttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRjd) — (WRjs)
CMP DRkd,DRks
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 1011 1111 | [wuuu uuuu
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRkd) — (DRks)
CMP Rm,#data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 1011 1110 ‘ ‘ SSsSs 0000 # data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) — #data

A-46

intel.

INSTRUCTION SET REFERENCE

CMP WRj #datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | | tttt 0100 | | w#datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WR)j) — #datal6
CMP DRk,#0datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | | uuuu 1000 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRk) — #0datal6
CMP DRk, #1datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | | uuuu 1100 | [#datahi | | #datani
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRK) — #1datal6
CMP Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

A-47

8XC251SA, SB, SP, SQ USER’S MANUAL

[Encoding) | 1011 | 1110 | | ssss 0001 | | diraddr |
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (dir8)
CMP WR;,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
ncoding tttt ir addr
Encodi 1011 1110 0101 dir add
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — (dir8)
CMP Rm,dirl6
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1011 1110 | [ssss 0011 | | diraddr | | diraddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (dir16)
CMP WR;,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | [ttt 0111 | | diraddr | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) — (dir16)

A-48

intel.

INSTRUCTION SET REFERENCE

CMP Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1011 1110 | [t 1001 | | ssss | | 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (WRY)))
CMP Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
1011 1110 | [wuuu 1011 | | ssss | | o000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — ((DRK))
CPL A
Function: Complement accumulator
Description: Logically complements (&) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.
Flags:
CcY AC ov
— — — O
Example: The accumulator contains 5CH (01011100B). After executing the instruction
CPL A
the accumulator contains OA3H (10100011B).
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1111 0100

A-49

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(A) - D(A)
CPL bit
Function: Complement bit
Description: Complements (@) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.
Flags: Only for instructions with CY as the operand.
CcY AC ov N z
] — — — —
Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence
CPLP1.1
CPL P1.2
port 1 contains 5BH (01011011B).
Variations
CPL bit51
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1011 0010 | | bitaddr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(bit51) ~ D(bit51)
CPL CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1011 0011
Hex Code in: Binary Mode = [Encoding]

A-50

Source Mode = [Encoding]

intel.

INSTRUCTION SET REFERENCE

Operation: CPL
(CY) - @(CY)

CPL bit

Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1011 0 yyy ‘ ‘ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit) D(bit)

DA A

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.
If accumulator bits 3:0 are greater than nine (XXXX1010-XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.
If the CY flag is now set, or if the upper four bits now exceed nine (L010XXXX-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.
All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.
Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

Flags:

CY AC oV

A-51

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Example: The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains OBEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A #99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 — 1 = 29.

Binary Mode Source Mode

Bytes: 1 1
States: 1 1
[Encoding] 1101 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]
THEN (A.3:0) « (A.3:0)+6
AND
IF [[(A.7:4) > 9] V [(CY) =1]]
THEN (A.7:4) — (A.7:4) + 6
DEC byte
Function: Decrement
Description: Decrements the specified byte variable by 1. An original value of 00H underflows to OFFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

cy AC oV
— — — O O

A-52

intel.

INSTRUCTION SET REFERENCE

Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain 00H
and 40H, respectively. After executing the instruction sequence
DEC @RO
DEC RO
DEC @RO
register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.
Variations
DEC A
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: DEC
A) - A)-1
DEC dir8
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0001 0101 \ \ dir addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: DEC
(dir8) « (dir8) -1
DEC @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0001 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: DEC

((R)) ~ (R -1

A-53

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

DEC Rn

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
1 2
1 2

0001 lrrr

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

DEC
(Rn) « (Rn)—-1

DEC <dest>,<src>

Function:

Description:

Flags:

Example:

Variations

Decrement

Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of O0H underflows to OFFH.

CY AC oV

Register 0 contains 7FH (01111111B). After executing the instruction sequence
DEC RO,#1

register O contains 7EH.

DEC Rm,#short

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
3 2
2 1

0001 1011 ‘ ‘ SSss 01 VvV

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DEC
(Rm) ~ (Rm) — #short

DEC WRj,#short

Bytes:
States:

A-54

Binary Mode Source Mode
3 2
2 1

intel.

[Encoding]

Hex Code in:

Operation:

INSTRUCTION SET REFERENCE

0001 1011 | | tttt 01 Vv

Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

DEC
(WRj) « (WRj) — #short

DEC DRKk,#short

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
3 2
5 4

0001 1011 ‘ ‘ uuuu 11 AY,

Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

DEC
(DRK) - (DRK) — #short

DIV <dest>,<src>

Function:

Description:

Flags:

Divide
Divides the unsigned integer in the register by the unsigned integer operand in register

addressing mode and clears the CY and OV flags.

For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is
stored in the higher byte of the word where Rmd resides; the 8-bit remainder is stored in the
lower byte of the word where Rmd resides. For example: Register 1 contains 251 (OFBH or
11111011B) and register 5 contains 18 (12H or 00010010B). After executing the instruction

DIV R1,R5

register 1 contains 13 (ODH or 00001101B); register O contains 17 (11H or 00010001B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.

CY AC ov
0 — O O O

Exception: if <src> contains O0H, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.

CY AC oV N z
0 — 1 ? ?

A-55

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Variations
DIV Rmd Rms
Binary Mode Source Mode
Bytes: 3 2
States: 11 10
[Encoding] 1000 1100 ‘ ‘ ssss SSsSsS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: DIV (8-bit operands)
(Rmd) ~ remainder (Rmd) / (Rms) if <dest>md =0,2,4,..,14
(Rmd+1) « quotient (Rmd) / (Rms)
(Rmd-1) ~ remainder (Rmd) / (Rms) if <dest> md = 1,3,5,..,15
(Rmd) — quotient (Rmd) / (Rms)
DIV WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 22 21
[Encoding] 1000 1101 | |ttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: DIV (16-bit operands)
(WRjd) ~ remainder (WRjd) / (WRjs) if <dest>jd =0, 4, 8, ... 28
(WRjd+2) ~ quotient (WRjd) / (WRjs)
(WRjd-2) ~ remainder (WRjd) / (WRjs) if <dest>jd = 2, 6, 10, ... 30
(WRjd) « quotient (WRjd) / (WRjs)
For word operands (<dest>,<src> = WRjd,WR;js) the 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register
file locations:
Location 4 5 6 7
Contents 33H | 44H 11H | 22H
DIV AB
Function: Divide
Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register

A-56

B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Flags:

Hex Code in:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

INSTRUCTION SET REFERENCE

Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

CY AC oV

For division by zero:

CY AC oV N z
0 — 1 ? ?

Binary Mode = [Encoding]
Source Mode = [Encoding]

The accumulator contains 251 (OFBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIV AB

the accumulator contains 13 (ODH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and QV flags are clear.

Binary Mode Source Mode
1 1
10 10

1000 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

DIV
(A) — quotient (A)/(B)
(B) ~ remainder (A)/(B)

DJINZ <byte>,<rel-addr>

Function:

Description:

Flags:

Decrement and jump if not zero

Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC oV

A-57

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence

DJNZ 40H,LABEL1
DJINZ 50H,LABEL2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

MOV R2,#8
TOGGLE: CPLP1.7
DJNZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DIJNZ and one to alter the pin.

Variations
DJNZ dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1101 0101 ‘ ‘ direct addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DJINZ
(PC) - (PC) +2
(dir8) « (dir8) — 1
IF (dir8) > 0 or (dir8) <0
THEN
(PC) « (PC) +rel

DJINZ Rn,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 3 3
States: 2 5 3 6
[Encoding] 1101 Irrr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

A-58

intel.

Operation:

INSTRUCTION SET REFERENCE

DJINZ
(PC) - (PC) +2
(Rn) « (Rn) -1
IF (Rn)>0o0r(Rn)<0
THEN
(PC) ~ (PC) +rel

ECALL <dest>
Function:

Description:

Flags:

Example:

Variations

Extended call

Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

CYy AC oV N z

The stack pointer contains 07H and the label “SUBRTN" is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains OAH; on-chip RAM locations 08H, 09H and OAH contain
01H, 23H and 45H, respectively; and the PC contains 123456H.

ECALL addr24

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
5 4
14 13
1001 1010 addr23— addrl5-addr8 addr7—addr0
addr16

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ECALL

(PC) - (PC) +4
(SP) — (SP) +1
((SP)) ~ (PC.23:16)
(SP) — (SP) +1
((SP)) ~ (PC.15:8)
(SP) — (SP) +1
((SP)) ~ (PC.7:0)
(PC) ~ (addr.23:0)

A-59

8XC251SA, SB, SP, SQ USER’S MANUAL

ECALL @DRk
Binary Mode Source Mode

Bytes: 3 2
States: 12 11
[Encoding] 1001 1001 ‘ ‘ uuuu
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: ECALL

(PC) « (PC) + 4
(SP) — (SP) +1
((SP)) — (PC.23:16)
(SP) — (SP) +1
((SP)) ~ (PC.15:8)
(SP) — (SP) +1
((SP)) ~ (PC.7:0)
(PC) — ((DRK))

EJMP <dest>

Function: Extended jump

Description: Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte
memory space.

Flags:

CY AC ov N

Example: The label "JMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is
EJMP JMPADR

Variations

EJMP addr24

Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding] 1000 1010 addr23— addrl5-addr8 addr7—addr0
addrl6
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: EJMP

(PC) ~ (addr.23:0)

A-60

Int€|® INSTRUCTION SET REFERENCE

EJMP @DRk
Binary Mode Source Mode
Bytes: 3 2
States: 7 6
[Encoding] 1000 1001 ‘ ‘ uuuu

Hex Code in: Binary Mode = [A5] [Encoding]
Source Mode = [Encoding]

Operation: EIJMP

(PC) ~ ((DRK))
ERET
Function: Extended return

Description: Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and
decrements the stack pointer by 3. Program execution continues at the resulting address,
which normally is the instruction immediately following ECALL.

Flags: No flags are affected.

Example: The stack pointer contains O0BH. On-chip RAM locations 08H, 09H and OAH contain 01H,
23H and 49H, respectively. After executing the instruction

ERET

the stack pointer contains 08H and program execution continues at location 012349H.
Binary Mode Source Mode

Bytes: 3 2
States: 10 9
[Encoding] 1010 1010

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ERET
(PC.23:16) " ((SP))
(SP)"(SP)-1
(PC.15:8) ~ ((SP))
(SP)"(SP)-1
(PC.7:0) « ((SP))
(SP) « (SP) -1

INC <Byte>
Function: Increment
Description: Increments the specified byte variable by 1. An original value of FFH overflows to O0H.

Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

A-61

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Flags:
CY AC ov
— — — 0 0
Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence
INC @RO
INC RO
INC @RO
register 0 contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.
Variations
INC A
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0000 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: INC
A -A)+1
INC dir8
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0000 0101 \ \ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: INC
(dir8) « (dir8) +1
INC @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0000 011i
Hex Code in: Binary Mode = [Encoding]

A-62

Source Mode = [A5][Encoding]

Int€|® INSTRUCTION SET REFERENCE

Operation: INC
((Ri) — ((Ri)) +1
INC Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0000 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC
(Rn) « (RN) +1

INC <dest>,<src>

Function: Increment
Description : Increments the specified variable by 1, 2, or 4. An original value of OFFH overflows to O0H.
Flags:
cY AC ov
Example: Register 0 contains 7EH (011111110B). After executing the instruction
INC RO,#1

register 0 contains 7FH.
Variations

INC Rm,#short

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 | | ssss 00 Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(Rm) < (Rm) + #short
INC WRj,#short
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 | |ttt 01 Vv

A-63

8XC251SA, SB, SP, SQ USER’S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(WRj) « (WR)j) + #short

INC DRK,#short

Binary Mode Source Mode

Bytes: 3 2
States: 4 3
[Encoding] 0000 1011 ‘ ‘ uuuu 11 A%
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(DRK) ~ (DRK) + #shortdata pointer
INC DPTR
Function: Increment data pointer
Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from OFFH to 00H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).
Flags:
CY AC ov
— — — 0
Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction sequence
INC DPTR
INC DPTR
INC DPTR
DPH and DPL contain 13H and 01H, respectively.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1010 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(DPTR) — (DPTR) +1

A-64

intel.

INSTRUCTION SET REFERENCE

JB bit51,rel
JB bit,rel
Function: Jump if bit set
Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.
Flags:
CY AC ov N z
Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence
JB P1.2,LABEL1
JB ACC.2,LABEL2
program execution continues at label LABEL2.
Variations
JB hit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0010 0000 ‘ ‘ bit addr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JB
(PC) « (PC) +3
IF (bit51) =1
THEN
(PC) « (PC) +rel
JB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 ‘ ‘ 0010 0 vy ‘ ‘directaddr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

A-65

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Operation: JB
(PC) « (PC) +3
IF (bit) =1
THEN
(PC) « (PC) +rel
JBC hit51,rel
JBC bit,rel
Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.
Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.
Flags:
cY AC ov N Z
Example: The accumulator contains 56H (01010110B). After the instruction sequence
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
the accumulator contains 52H (01010010B) and program execution continues at label
LABEL?2.
Variations
JBC hit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 4 7 4 7
[Encoding] 0001 0000 ‘ ‘ bit addr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JBC
(PC) « (PC) +3
IF (bit51) =1
THEN
(bit51) ~ 0

A-66

(PC) « (PC) +rel

Int€|® INSTRUCTION SET REFERENCE

JBC bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 \ \ 0001 0 yyy \ ‘directaddr \ \ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JBC

(PC) - (PC)+3

IF (bit51) =1

THEN

(bit51) ~ O

(PC) ~ (PC) +rel
JCrel
Function: Jump if carry is set
Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement

in the second instruction byte to the PC, after incrementing the PC twice.
Flags:

CY AC (6)) N z
| — — — —

Example: The CY flag is clear. After the instruction sequence

JC LABEL1

CPLCY

JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0100 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

A-67

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Operation: JC

(PC) - (PC) +2

IF(CY)=1

THEN
(PC) « (PC) +rel

JE rel
Function: Jump if equal
Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:
CY AC ov N z
— — — — 1
Example: The Z flag is set. After executing the instruction
JE LABEL1
program execution continues at label LABEL1.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0110 1000 \ \ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JE
(PC) « (PC) +2
IF(2)=1
THEN (PC) ~ (PC) +rel
JG rel
Function: Jump if greater than
Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise

proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

CY AC oV N z

A-68

Int€|® INSTRUCTION SET REFERENCE

Example: The instruction

JG LABEL1

causes program execution to continue at label LABELL1 if the Z flag and the CY flag are both

clear.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0011 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JG
(PC) « (PC) +2
IF(Z)=0AND (CY)=0
THEN (PC) ~ (PC) +rel

JLE rel
Function: Jump if less than or equal
Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CY AC (6)) N z
— — — 1 1
Example: The instruction
JLE LABEL1
causes program execution to continue at LABELL1 if the Z flag or the CY flag is set.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0010 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-69

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Operation: JLE
(PC) « (PC) +2
IF(Z)=10R(CY)=1
THEN (PC) ~ (PC) +rel

JMP @A+DPTR
Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are
not affected.

Flags:
CY AC oV N z
Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JIMP_TBL:
MOV DPTR#JMP_TB
JMP L
AIJMP @A+DPTR
JMP_TBL: AJMP LABELO
AIJMP LABEL1
AIMP LABEL2
LABEL3
If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.
Binary Mode Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 0111 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JMP
(PC.15:0) —~ (A) + (DPTR)
JNB bit51,rel
JNB bit,rel
Function: Jump if bit not set
Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

A-70

Int€|® INSTRUCTION SET REFERENCE

Flags:
CcY AC ov N Z

Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After

executing the instruction sequence

JNB P1.3,LABEL1

JNB ACC.3,LABEL2

program execution continues at label LABEL2.
Variations
JNB bit51,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0011 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNB

(PC) - (PC)+3

IF (bit51) =0

THEN (PC) — (PC) + rel
JNB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 ‘ ‘ 0011 0 vy ‘ ‘directaddr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JNB
(PC) -~ (PC) +3
IF (bit) =0
THEN
(PC) ~ (PC) +rel

A-71

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

JINC rel
Function: Jump if carry not set
Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.
Flags:
CY AC ov N z
| J— J— J— —
Example: The CY flag is set. The instruction sequence
JNC LABEL1
CPL CY
JNC LABEL2
clears the CY flag and causes program execution to continue at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0101 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNC
(PC) —~ (PC) +2
IF(CY)=0
THEN (PC) « (PC) + rel
JNE rel
Function: Jump if not equal
Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CcY AC ov N z
— J— J— J—]
Example: The instruction
JNE LABEL1

causes program execution to continue at LABELL if the Z flag is clear.

A-72

Int€|® INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0111 1000 | [rel adar

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNE
(PC) « (PC) +2
IF(Z)=0
THEN (PC) ~ (PC) +rel
JINZ rel
Function: Jump if accumulator not zero
Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.
Flags:
CcY AC ov N Z
— — — — 1
Example: The accumulator contains O0H. After executing the instruction sequence
JNZ LABEL1
INC A
JNZ LABEL2
the accumulator contains 01H and program execution continues at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0111 0000 | | rel addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INZ
(PC) — (PC) +2
IF(A)#0
THEN (PC) — (PC) + rel

A-73

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC ov N V4
— — ! | 1

Example: The instruction
JSG LABEL1
causes program execution to continue at LABELL1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0001 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSG
(PC) « (PC) +2
IF [(N) =0 AND (N) = (OV)]

THEN (PC) ~ (PC) + rel

JSGE rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC ov N z
— — ! | 1
Example: The instruction

A-74

JSGE LABEL1

causes program execution to continue at LABELL1 if the N flag and the OV flag have the
same value.

Int€|® INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0101 1000 | [rel adar

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSGE
(PC) -~ (PC) +2
IFI(N) = (QV)]
THEN (PC) ~ (PC) + rel

JSL rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CcY AC ov N Zz
— —] 1 1

Example: The instruction
JSL LABEL1
causes program execution to continue at LABELL1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0100 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSL
(PC) « (PC) +2
IF (N) # (OV)
THEN (PC) — (PC) + rel

A-75

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

JSLE rel

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC ov N V4
— — ! | 1

Example: The instruction
JSLE LABEL1
causes program execution to continue at LABELL1 if the Z flag is set OR if the N flag and the
OV flag have different values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0000 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSLE
(PC) « (PC) +2
IF{(Z) = 1 OR [(N) # (OV)]}

THEN (PC) ~ (PC) +rel

JZ rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

A-76

CY AC oV N z

Int€|® INSTRUCTION SET REFERENCE

Example: The accumulator contains 01H. After executing the instruction sequence
JZ LABEL1
DEC A
JZ LABEL2

the accumulator contains 00H and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0110 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: Jz
(PC) « (PC) +2
IF(A)=0

THEN (PC) — (PC) + rel

LCALL <dest>
Function: Long call

Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Flags:

CYy AC ov N z

Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.

LCALL addr16
Binary Mode Source Mode

Bytes: 3 3
States: 9 9
[Encoding] 0001 0010 | |addri5-addr8 | | addr7-addro

A-T7

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) - (PC)+3
(SP) -« (SP) +1
((SP)) « (PC.7:0)
(SP) -« (SP) +1
((SP)) « (PC.15:8)
(PC) ~ (addr.15:0)

LCALL @WRj
Binary Mode Source Mode
Bytes: 3 2
States: 9 8
[Encoding] 1001 1001 ‘ ‘ tttt ‘ ‘ 0100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) « (PC) +3
(SP) « (SP) +1
((SP)) « (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC) ~ ((WRj))

LIMP <dest>
Function: Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

CY AC oV N z

Example: The label “JMPADR” is assigned to the instruction at program memory location 1234H. After
executing the instruction

LIMP JMPADR

at location 0123H, the program counter contains 1234H.

LIMP addr16

Binary Mode Source Mode

Bytes: 3 3
States: 5 5
[Encoding] 0000 0010 \ ‘addrlS—addrB \ \ addr7—addr0

A-78

Int€|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LIMP
(PC) ~ (addr.15:0)
LIMP @WR]j
Binary Mode Source Mode
Bytes: 3 2
States: 6 5
[Encoding] 1000 1001 \ \ tttt \ \ 0100

Hex Code in: Binary Mode = [A5] [Encoding]
Source Mode = [Encoding]

Operation: LIMP
(PC) - ((WRj))

MOV <dest>,<src>

Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

This is by far the most flexible operation. Twenty-four combinations of source and
destination addressing modes are allowed.

Flags:
CY AC ov N z
Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (0CAH). After executing the instruction sequence
MOV RO,#30H ;RO < =30H
MOV A,@RO ‘A < = 40H
MOV R1,A :R1 < =40H
MOV B,@R1 ;B <=10H
MOV @R1,P1 ;RAM (40H) < = OCAH
MOV P2,P1 ;P2 #0CAH
register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain OCAH (11001010B).
Variations
MOV A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0111 0100 | |immed.data

A-79

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) — #data

MOV dir8,#data
Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0111 0101 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ #data

MOV @Ri,#data

Binary Mode Source Mode

Bytes: 2 3
States: 3 4
[Encoding] 0111 011i ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
((Ri)) < #data

MOV Rn #data

Binary Mode Source Mode

Bytes: 2 3
States: 1 2
[Encoding] 0111 lrrrr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ~ #data
MOV dir8,dir8
Binary Mode Source Mode
Bytes: 3 3
States: 3 3

A-80

Int€|® INSTRUCTION SET REFERENCE

[Encoding] | 1000 0101 | | direct addr | | direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ (dir8)
MOV dir8,@Ri
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1000 011i | | direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) « ((Ri))

MOV dir8,Rn

Binary Mode Source Mode
Bytes: 2 3
States: 2t 3t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1000 Irrr ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) « (Rn)
MOV @Ri,dir8
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1010 011i ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
((Ri)) ~ (dir8)

A-81

8XC251SA, SB,

SP, SQ USER’'S MANUAL Int6I®

MOV Rn,dir8

Bytes:
States:

Binary Mode Source Mode
2 3
1t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding]

1010 lrrr ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ~ (dir8)

MOV A,dir8

Bytes:
States:

Binary Mode Source Mode
2 2
1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding]

1110 0101 \ ‘directaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ~ (dir8)
MOV A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1110 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(A) < ((Ri)
MOV A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1110 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

A-82

intel.

INSTRUCTION SET REFERENCE

Operation: MOV
(A) - (Rn)
MOV dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1111 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (A)
MOV @Ri,A
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1111 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOV
((Ri)) — (A)
MOV Rn,A
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1111 111r
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOV
(Rn) — (A)

MOV Rmd,Rms

Bytes:
States:

[Encoding]

Binary Mode Source Mode
3 2
2 1

0111 1100 ‘ ‘

SSSS

A-83

8XC251SA, SB, SP, SQ USER’S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rmd) « (Rms)

MOV WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0111 1101 \ \ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOV

(WRjd) ~ (WRjs)
MOV DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0111 1111 \ \ uuuu UUUU
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOV

(DRkd) —~ (DRks)
MOV Rm,#data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0111 1110 | | ssss 0000 #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ~ #data

MOV WRj,#data16

Binary Mode Source Mode
Bytes: 5 4
States: 3 2

A-84

Int€|® INSTRUCTION SET REFERENCE

[Encoding]

\ 0111 \ 1110 \\ tttt 0100 \\ #data hi \\#datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ~ #datal6

MOV DRk, #0datal6

Binary Mode Source Mode

Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 ‘ ‘ uuuu 1000 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRK) ~ #0datal6
MOV DRk,#1datal6
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 | | wuuuu 1100 | | #datahi | | #datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ~ #ldatal6

MOV Rm,dir8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-85

8XC251SA, SB, SP, SQ USER’S MANUAL

Operation: MOV
(Rm) — (dir8)
MOV WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0111 1110 \ \ tttt 0101 \ \ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) < (dir8)
MOV DRK,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 6 5
[Encoding] 0111 1110 | | wuuu 1101 | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRK) « (dir8)
MOV Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0111 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) « (dir16)
MOV WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3

A-86

intel.

INSTRUCTION SET REFERENCE

[Encoding]
‘ 0111 ‘ 1110 ‘ ‘ tttt 0111 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WR)) « (dir16)
MOV DRKk,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0111 1110 ‘ ‘ uuuu 1111 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRK) « (dir16)
MOV Rm,@WR]j
Binary Mode Source Mode
Bytes: 4 3
States: 2 2
[Encoding]
0111 1110 | | ottt 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((WRj))
MOV Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0111 1110 | | wuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

(Rm) ~ ((DRK))

A-87

8XC251SA, SB, SP, SQ USER’S MANUAL

MOV WRjd, @WRis

Binary Mode Source Mode

Bytes: 4 3
States: 4 3
[Encoding]
0000 1011 | | TTTT 1000 | | ottt 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRjd) — ((WRjs))
MOV WRj,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0000 1011 | | wuuu 1010 | | ottt 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRY)) — ((DRK))
MOV dir8,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 41 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1010 | | SSSS 0011 | | direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (Rm)

MOV dir8,WRj

Binary Mode Source Mode
Bytes: 4 3
States: 5 4

A-88

intel.

INSTRUCTION SET REFERENCE

[Encoding] 0111 1010 | | ottt 0101 | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) « (WRj)
MOV dir8,DRk
Binary Mode Source Mode
Bytes: 4 3
States: 7 6
[Encoding] 0111 1010 ‘ ‘ uuuu 1101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (DRK)
MOV dirl6,Rm
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0111 1010 ‘ ‘ SSSs 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) — (Rm)
MOV dirl6,WRj
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1010 | | ottt 0111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

(dir16) — (WRJ)

A-89

8XC251SA, SB, SP, SQ USER’S MANUAL

MOV dir16,DRk
Binary Mode Source Mode

Bytes: 5 4
States: 7 6
[Encoding]
0111 1010 ‘ ‘ uuuu 1111 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) ~ (DRK)
MOV @WRj,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0111 1010 | | ottt 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((WR)) ~ (Rm)
MOV @DRk,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0111 1010 | | wuuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((DRK)) — (Rm)
MOV @WRjd,WRjs
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0001 1011 | |ttt 1000 | [TTTT 0000

A-90

intel.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

((WRjd)) — (WRjs)

INSTRUCTION SET REFERENCE

MOV @DRk,WRj

Binary Mode Source Mode
Bytes: 4 3
States: 6 5
[Encoding]
0001 1011 | [wuuu 1010 | | ottt 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((DRK)) ~ (WRj)
MOV Rm,@WRj + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0000 1001 ‘ ‘ SSsSs tttt ‘ ‘ dis hi ‘ ‘ dis low
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((WRj)) + (dis)
MOV WRj,@WR;j + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0100 1001 | | ottt TTTT | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

(WRj) « ((WRj)) + (dis)

A-91

8XC251SA, SB, SP, SQ USER’S MANUAL

MOV Rm,@DRk + dis24
Binary Mode Source Mode

Bytes: 5 4
States: 7 6
[Encoding]
0010 1001 ‘ ‘ SSSS uuuu ‘ ‘ dis hi ‘ ‘ dis low
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((DRK)) + (dis)
MOV WR]j,@DRK + dis24
Binary Mode Source Mode
Bytes: 5 4
States: 8 7
[Encoding]
0110 1001 | | tett uuuu | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) « ((DRK)) + (dis)
MOV @WRj + dis16,Rm
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0001 1001 | | tttt SSSS | | dis hi | | dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRy)) + (dis) — (Rm)

MOV @WRj + dis16,WRj

Binary Mode Source Mode
Bytes: 5 4
States: 7 6

A-92

intel.

INSTRUCTION SET REFERENCE

[Encoding]
| o101 | 1001 | | ottt TTTT | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOV

((WRj)) + (dis) ~ (WRj)
MOV @DRk + dis24,Rm

Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0011 1001 | [wuuu ssss | | dishi | | dislow

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOV

((DRK)) + (dis) « (Rm)
MOV @DRKk + dis24,WRj

Binary Mode Source Mode
Bytes: 5 4
States: 8 7
[Encoding]
0111 1001 | | wuuy teet | | dishi | [dislow

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOV

((DRK)) + (dis) « (WRj)

MOV <dest-bit>,<src—bit>

Function: Move bit data
Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.
Flags:
CcY AC ov N z
O — — — —

A-93

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence
MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY
the CY flag is clear and Port 1 contains 39H (00111001B).
Variations
MOV bit51,CY
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1001 0010 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit51) ~ (CY)

MOV CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 0010 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) « (bit51)
MOV bit,CY
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1001 0 yyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-94

Int€|® INSTRUCTION SET REFERENCE

Operation: MOV
(bit) — (CY)
MOV CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1010 0 yyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) « (bit)

MOV DPTR,#datal6

Function: Load data pointer with a 16-bit constant

Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

Flags:
CcY AC ov N Z
Example: After executing the instruction
MOV DPTR,#1234H
DPTR contains 1234H (DPH contains 12H and DPL contains 34H).
Binary Mode Source Mode
Bytes: 3 3
States: 2 2
[Encoding] 1001 0000 ‘ ‘ data hi ‘ ‘ data low

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(DPTR) — #datal6

A-95

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

MOVC A,@A+<base-reg>
Function: Move code byte

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is

performed.
Flags:
CcY AC oV N 4
Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.
RELPC: INC A
MovcC A@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H
If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to "get around" the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.
Variations

MOVC A,@A+PC

Binary Mode Source Mode

Bytes: 1 1
States: 6 6
[Encoding] 1000 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOvC
(PC) - (PC)+1
(A) ~ ((A) + (PC))

MOVC A,@A+DPTR

Binary Mode Source Mode

Bytes: 1 1
States: 6 6
[Encoding] 1001 0011

A-96

intel.

Hex Code in:

Operation:

INSTRUCTION SET REFERENCE

Binary Mode = [Encoding]

Source Mode = [Encoding]

MovC
(A) ~ ((A) + (DPTR))

MOVH DRk, #datal6

Function:

Description:

Flags:

Example:

Variations

Move immediate 16-bit data to the high word of a dword (double-word) register

Moves 16-bit immediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

CY AC ov N z

The dword register DRk contains 5566 7788H. After the instruction
MOVH DRk,#1122H

executes, DRk contains 1122 7788H.

MOVH DRk, #datal6

Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0111 1010 ‘ ‘ uuuu 1100 ‘ ‘ #data hi ‘ ‘ #data low
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOVH
(DRK).31:16 ~ #datal6
MOVS WRj,Rm
Function: Move 8-bit register to 16-bit register with sign extension
Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.
Flags:

CY AC ov N z

A-97

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Example: Eight-bit register Rm contains 055H (01010101B) and the 16-bit register WR]j contains
OFFFFH (11111111 11111111B). The instruction
MOVS WRj,Rm
moves the contents of register Rm (01010101B) to register WRj (i.e., WR]j contains
00000000 01010101B).
Variations
MOVS WRj,Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1010 ‘ ‘ tttt SSSS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOVS

(WR;j).7-0 — (Rm).7-0
(WR;j).15-8 — MSB

MOVX <dest>,<src>

Function:

Description:

Flags:

A-98

Move external

Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external 1/O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using RO or R1.

CY AC (6)) N z

intel.

Example:

Variations

INSTRUCTION SET REFERENCE

The MCS 251 controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal 1/0. RO

and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After

executing the instruction sequence

MOVX A,@R1
MOVX @RO,A

the accumulator and external RAM location 12H contain 56H.

MOVX A,@DPTR

Binary Mode Source Mode

Bytes: 1 1
States: 5 5
[Encoding] 1110 0000
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: MOVX

(A) - ((DPTR))
MOVX A,@Ri

Binary Mode Source Mode

Bytes: 1 1
States: 3 3
[Encoding] 1110 001i
Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encodin g]
Operation: MOVX

(A) ~ (R)

MOVX @DPTR,A

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
1 1
5 5

1111 0000

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
(DPTR)) ~ (A)

A-99

8XC251SA, SB, SP, SQ USER’S MANUAL

MOVX @Ri,A

Binary Mode Source Mode
Bytes: 1 1
States: 4 4
[Encoding] 1111 001i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: MOVX
((Ri)) — (A)
MOVZ WRj,Rm
Function: Move 8-bit register to 16-bit register with zero extension
Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of
the 16-bit register is filled with zeros.
Flags:
CY AC ov N
Example: Eight-bit register Rm contains 055H (01010101B) and 16-bit register WRj contains OFFFFH
(11111111 11111111B). The instruction
MOVZ WRj,Rm
moves the contents of register Rm (01010101B) to register WR;j. At the end of the operation,
WRj contains 00000000 01010101B.
Variations
MOVZ WRj,Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1010 ‘ ‘ tttt SSSS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOvZz
(WRj)7-0 —~ (Rm)7-0
(WRj)15-8 ~ 0

A-100

intel.

INSTRUCTION SET REFERENCE

MUL <dest>,<src>

Function: Multiply
Description: Multiplies the unsigned integer in the source register with the unsigned integer in the
destination register. Only register addressing is allowed.
For 8-bit operands, the result is 16 bits. The most significant byte of the result is stored in the
low byte of the word where the destination register resides. The least significant byte is
stored in the following byte register. The OV flag is set if the product is greater than 255
(OFFH); otherwise it is cleared.
For 16-bit operands, the result is 32 bits. The most significant word is stored in the low word
of the dword where the destination register resides. The least significant word is stored in
the following word register. In this operation, the OV flag is set if the product is greater than
OFFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.
Flags:
CY AC ov
0 — O O
Example: Register R1 contains 80 (50H or 10010000B) and register RO contains 160 (OAOH or
10010000B). After executing the instruction
MUL R1,R0O
which gives the product 12,800 (3200H), register RO contains 32H (00110010B), register R1
contains 00H, the OV flag is set, and the CY flag is clear.
MUL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 6 5
[Encoding] 1010 1100 | | ssss SSSsS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MUL (8-bit operands)

if <dest>md =0, 2, 4, .., 14

Rmd ~ high byte of the Rmd X Rms
Rmd+1 « low byte of the Rmd X Rms
if <dest>md =1, 3,5, .., 15

Rmd-1 ~ high byte of the Rmd X Rms
Rmd — low byte of the Rmd X Rms

A-101

8XC251SA, SB, SP, SQ USER’S MANUAL

MUL WRjd, WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 12 11
[Encoding] 1010 1101 \ \ tttt tttt

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (16-bit operands)
if <dest>jd =0, 4, 8, .., 28

WRjd ~ high word of the WRjd X WRjs
WRjd+2 — low word of the WRjd X WRjs

if <dest> jd = 2, 6, 10, .., 30

WRjd-2 ~ high word of the WRjd X WRjs
WRjd ~ low word of the WRjd X WRjs

MUL AB
Function: Multiply
Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.
Flags:
CcY AC oV
0 — O
Example: The accumulator contains 80 (50H) and register B contains 160 (OAOH). After executing the
instruction
MUL AB
which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.
Binary Mode Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 1010 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MUL

(A) ~ low byte of (A) X (B)
(B) « high byte of (A) X (B)

A-102

intel.

INSTRUCTION SET REFERENCE

NOP
Function:

Description:

Flags:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

No operation

Execution continues at the following instruction. Affects the PC register only.

CY AC ov N z

You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P27
NOP
NOP
NOP
SETB P2.7
Binary Mode Source Mode
1 1
1 1
0000 0000

Binary Mode = [Encoding]
Source Mode = [Encoding]

NOP
(PC) - (PC)+1

ORL <dest> <src>

Function:

Description:

Flags:

Logical-OR for byte variables

Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY

AC

ov

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Example: The accumulator contains 0C3H (11000011B) and RO contains 55H (01010101B). After
executing the instruction

ORL A,RO

the accumulator contains OD7H (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bhits 5, 4, and 1 of output Port 1.

Variations
ORL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0100 0010 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ~ (dir8) V (A)

ORL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0100 0011 \ \ direct addr \ \ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ~ (dir8) V #data

ORL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0100 0100 \ \ immed. data

A-104

Int€|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) <« (A) V #data

ORL A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) < (A)V (dir8)
ORL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0100 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: ORL
(A) - (A V((Ri)
ORL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0100 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: ORL
(A) - (A)V (Rn)
ORL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0100 1100 ‘ ‘ SSsss SSSS

A-105

8XC251SA, SB, SP, SQ USER’S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) <« (Rmd) V (Rms)

ORL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0100 1101 \ \ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: ORL

(WRjd) — (WRjd) V (WRjs)
ORL Rm,#data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0100 1110 ‘ ‘ SSSsS 0000 ‘ ‘ #data
Hex Code in Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: ORL

(Rm) ~ (Rm) V #data
ORL WRj,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0100 1110 | [teet 0100 | | #datahi | | #datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WR)j) « (WRj) V #datal6

A-106

intel.

INSTRUCTION SET REFERENCE

ORL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(Rm) « (Rm) V (dir8)
ORL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0100 1111 | [et 0101 | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(WRj) « (WR)j) V (dir8)
ORL Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0100 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(Rm) — (Rm) V (dirl6é)
ORL WR)j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3

A-107

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

[Encoding]

0100 1110 ‘ ‘ tttt 0111 ‘ ‘ direct addr ‘ ‘ direct addr ‘

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) < (WR)) V (dirle)
ORL Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0100 1110 | [t 1001 | [ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ~ (Rm) V ((WRY}))
ORL Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0100 1110 | | wuuuu 1011 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) — (Rm) V ((DRK))

ORL CY,<src-bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

CY AC ov N z

A-108

Int€|® INSTRUCTION SET REFERENCE

Example: Set the CY flag if and only if P1.0 =1, ACC. 7 =1, 0or OV =0:
MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.
Variations
ORL CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0111 0010 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) « (CY) V (bit51)

ORL CY,/bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1010 0000 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) « (CY) V= (bit51)
ORL CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 \ \ 0111 0 vyy \ \ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) < (CY) V (bit)

A-109

8XC251SA, SB, SP, SQ USER’S MANUAL

ORL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1110 0 yyy ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(CY) < (CY) V = (bit)
POP <src>
Function: Pop from stack
Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.
Flags:
CY AC ov N z
Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence
POP DPH
POP DPL
the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction
POP SP
the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).
Variations
POP dir8
Binary Mode Source Mode
Bytes: 2 2
States: 3 3
[Encoding] 1101 0000 \ \ direct addr

A-110

Int€|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: POP
(dir8) ~ ((SP))
(SP) — (SP)-1

POP Rm
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 1101 1010 \ \ ssss 1000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(Rm) — ((SP))
(SP) ~ (SP)-1

POP WR}j
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 1101 1010 | | ottt 1001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) - (SP)-1
(WRj) ~ ((SP))
(SP) -« (SP)-1

POP DRk
Binary Mode Source Mode
Bytes: 3 2
States: 10 9
[Encoding] 1101 1010 | | wuuuu 1011

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) ~ (SP)-3
(DRK) ~ ((SP))
(SP) - (SP)-1

A-111

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

PUSH <dest>

Function: Push onto stack
Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.
Flags:
CY AC ov N V4
Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence
PUSH DPL
PUSH DPH
the stack pointer contains OBH and on-chip RAM locations 0AH and OBH contain 01H and
23H, respectively.
Variations
PUSH dir8
Binary Mode Source Mode
Bytes: 2 2
States: 4 4
[Encoding] 1100 0000 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) - (SP)+1
((SP)) ~ (dir8)

PUSH #data
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1100 1010 \ \ 0000 0010 \ \ #data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH

(SP) « (SP) +1
((SP)) ~ #data

A-112

intel.

INSTRUCTION SET REFERENCE

PUSH #datal6

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
1100 1010 | | o000 0110 | | #datahi | | #datalo

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: PUSH

(SP) — (SP) +2

((SP)) —~ MSB of #datal6

((SP)) ~ LSB of #datal6
PUSH Rm

Binary Mode Source Mode

Bytes: 3 2
States: 4 3
[Encoding] 1100 1010 | | ssss 1000
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: PUSH

(SP) - (SP)+1

((SP)) ~ (Rm)
PUSH WRj

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1100 1010 | | ottt 1001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) « (SP)+1
((SP)) ~ (WRj)
(SP) " (SP) +1

A-113

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

PUSH DRk
Binary Mode Source Mode
Bytes: 3 2
States: 9 8
[Encoding] 1100 1010 | | wuuu 1011
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) « (SP)+1
((SP)) ~ (DRK)
(SP) - (SP)+3
RET
Function: Return from subroutine
Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack
pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.
Flags:
CcY AC ov N z
Example: The stack pointer contains O0BH and on-chip RAM locations 0AH and OBH contain 01H and
23H, respectively. After executing the instruction,
RET
the stack pointer contains 09H and program execution continues at location 0123H.
Binary Mode Source Mode
Bytes: 1 1
States: 7 7
[Encoding] 0010 0010
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RET

A-114

(PC).15:8 ((SP))
(SP) — (SP) -1
(PC).7:0 ((SP))
(SP) — (SP) -1

intel.

INSTRUCTION SET REFERENCE

RETI
Function:

Description:

Flags:

Example:

Bytes:

Return from interrupt

This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:. The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre-
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts
at the same priority level as the one just processed. Program execution continues at the
return address, which normally is the instruction immediately after the point at which the
interrupt request was detected. If an interrupt of the same or lower priority is pending when
the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

CYy AC oV N z

INTR = 0. The stack pointer contains 0BH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations 0AH and OBH contain 01H and 23H,
respectively. After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode
1 1

States (INTR = 0): 9 9
States (INTR = 1): 12 12

[Encoding]

Hex Code in:

0011 0010

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for INTR = 0:

RETI
(PC).15:8 ((SP))
(SP) — (SP) -1
(PC).7:0 < ((SP))
(SP) —(SP) -1

A-115

8XC251SA, SB, SP, SQ USER’S MANUAL

Operation for INTR = 1:

RETI

(PC).15:8 — ((SP))
(SP) - (SP) -1
PC).7:0 ~ ((SP))
(SP) - (SP)-1
(PC).23:16 ~ ((SP))
(SP) - (SP)-1
PSW1 — ((SP))
(SP) - (SP)-1

RL A
Function: Rotate accumulator left
Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit O
position.
Flags:
CY AC oV
Example: The accumulator contains 0C5H (11000101B). After executing the instruction,
RLA
the accumulator contains 8BH (10001011B); the CY flag is unaffected.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0010 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RL
(A).a+1l ~ (A).a
(A).0 « (A).7
RLC A
Function: Rotate accumulator left through the carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit O position.
Flags:

A-116

CY

AC

ov

0

Int€|® INSTRUCTION SET REFERENCE

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RLC A

the accumulator contains 8AH (10001010B) and the CY flag is set.
Binary Mode Source Mode

Bytes: 1 1
States: 1 1
[Encoding] 0011 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RLC
(A).a+1l ~ (A).a
(A).0 « (CY)
CY) - (A7
RR A
Function: Rotate accumulator right
Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 or
15 position.
Flags:
CY AC ov
— — — 0 0
Example: The accumulator contains OC5H (11000101B). After executing the instruction
RRA

the accumulator contains OE2H (11100010B) and the CY flag is unaffected.

Binary Mode Source Mode

Bytes: 1 1
States: 1 1
[Encoding] 0000 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RR

(A).a « (A).a+1
(A).7 <« (A).0

A-117

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

RRC A
Function: Rotate accumulator right through carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.
Flags:
CcY AC oV
O — —
Example: The accumulator contains OC5H (11000101B) and the CY flag is clear. After executing the
instruction
RRC A
the accumulator contains 62 (01100010B) and the CY flag is set.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RRC
(A).a « (A).a+1
(A).7 < (CY)
(CY) « (A).0
SETB <bit>
Function: Set bit
Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.
Flags: No flags are affected except the CY flag for instruction with CY as the operand.
CcY AC ov N z
O — — — —
Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the

A-118

instruction sequence

SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35H (00110101B).

intel.

INSTRUCTION SET REFERENCE

SETB bit51
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1101 0010 \ \ bit addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SETB
(bit51) ~ 1
SETB CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1101 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SETB
(CY) -1
SETB bit
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 \ \ 1101 0 vyy \ \ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SETB
(bit) ~ 1
SIMP rel
Function: Short jump
Description: Program control branches unconditionally to the specified address. The branch destination

is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

A-119

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

Flags:
CcY AC ov N z
Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction
SIJMP RELADR
assembles into location 0100H. After executing the instruction, the PC contains 0123H.
(Note: In the above example, the instruction following SIMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H-0102H) = 21H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)
Binary Mode Source Mode
Bytes: 2 2
States: 4 4
[Encoding] 1000 0000 \ \ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SIMP
(PC) ~ (PC) +2
(PC) « (PC) +rel
SLL <src>
Function: Shift logical left by 1 bit
Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted
out (MSB) is stored in the CY bit.
Flags:
CcY AC oV
O — — O O
Example: Register 1 contains OC5H (11000101B). After executing the instruction
SLL register 1
Register 1 contains 8AH (10001010B) and CY = 1.
Variations
SLL Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 \ \ ssss 0000

A-120

intel.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

INSTRUCTION SET REFERENCE

Operation: SLL

(Rm).a+1 « (Rm).a

(Rm).0 -~ 0

CY « (Rm).7
SLL WRj

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 | |ttt 0100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL
WRj).b+1 « (WRj).b
(WRj).0 < 0
CY ~ (WR)j).15
SRA <src>
Function: Shift arithmetic right by 1 bit
Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit
shifted out (LSB) is stored in the CY bit.
Flags:
CY AC ov
0 — — 0
Example: Register 1 contains OC5H (11000101B). After executing the instruction
SRA register 1
Register 1 contains OE2H (11100010B) and CY = 1.
Variations
SRA Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(Rm).7 « (Rm).7
(Rm).a « (Rm).a+1
CY < (Rm).0

A-121

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

SRA WRj
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 ‘ ‘ tttt 0100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(WR)).15 ~ (WR)j).15
(WRj).b « (WRj).b+1
CY < (WR)j).0

SRL <src>
Function: Shift logical right by 1 bit

Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit
shifted out (LSB) is stored in the CY bit.

Flags:
CY AC ov
0 — — 0 0
Example: Register 1 contains 0C5H (11000101B). After executing the instruction
SRL register 1
Register 1 contains 62H (01100010B) and CY = 1.
Variations
SRL Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL
(Rm).7 - 0
(Rm).a « (Rm).a+1

A-122

intel.

INSTRUCTION SET REFERENCE

SRL WRj

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
3 2
2 1

0001 1110 ‘ ‘ tttt 0100

Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

SRL

(WRij).15 « 0
(WRj).b — (WRj).b+1
CY - (WR})).0

SUB <dest>,<src>

Function: Subtract
Description: Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY is clear.
When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.
Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit).
The source operand allows four addressing modes: immediate, indirect, register and direct.
Flags:
CY AC ov
0 ot 0 O 0
tFor word and dword subtractions, AC is not affected.
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction
SUB R1,R0
register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.
Variations
SUB Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 1001 1100 | | ssss SSSSs

A-123

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rmd) < (Rmd) — (Rms)

SUB WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 1001 1101 | |ttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRjd) — (WRjd) — (WRjs)

SUB DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1001 1111 | | wuuuu uuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRkd) « (DRkd) — (DRks)

SUB Rm,#data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 1001 1110 | | ssss 0000 | | #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) < (Rm) — #data

SUB WRj,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3

A-124

intel.

INSTRUCTION SET REFERENCE

[Encoding]
| 1001 [1110 | [tett 0100 | | #datahi #data low
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SUB

(WR)) « (WR)j) — #datal6
SUB DRk,#datal6

Binary Mode Source Mode
Bytes: 5
States: 6
[Encoding]
1001 1110 ‘ ‘ uuuu 1000 ‘ ‘ #data hi #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRk) ~ (DRk) — #datal6
SUB Rm,dir8
Binary Mode Source Mode
Bytes: 4
States: 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 1110 SSSS 0001 | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) « (Rm) — (dir8)
SUB WR;j,dir8
Binary Mode Source Mode
Bytes: 4
States: 4
[Encoding] 1001 1110 tttt 0101 | | directaddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) « (WRj) — (dir8)

A-125

8XC251SA, SB, SP, SQ USER’S MANUAL

SUB Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1001 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) — (Rm) — (dir16)
SUB WR;j,dirl6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 | |ttt 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(WR)) « (WRj) — (dir16)
SUB Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1001 1110 | | ottt 1001 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) — (Rm) — ((WR)))
SUB Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3

A-126

intel.

INSTRUCTION SET REFERENCE

[Encoding]
‘ 1001 1110 ‘ ‘ uuuu 1011 ‘ ‘ SSSS ‘ ‘ 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB

(Rm) — (Rm) — ((DRK))

SUBB A,<src—byte>

Function:

Description:

Flags:

Example:

Variations

Subtract with borrow

SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

CY AC ov
O O O O O

The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction

SUBB A,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

SUBB A, #data

Bytes:
States:

Binary Mode Source Mode
2 2
1 1

A-127

8XC251SA, SB, SP, SQ USER’S MANUAL

[Encoding] | 1001 | 0100 | | immed. data
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SUBB
(A) < (A) - (CY) —#data
SUBB A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 0101 | | direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SUBB
(A) — (A)—(CY) — (dirg)
SUBB A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1001 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: SUBB
(A) - (A)—(CY) - ((Ri)
SUBB A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1001 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin @]
Operation: SUBB

A-128

(A) ~ (A) - (CY) - (Rn)

intel.

INSTRUCTION SET REFERENCE

SWAP A
Function: Swap nibbles within the accumulator
Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3—0 and bits 7—
4). This operation can also be thought of as a 4-bit rotate instruction.
Flags:
CY AC oV N z
Example: The accumulator contains OC5H (11000101B). After executing the instruction
SWAP A
the accumulator contains 5CH (01011100B).
Binary Mode Source Mode
Bytes: 1 1
States: 2 2
[Encoding] 1100 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SWAP
(A).3:0 - « (A).7:4
TRAP
Function: Causes interrupt call
Description: Causes an interrupt call that is vectored through location OFFO07BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSW0 and PSW1.
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.
Flags:
CY AC oV N z
Example: The instruction

TRAP

causes an interrupt call to location OFFO07BH during normal operation.

A-129

8XC251SA, SB, SP, SQ USER’S MANUAL

Binary Mode Source Mode
Bytes: 2 1
States (2 bytes): 11 10
States (4 bytes): 16 15
[Encoding] 1011 1001
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: TRAP
SP - SP-2
(SP) - PC
PC —~ (OFFO07BH)
XCH A,<byte>
Function: Exchange accumulator with byte variable
Description: Loads the accumulator with the contents of the specified variable, at the same time writing
the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.
Flags:
CY AC ov
Example: RO contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction
XCH A,@RO
RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).
Variations
XCH A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCH
(A) - « (dir8)

A-130

intel.

INSTRUCTION SET REFERENCE

XCH A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 4 5
[Encoding] 1100 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: XCH
(A) - < ((R)
XCH A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1100 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: XCH
(A) - « (Rn)
Variations
XCHD A,@Ri
Function: Exchange digit
Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.
Flags:
CY AC ov N z
Example: RO contains the address 20H, the accumulator contains 36H (00110110B), and on-chip RAM

location 20H contains 75H (01110101B). After executing the instruction

XCHD A,@RO

on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-

lator.

A-131

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
1 2
4 5

1101 011i

Binary Mode = [Encoding]
Source Mode = [Encoding]

XCHD
(A).3:0 - < ((R0)).3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation ({J) between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.
The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.
(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

Flags:

CcY AC oV

Example: The accumulator contains 0C3H (11000011B) and RO contains 0OAAH (10101010B). After
executing the instruction
XRL A,RO
the accumulator contains 69H (01101001B).
When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction
XRL P1,#00110001B
complements bits 5, 4, and 0 of output Port 1.

Variations

XRL dir8,A

Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t

A-132

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.

Int€|® INSTRUCTION SET REFERENCE

[Encoding] | 0110 0010 | | direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: XRL
(dir8) « (dir8) O (A)

XRL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0110 0011 | | direct addr | | immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ~ (dir8) O #data
XRL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0110 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) < (A) O #data

XRL A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 0101 \ \ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) < (A) O (dir8)

A-133

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

XRL A,@Ri

Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0110 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XRL
(A) — (A) O((Ri)
XRL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0110 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XRL
(A) - (A) O (Rn)
XRL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0110 1100 \ \ ssss SSsSsS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rmd) < (Rmd) O (Rms)

XRL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0110 1101 \ \ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-134

Int€|® INSTRUCTION SET REFERENCE

Operation: XRL
(WRds) « (WRjd) O (WRjs)

XRL Rm, #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0110 1110 \ \ ssss 0000 \ \ #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) —~ (Rm) O #data

XRL WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | | tttt 0100 | | #data hi | | #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WR)) « (WRj) O #datal6

XRL Rm,dir8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) « (Rm) O (dir8)
XRL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0110 1110 \ \ tttt 0101 \ \ direct addr

A-135

8XC251SA, SB, SP, SQ USER’S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(WRj) < (WRj) O (dir8)
XRL Rm,dirl6
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0110 1110 | | ssss 0011 | | directaddr | | dir8addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) — (Rm) O (dirl6)
\XRL WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | |ttt 0111 | | directaddr | | direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(WR)) « (WR)j) O (dir16)
XRL Rm,@Wrj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0110 1110 | |ttt 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL

(Rm) ~ (Rm) O ((WRY))

A-136

Int6|® INSTRUCTION SET REFERENCE

XRL Rm,@Drk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0110 1110 ‘ ‘ uuuu 1011 ‘ ‘ SSSS ‘ ‘ 0000

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) — (Rm) O ((DRK))

A-137

intel.

B

Signal Descriptions

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the external signals of the 8XCp&18s-

signments are shown in Figures B-1 (PLCC package) and B-2 (DIP package) and are listed by

functional category in Table B-1.

Table B-2 describes each of the signals. It lists the signal type (input, output, power, or ground)
and the alternative functions of multifunction pins. Table B-3 shows how configuration bits
RD1:0 (referred to in Table B-2) configure the A17, A16. RD#, WR# and PSEN# pins for exter-

nal memory accesses.

49 x
XXou QHN®
oowpr EEER
<~ ====
32853598888
ooooa>>IIILL
OUOLTONATOHON A O
o T T T
P15/CEX2]7 39 [AD4/ P0.4
P1.6 / CEX3/WAIT#] 8 8XC251SA 38 @ AD5/P0.5
P1.7 / CEX4 / A17 / WCLK .4 9 37 @ AD6/ P0.6
RST] 10 8XC251SB 36 @ AD7/P0.7
P3.0/RXD O] 11 8XC251SP 35 P EA# [Vpp
Veca H 12 8XC251SQ 34 B Vss
P3.1/TXD 13 33 @ ALE / PROG#
P3.2/INTO# 14 32 [PSEN#
P3.3/INT1# 15 View of componentas 31 [A15/P2.7
P3.4/T0E 16 mounted on PC board 30 A14/P2.6
P3.5/T117 29 A A13/P25
VOO dNMS O O~
HAH AN NNNNNNNN
gouooooooud
TONgagoTINTT
s<II>opRRan
IRk T=S====
© A QOO N
o «<Z3e
~
o
o

A4205-02

Figure B-1. 8XC251SA, SB, SP, SQ 44-pin PLCC Package

B-1

8XC251SA, SB, SP, SQ USER’S MANUAL

Table B-1. PLCC/DIP Pin Assignments Listed by Functional Category

intel.

Address & Data Input/Output

Name PLCC | DIP Name PLCC | DIP
ADO/P0.0 43 39 P1.0/T2 2 1
AD1/P0.1 42 38 P1.1/T2EX 3 2
AD2/P0.2 41 37 P1.2/ECI 4 3
AD3/P0.3 40 36 P1.3/CEX0 5 4
AD4/P0.4 39 35 P1.4/CEX1 6 5
AD5/P0.5 38 34 P1.5/CEX2 7 6
ADG6/P0.6 37 33 P1.6/CEX3/WAIT# 8 7
AD7/P0.7 36 32 P1.7/CEX4/A17WCLK 9 8
A8/P2.0 24 21 P3.0/RXD 11 10
A9/P2.1 25 22 P3.1/TXD 13 11
A10/P2.2 26 23 P3.4/TO 16 14
A11/P2.3 27 24 P3.5/T1 17 15
A12/P2.4 28 25
A13/P2.5 29 26 Power & Ground
A14/P2.6 30 27 Name PLCC DIP
A15/P2.7 31 28 Vee 44 40
P3.7/RD#/A16 19 17 Veeo 12
PL.7/CEX4/AL7WCLK | 9 8 Ves 22

Vss1 1 ‘
Vss2 23,34
Processor Control EA#/Vpp 35 31

Name PLCC DIP
P3.2/INTO# 14 12 Bus Control & Status
P3.3/INT1# 15 13 Name PLCC DIP
EA#/Vpp 35 31 P3.6/WR# 18 16
RST 10 9 P3.7/RD#/A16 19 17
XTAL1 21 18 ALE/PROG# 33 30
XTAL2 20 19 PSEN# 32 29

SIGNAL DESCRIPTIONS

PLO/T2] 1 @ 40 [Vee
P11/T2EX [2 39 [ADO/P0.0
P1.2/ECI [3 38 [] AD1/P0.1
P1.3/CEX0 [] 4 37 [AD2/P0.2
P1.4/CEX1 [] 5 8XC251SA 36 [] AD3/P0.3
P15/CEX2 [] 6 8XC251SB 35 [T AD4/P0.4
P1.6/CEX3/WAIT#] 7 8XC251SP 34 [AD5/P0.5
P1.7/CEX4/A17/WCLK [] 8 8XC251SQ 33 [7] AD6/P0.6
RST [o 32 [AD7/P0.7
P3.0/RXD [10 31 [EA#/Vep
P3.1/TXD [11 30 [ALE/PROG#
P3.2/INTO# [12 29 [] PSEN#
P3.3/INT1# [13] 28 [A15/P2.7
P3.4/T0] 14 View of 27 [A14/P26
P35/T1 O] 15 component 26 [A13/P25
P3.6/WR# [] 16 as mounted 25 [A12/P2.4
on PC board
P3.7/RD#/A16 [] 17 24 [A11/P23
XTAL2 [18 23 [A10/P22
XTALL [19 22 [A9/P2.1
Vss [20 21 [A8/P20
A4206-03
Figure B-2. 8XC251SA, SB, SP, SQ 40-pin PDIP and Ceramic DIP Packages
Table B-2. Signal Descriptions
Signal - Alternate
Name Type Description Eunction
Al7 (0] Address Line A17. Eighteenth external address bit (A17) in P1.7/CEX4/
extended bus applications. Selected by configuration byte WCLK
UCONFIGO, bits RD1:0 (Table B-3). Also see RD# and PSEN#.
Al16 (0] Address Line A16 . Seventeenth external address bit (A16) in P3.7/RD#
extended bus applications. Selected by configuration byte
UCONFIGO, bits RD1:0 (Table B-3). Also see RD#.
A15:8F O | Address Lines . Upper address lines for the external bus. P2.7:0
AD7:0f 1/0 | Address/Data Lines . Multiplexed lower address lines and data P0.7:0
lines for external memory.
ALE O | Address Latch Enable . ALE signals the start of an external bus PROG#
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0. An external latch can use ALE to
demultiplex the address from the address/data bus.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration (com-
patible with 44-pin PLCC and 40-pin DIP MCS® 51 microcontrollers). If the chip is configured for page
mode operation, port O carries the lower address bits (A7:0), and port 2 carries the upper address bits
(A15:8) and the data (D7:0).

B-3

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

Table B-2. Signal Descriptions (Continued)
Signal o Alternate
Name Type Description Function

CEX2:0 /0 | Programmable Counter Array (PCA) Input/Output Pins . These | P1.5:3
CEX3 are input signals for the PCA capture mode and output signals for | P1.6/WAIT#
CEX4 the PCA compare mode and PCA PWM mode. P1.7/A17/WCLK
EA# | External Access . Directs program memory accesses to on-chip or | Vg,

off-chip code memory. For EA# = 0, all program memory accesses

are off-chip. For EA# = 1, an access is to on-chip program memory

if the address is within the range of the on-chip program memory;

otherwise the access is off-chip. The value of EA# is latched at

reset. For devices without on-chip program memory, EA# must be

strapped to ground.
ECI | PCA External Clock Input . External clock input to the 16-bit PCA | P1.2

timer.
INT1:0# | External Interrupts 0 and 1 . These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0

are set by a falling edge on INT1#/INTO#. If bits INT1:0 are clear,

bits IE1:0 are set by a low level on INT1:0#.
P0.7:0 /O | Port 0. This is an 8-bit, open-drain, bidirectional I/O port. AD7:0
P1.0 I/O | Port 1. This is an 8-bit, bidirectional 1/0 port with internal pullups. T2
P1.1 T2EX
P1.2 ECI
P1.5:3 CEX2:0
P1.6 CEX3/WAIT#
P1.7 CEX4/A17/WCLK
P2.7:0 I/0 | Port 2. This is an 8-bit, bidirectional 1/O port with internal pullups. A15:8
P3.0 I/O | Port 3. This is an 8-bit, bidirectional 1/0 port with internal pullups. RXD
P3.1 TXD
P3.3:2 INT1:0#
P3.5:4 T1:0
P3.6 WR#
P3.7 RD#/A16
PROG# | Programming Pulse . The programming pulse is applied to this pin | ALE

for programming the on-chip nonvolatile memory.
PSEN# (0] Program Store Enable . Read signal output to external memory. —

Asserted for the address range specified by configuration byte

UCONFIGO, bits RD1:0 (Table B-3). Also see RD#.
RD# (0] Read. Read signal output to external data memory. Asserted for P3.7/A16

the address range specified by configuration byte UCONFIGO, bits
RD1:0 (Table B-3). Also see PSEN# and Al6.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration (com-
patible with 44-pin PLCC and 40-pin DIP MCS® 51 microcontrollers). If the chip is configured for page
mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits
(A15:8) and the data (D7:0).

B-4

SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions (Continued)

Signal
Name

Description

Alternate
Function

RST

Reset. Reset input to the chip. Holding this pin high for 64 oscillator
periods while the oscillator is running resets the device. The port
pins are driven to their reset conditions when a voltage greater than
V|41 is applied, whether or not the oscillator is running. This signal
has a Schmitt trigger input. Connecting the RST pin to V¢ through
a capacitor provides power-on reset.

Asserting RST when the chip is in idle mode or powerdown mode
returns the chip to normal operation.

RXD

I/0

Receive Serial Data . RXD sends and receives data in serial /0O
mode 0 and receives data in serial I/O modes 1, 2, and 3.

P3.0

T1:0

Timer 1:0 External Clock Inputs . When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4

T2

110

Timer 2 Clock Input/Output . For the timer 2 capture mode, this
signal is the external clock input. For the clock-out mode, it is the
timer 2 clock output.

P1.0

T2EX

Timer 2 External Input . In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction: 1 =
up, 0 = down.

P1.1

TXD

Transmit Serial Data . TXD outputs the shift clock in serial 1/0
mode 0 and transmits serial data in serial /O modes 1, 2, and 3.

P3.1

PWR

Supply Voltage . Connect this pin to the +5V supply voltage.

Vccz

PWR

Secondary Supply Voltage 2. This supply voltage connection is
provided to reduce power supply noise. Connection of this pin to
the +5V supply voltage is recommended. However, when using the
8XC251SB as a pin-for-pin replacement for the 8XC51FX, Vg, can
be unconnected without loss of compatibility. (Not available on
DIP.)

Programming Supply Voltage . The programming supply voltage
is applied to this pin for programming on-chip nonvolatile memory.

EA#

GND

Circuit Ground . Connect this pin to ground.

GND

Secondary Ground . This ground is provided to reduce ground
bounce and improve power supply bypassing. Connection of this
pin to ground is recommended. However, when using the
8XC251SA, SB, SP, SQ as a pin-for-pin replacement for the
8XC51BH, V447 can be unconnected without loss of compatibility.
(Not available on DIP.)

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration (com-
patible with 44-pin PLCC and 40-pin DIP MCS® 51 microcontrollers). If the chip is configured for page
mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits
(A15:8) and the data (D7:0).

B-5

8XC251SA, SB, SP, SQ USER’S MANUAL

Table B-2. Signal Descriptions (Continued)

intel.

Signal
Name

Type

Description

Alternate
Function

Vssz

GND

Secondary Ground 2 . This ground is provided to reduce ground
bounce and improve power supply bypassing. Connection of this
pin to ground is recommended. However, when using the
8XC251SB as a pin-for-pin replacement for the 8XC51FX, Vg, can
be unconnected without loss of compatibility. (Not available on
DIP.)

WAIT#

Real-time Wait State Input. The real-time WAIT# input is enabled
by writing a logical ‘1’ to the WCON.O (RTWE) bit at S:A7H. During
bus cycles, the external memory system can signal ‘system ready’
to the microcontroller in real time by controlling the WAIT# input
signal on the port 1.6 input.

P1.6/CEX3

WCLK

Wait Clock Output. The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit at
S:A7H. When enabled, the WCLK output produces a square wave
signal with a period of one-half the oscillator frequency.

P1.7/CEX4/A17

WR#

Write . Write signal output to external memory. Asserted for the
memory address range specified by configuration byte UCONFIGO,
bits RD1:0 (Table B-3). Also see RD#.

P3.6

XTAL1

Input to the On-chip, Inverting, Oscillator Amplifier . To use the
internal oscillator, a crystal/resonator circuit is connected to this pin.
If an external oscillator is used, its output is connected to this pin.
XTALL1 is the clock source for internal timing.

XTAL2

Output of the On-chip, Inverting, Oscillator Amplifier . To use
the internal oscillator, a crystal/resonator circuit is connected to this
pin. If an external oscillator is used, leave XTAL2 unconnected.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration (com-
patible with 44-pin PLCC and 40-pin DIP MCS® 51 microcontrollers). If the chip is configured for page
mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits
(A15:8) and the data (D7:0).

B-6

SIGNAL DESCRIPTIONS

Table B-3. Memory Signal Selections (RD1:0)

. P1.7/CEX/
RD1:0 A17/WCLK P3.7/RD#/A16/ PSEN# WR# Features
0 0 |[Al7 Al6 Asserted for | Asserted for writes to | 256-Kbyte external
all addresses | all memory locations | memory
0 1 |[P1.7/CEX4/ Al16 Asserted for | Asserted for writes to | 128-Kbyte external
WCLK all addresses | all memory locations | memory
1 0 |P1.7/CEX4l P3.7 only Asserted for | Asserted for writes to | 64-Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
1 1 | P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for 64-Kbyte external
WCLK for addresses | = 80:0000H writes to MCS® 51 memory. Compatible
< 7F:FFFFH microcontroller data | with MCS 51 micro-
memory locations. controllers.
NOTE: RDZ1:0 are bits 3:2 of configuration byte UCONFIGO (See Figure 4-3 on page 4-6).

B-7

intel.

Registers

APPENDIX C
REGISTERS

This appendix is a reference source of information for the 8XC28§d&ial function registers
(SFRs) and the register file. The SFR map in Table C-1 provides the address and reset value for
each SFR. Tables C-2 through C-6 list the SFRs by functional category. Table C-7 lists the regis-
ters that make up the register file.

The remainder of the appendix contains descriptions of the SFRs arranged in alphabetical order.

For additional information see section 3.3, “8XC251SA, SB, SP, SQ Register File,” and section
3.4, “Special Function Registers (SFRs).”

NOTE

Use the prefix “S:” with SFR addresses to distinguish them from other
addresses.

I C-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

Table C-1. 8XC251SA, SB, SP, SQ SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
F8 CH CCAPOH | CCAP1H | CCAP2H | CCAP3H | CCAP4H FE
00000000 | XXXXXXXX | XXXXXXXX [XXXXXXXX | XXXXXXXX | XXXXXXXX
B
FO F7
00000000
Es CL CCAPOL | CCAP1IL | CCAP2L | CCAP3L | CCAPAL EF
00000000 | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX
ACC
EO E7
00000000
D8 CCON CMOD CCAPMO | CCAPM1 | CCAPM2 | CCAPM3 | CCAPM4 DF
00x00000 | 00xxx000 | x0000000 | x0000000 | xO000000 | x0000000 | x0000000
PSW PSW1
DO D7
00000000 | 00000000
cs T2CON T2MOD RCAP2L | RCAP2H TL2 TH2 CF
00000000 | xxxxxx00 | 00000000 | 00000000 | 00000000 | 00000000
Cco Cc7
IPLO SADEN SPH
B8 BF
x0000000 | 00000000 00000000
P3 IPHO
BO B7
11111111 x0000000
IEO SADDR
A8 AF
00000000 | 00000000
P2 WDTRST WCON
A0 A7
11111111 XXXXXXXX | XXXxxX00
SCON SBUF
98 9F
00000000 | XXXXXXXX
P1
90 97
11111111
88 TCON TMOD TLO TL1 THO TH1 8F
00000000 | 00000000 | 00000000 | OOO00000 | 00000000 | 00000000
80 PO SP DPL DPH DPXL PCON 87
11111111 | 00000111 | OOOO0000 | 00000000 | 00000001 00xx0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

NOTE: Shaded areas represent unimplemented SFR locations. Locations S:000H-S:07FH and
S:100H-S:1FFH are also unimplemented.

Table C-2. Core SFRs

Mnemonic Name Address
AcC’ Accumulator S:EOH
Bf B Register S:FOH
PSW Program Status Word S:DOH
PSW1 Program Status Word 1 S:D1H
SPT Stack Pointer — LSB of SPX S:81H
SPHT Stack Pointer High — MSB of SPX S:BEH
DPTR' Data Pointer (2 bytes) —
DPLT Low Byte of DPTR S:82H
DPH' High Byte of DPTR S:83H
DPXL' Data Pointer, Extended Low S:84H
PCON Power Control S:87H
IEO Interrupt Enable Control 0 S:A8H
IPHO Interrupt Priority Control High O S:B7H
IPLO Interrupt Priority Control Low O S:B8H
WCON Wait State Control Register S:A7H

T These SFRs can also be accessed by their corresponding registers in the
register file (see Table 3-4 on page 3-15 and Table C-7).

Table C-3. 1/O Port SFRs

Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 Port 3 S:BOH

REGISTERS

C-3

8XC251SA, SB, SP, SQ USER’S MANUAL

c-4

Table C-4. Serial /0 SFRs

Mnemonic [Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H

Table C-5. Timer/Counter and Watchdog Timer SFRs
Mnemonic Name Address
TLO Timer/Counter 0 Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

Int6|® REGISTERS

Table C-6. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:FOH
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAPI1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAPA4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

C-5

8XC251SA, SB, SP, SQ USER’S MANUAL

Table C-7. Register File

intel.

Mnemonic Address

RO - R7 Four banks of 8 registers. Select bank 0-3 with bits 1,2
RS1:0 of PSW.

R8 — R31 R11 = Accumulator (ACC) 1,3
R10 = B Register.

R32 - R55 Reserved 3

R56 — R63 DR56 = the extended data pointer (DPXL, DPH, DPL). 1,3
DR60 = the extended stack pointer (SPH, SPL).

NOTE:

1. The registers in the register file are normally accessed by mnemonic. Depending on its loca-
tion, a register can be addressed as a byte, word, and/or dword. See Figure 3-7 on page

3-12.

always accessible via addresses 00:0000H-00:001FH.

ter file and can be accessed as R11, R10, DR56, and DR60).

The four banks of registers are implemented as the lowest bytes of on-chip RAM and are

Special function registers ACC, B, DPXL, DPH, DPL, SPH, and SPL are located in the regis-

Int6|® REGISTERS

ACC Address: EOH
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCS® 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0-15) interchangeably.

7 0
Accumulator Contents
Bit Bit Function
Number Mnemonic
7:0 ACC.7:0 Accumulator.
B Address: FOH

Reset State: 0000 0000B

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0-15.

7

B Register Contents

Bit Bit _
Number Mnemonic Function

7:0 B.7:0 B Register.

C-7

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

CCAPxH, CCAPXL (x = 0-4)

Address: CCAPOH,L S:FAH, S:EAH

CCAP1H,L S:FBH, S:EBH
CCAP2H,L S:FCH, S:ECH
CCAP3H,L S:FDH, S:EDH
CCAP4H,L S:FEH, S:EEH

Reset State: XXXX XXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte

register controls the duty cycle of the output waveform.

7 0
High/Low Byte of Compare/Capture Values
Bit Bit Function
Number Mnemonic
7:0 CCAPxH.7:0 | High byte of PCA comparison or capture values.
CCAPXL.7:0 | Low byte of PCA comparison or capture values.

C-8

intel.

REGISTERS

CCAPMX (x = 0-4)

Address: CCAPMO S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

PCA Compare/Capture Module Mode Registers. These five registers select the operating mode of the
corresponding compare/capture module. Each register also contains an enable interrupt bit (ECCFx)
for generating an interrupt request when the module’s compare/capture flag (CCFx in the CCON
register) is set. See Table 9-3 on page 9-14 for mode select bit combinations.

7 0
— ECOMx | CAPPx | CAPNx || MATx TOGx PWMx | ECCFx
Bit Bit Function

Number Mnemonic

7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:
ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPXx Capture Mode (Positive):
CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNXx Capture Mode (Negative):
CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:
Set ECOMx and MAT x to implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:
Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:
PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:
Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

C-9

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

CCON Address: S:D8H
Reset State: 00X0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0
CF CR — ccr4 || ccr3 CCF2 CCF1 CCFO0
Bit Bit .
Number Mnemonic Function
7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:
Set and cleared by software to turn the PCA timer/counter on and off.

5 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

4:0 CCF4.0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMXx register is set. Must be cleared by software.

CH, CL Address: S:F9H
S:E9H

Reset State: 0000 0000B
CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.
7 0
High/Low Byte PCA Timer/Counter

Bit Bit Function
Number Mnemonic
7:0 CH.7:0 High byte of the PCA timer/counter
CL.7:0 Low byte of the PCA timer/counter

C-10

Int6|® REGISTERS

CMOD Address: S:D9H
Reset State: 00XX X000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 0
cIbL WDTE — — ‘ ‘ — cPs1 CPS0 ECF
Bit Bit Function
Number Mnemonic
7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL =0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:
The values read from these bits are indeterminate. Write zeros to these
bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:
CPS1 CPSO

0 0 Feecll2
0 1 Foeld

1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = Fog /8)
0 ECF PCA Timer/Counter Interrupt Enable:
ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

C-11

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

DPH

Address:
Reset State:

S:83H
0000 0000B

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the mMcs®
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

51 architecture use DPTR

7 0
DPH Contents
Bit Bit Function
Number Mnemonic
7:0 DPH.7:0 Data Pointer High:
Bits 8-15 of the extended data pointer, DPX (DR56).

DPL Address: S:82H

Reset State: 0000 0000B

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pointer, DPTR. Instructions in the MCSP® 51 architecture use the 16-bit data
pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and

DPXL.
7 0
DPL Contents
Bit Bit Function
Number Mnemonic
7:0 DPL.7:0 Data Pointer Low:
Bits 0—7 of the extended data pointer, DPX (DR56).

C-12

L]
Int€|® REGISTERS
DPXL Address: S:84H
Reset State: 0000 0001B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7 0
DPXL Contents
Bit Bit Function
Number Mnemonic
7:0 DPXL.7:0 Data Pointer Extended Low:
Bits 16—23 of the extended data pointer, DPX (DR56).

C-13

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

IEO

Address:
Reset State:

S:A8H
0000 0000B

Interrupt Enable Register 0. IEO contains two types of interrupt enable bits. The global enable bit (EA)
enables/disables all of the interrupts, except the TRAP interrupt, which is always enabled. The
remaining bits enable/disable the other individual interrupts.

7 0
EA EC ET2 Es || Em EX1 EX0
Bit Bit . Function
Number Mnemonic

7 EA Global Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/0 Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

1 ETO Timer 0 Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.

0 EXO External Interrupt O Enable:
Setting this bit enables external interrupt O.

C-14

intel.

REGISTERS

IPHO

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt a priority
level from 0 (lowest) to 3 (highest):

Address: S:B7H
Reset State: X000 0000B

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPH0.6 | IPHO.5 | IPHO4 || IPHO.3 | IPHO.2 | IPHO.1 [IPHOO
Bit Bit : Function
Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPHO.6 PCA Interrupt Priority Bit High
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High
2 IPHO.2 External Interrupt 1 Priority Bit High
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High
0 IPHO0.0 External Interrupt O Priority Bit High

C-15

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

IPLO Address: S:B8H
Reset State: X000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt a priority
level from 0 (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level

0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPLO.6 IPLO.5 IPLO.4 || IPLO3 IPLO.2 IPLO.1 IPL0.0
Bit Bit ’ Function
Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPLO.6 PCA Interrupt Priority Bit Low
5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial /0 Port Interrupt Priority Bit Low
3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt 1 Priority Bit Low
1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low
0 IPLO.0 External Interrupt O Priority Bit Low

C-16

Int6|® REGISTERS

PO Address: S:80H
Reset State: 1111 1111B

Port 0. PO is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port O read this register. The other instructions that read port O read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 0
PO Contents

Bit Bit Function
Number Mnemonic
7:0 P0.7:0 Port 0 Register:
Write data to be driven onto the port O pins to these bits.
P1 Address: S:90H

Reset State: 1111 1111B

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-write-modify
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0
P1 Contents

Bit Bit Function
Number Mnemonic
7:0 P1.7:0 Port 1 Register:
Write data to be driven onto the port 1 pins to these bits.

C-17

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

P2 Address: S:AOH
Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0
P2 Contents

Bit Bit Function
Number Mnemonic
7:0 P2.7:0 Port 2 Register:
Write data to be driven onto the port 2 pins to these bits.
P3 Address: S:BOH

Reset State: 1111 1111B

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0
P3 Contents

Bit Bit Function
Number Mnemonic
7:0 P3.7:0 Port 3 Register:
Write data to be driven onto the port 3 pins to these bits.

C-18

intel.

REGISTERS

PCON

Address: S:87H
Reset State: 00XX 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial 1/0
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7

SMOD1

SMODO

_ POF H GF1 GFO PD IDL

Bit
Number

Bit
Mnemonic

Function

7

SMOD1

Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See section 10.6, “Baud Rates.”

SMODO

SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See Figure 10-2 on page 10-3.

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

POF

Power Off Flag:

Set by hardware as V rises above 3 V to indicate that power has been
off or V¢ had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

GF1

General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

GFO

General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

PD

Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

IDL

Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-19

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

PSW

Address: S:DOH
Reset State: 0000 0000B

Program Status Word. PSW contains bits that reflect the results of operations, bits that select the
register bank for registers RO-R7, and two general-purpose flags that are available to the user.

7 0
% AC FO RSL || RsO ov uD P
Bit Bit .
Number Mnemonic Function

7 CY Carry Flag:
The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by some rotate and shift instructions, logical bit instructions and bit move
instructions, and the multiply (MUL) and decimal adjust (DA) instructions
(see Table 5-10 on page 5-17).

6 AC Auxiliary Carry Flag:
The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10 on page 5-17).

5 FO Flag 0:
This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0O:
These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).
RS1 RSO Bank Address
0 0 0 00H-07H
0 1 1 08H-OFH
1 0 2 10H-17H
1 1 3 18H-1FH

2 oV Overflow Flag:
This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.

0 P Parity Bit:
This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all instruc-
tions update the parity bit. The parity bit is set or cleared by instructions
that change the contents of the accumulator (ACC, Register R11).

C-20

intel.

REGISTERS
PSW1 Address: S:D1H
Reset State: 0000 0000B

Program Status Word 1. PSW1 contains bits that reflect the results of operations and bits that select
the register bank for registers RO-R7.

7 0
cy AC N RSL || RsO ov z —
Nulr?;lt)er Mne?r:tonic Function
7 CY Carry Flag:
Identical to the CY bit in the PSW register.
6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register.
5 N Negative Flag:
This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.
4:3 RS1:0 Register Bank Select Bits 0 and 1:
Identical to the RS1:0 bits in the PSW register.
2 oV Overflow Flag:
Identical to the OV bit in the PSW register.
1 z Zero Flag:
This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.
0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

RCAP2H, RCAP2L

Address: RCAP2H S:CBH
RCAP2L S:CAH

Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0
High/Low Byte of Timer 2 Reload/Capture Value
Bit Bit Function
Number Mnemonic
7:0 RCAP2H.7:0 | High byte of the timer 2 reload/recapture register
RCAP2L.7:0 | Low byte of the timer 2 reload/recapture register

C-21

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

SADDR

S:A9H

0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0
Slave Individual Address
Bit Bit Function
Number Mnemonic
7:0 SADDR.7:0

C-22

intel.

REGISTERS
SADEN Address: S:B9H
Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given address

for multiprocessor communication.

7 0
Mask for SADDR
Bit Bit .
Number Mnemonic Function
7:0 SADEN.7:0
SBUF Address: S:99H
Reset State: XXXX XXXXB
Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial I/O port. Reading SBUF
reads the receive buffer of the serial /0O port.
7 0
Data Sent/Received by Serial I/O Port
Bit Bit Function
Number Mnemonic
7:0 SBUF.7:0

C-23

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial 1/0O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SM2 REN || TB8 RBS Tl RI
Bit Bit Function
Number Mnemonic
7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO0 Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate

0 0 0 Shift register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-hit UART Fosc/32" or Fogo/64t
1 1 3 9-bit UART Variable

TSelect by programming the SMOD bit in the PCON register (see section
10.6, “Baud Rates).”

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

C-24

Int6|® REGISTERS

SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial 1/0O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SMm1 SM2 REN || TB8 RBS TI RI
Bit Bit Function
Number Mnemonic
1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
software.
0 RI Receive Interrupt Flag Bit:
Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

Sp Address: S:81H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0
SP Contents

Bit Bit

. Function
Number Mnemonic

7:0 SP.7:0 Stack Pointer:
Bits 0—7 of the extended stack pointer, SPX (DR60).

C-25

8XC251SA, SB, SP, SQ USER’S MANUAL

intel.

SPH

S:BEH

0000 0000B

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0
SPH Contents
Bit Bit Function
Number Mnemonic
7:0 SPH.7:0 Stack Pointer High:
Bits 8-15 of the extended stack pointer, SPX (DR60).

C-26

Int6|® REGISTERS

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0
TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function
Number Mnemonic
7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK=1or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

Cc-27

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

T2MOD Address: S:C9H
Reset State: XXXX XX00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2.

7 0
— — — — || - — T20E DCEN
Bit Bit Function
Number Mnemonic
7:2 — Reserved:
The values read from these bits are indeterminate. Write zeros to these
bits.
1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

C-28

Int6|® REGISTERS

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0
TF1 TR1 TFO TRO || IEL 1 IEO ITO
Bit Bit Function
Number Mnemonic
7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.
5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 0 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

C-29

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0
GATE1 CIT1# M11 Mo1 || GATEO CITo# M10 MO0
Bit Bit Function
Number Mnemonic
7 GATE1 Timer 1 Gate:

When GATEL1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL =1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CIT1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:

M11 M01

0 o Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)

0 1 Mode 1: 16-bit timer/counter

1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.

1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer 0 Counter/Timer Select:

C/TO# = 0 selects timer operation: timer O counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 M10, M0O Timer 0 Mode Select:
M10 M0OO
0 Mode 0: 8-bit timer/counter (TO) with 5-bit prescaler (TLO)

0
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit timer
using timer 1's TR1 and TF1 bits.

C-30

Int6|® REGISTERS

THO, TLO Address: THO S:8CH
TLO S:8AH

Reset State: 0000 0000B

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

7 0
High/Low Byte of Timer O Register

Bit Bit Function
Number Mnemonic
7:0 THO.7:0 High byte of the timer 0 timer register.
TLO.7:0 Low byte of the timer O timer register.
TH1, TL1 Address: TH1 S:8DH

TL1 S:8BH

Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0
High/Low Byte of Timer 1 Register

Bit Bit Function
Number Mnemonic
7:0 TH1.7:0 High byte of the timer 1 timer register.
TL1.7:0 Low byte of the timer 1 timer register.

C-31

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

TH2, TL2

Address: TH2 S:CDH
TL2 S:CCH

Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer

2.
7 0
High/Low Byte of Timer 2 Register
Bit Bit Function
Number Mnemonic

7:0 TH2.7:0 High byte of the timer 2 timer register.
TL2.7:0 Low byte of the timer 2 timer register.

WCON Address: S:A7H

Reset State: XXXX XX00B

Wait State Control Register. Use this register to enable the real time wait state input signal and/or the
wait state output clock.

7 0
— — — - || - — RTWCE | RTWE
Bit Bit .
Number Mnemonic Function

7:2 — Reserved:

The values read from these bits are indeterminate. Write “0” to these
bits.

1 RTWCE Real time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT
CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait-
state input on port 1.6 (WAIT#).

C-32

intel.

REGISTERS
WDTRST Address: S:A6H
Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1EH-E1H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it return FFH. The WDT itself is not read or write accessible. See section 8.7, “Watchdog Timer.”

7 0
WDTRST Contents (Write-only)
Bit Bit Function
Number Mnemonic
7:0 WDTRST.7:0 | Provides user control of the hardware WDT.

C-33

intel.

Glossary

intgl.
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1, “Guide to this Manual,” discusses notational conventions and general terminol-

ogy.)

#0datal6 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with zeros.

#1datal6 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with ones.

#data An 8-bit constant that is immediately addressed in an
instruction.

#datal6 A 16-bit constant that is immediately addressed in an
instruction.

#short A constant, equal to 1, 2, or 4, that is immediately

addressed in an instruction.

accumulator A register or storage location that forms the result of
an arithmetic or logical operation.

addrll An 11-bit destination address. The destination can be
anywhere in the same 2-Kbyte block of memory as
the first byte of the next instruction.

addr16 A 16-bit destination address. The destination can be
anywhere within the same 64-Kbyte region as the first
byte of the next instruction.

addr24 A 24-bit destination address. The destination can be
anywhere within the 16-Mbyte address space.

ALU Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

assert The termassertrefers to the act of making a signal
active (enabled). The polarity (high/low) is defined by
the signal name. Active-low signals are designated by
a pound symbol (#) suffix; active-high signals have no
suffix. To assertRD# is to drive it low; t@ssertALE
is to drive it high.

I Glossary-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

big endien form

binary-code compatibility

binary mode

bit

bit (operand)
bit51

byte

clear

code memory

configuration bytes

dir8

dirl6

DPTR

DPX

Glossary-2

Memory storage format in which the most significant
byte (MSB) of the word or double word is stored in
the memory byte specified in the instruction. The
remaining bytes are stored at higher addresses, with
the least significant byte (LSB) at the highest address.

The ability of an MC8 251 microcontroller to
execute, without modification, binary code written for
an MCS 51 microcontroller.

An operating mode, selected by a configuration bit,
that enables an MCS 251 microcontroller to execute,
without modification, binary code written for an MCS
51 microcontroller.

A binary digit.

An addressable bit in the MCS 251 architecture.

An addressable bit in the MCS 51 architecture.

Any 8-bit unit of data.

The termclear refers to the value of a bit or the act of
giving it a value. If a bit islear, its value is “0%;
clearinga bit gives it a “0” value.

Seeprogram memory

Bytes, residing in on-chip OTPROM/ROM, that
determine a set of operating parameters for the
8XC251SB.

An 8-bit direct address. This can be a memory address
or an SFR address.

A 16-bit memory address (00:0000H-00:FFFFH)
used in direct addressing.

The 16-bit data pointer. In MCS 251 microcontrollers,
DPTR is the lower 16 bits of the 24-bit extended data
pointer, DPX.

The 24-bit extended data pointer in MCS 251 micro-
controllers. See aldDPTR

intel.

deassert

doping

double word

dword

edge-triggered

encryption array

EPROM

external address

FET

idle mode

input leakage

integer

internal address

GLOSSARY

The termdeassertefers to the act of making a signal
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designated
by a pound symbol (#) suffix; active-high signals have
no suffix. To deassertRD# is to drive it high; to
deasserALE is to drive it low.

The process of introducing a periodic table Group I
or Group V element into a Group IV element (e.g.,
silicon). A Group Il impurity (e.g., indium or
gallium) results in ap-type material. A Group V
impurity (e.g., arsenic or antimony) results in ran
typematerial.

A 32-bit unit of data. In memory, a double word
comprises four contiguous bytes.

Seedouble word

The mode in which a device or component recognizes
a falling edge (high-to-low transition), a rising edge
(low-to-high transition), or a rising or falling edge of
an input signal as the assertion of that signal. See also
level-triggered

An array of key bytes used to encrypt user code in the
on-chip code memory as that code is read; protects
against unauthorized access to user’s code.

Erasable, programmable read-only memory

A 16-bit or 17-bit address presented on the device
pins. The address decoded by an external device
depends on how many of these address bits the
external system uses. See atgernal address

Field-effect transistor.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

The 24-bit address that the device generates. See also
external address

Glossary-3

8XC251SA, SB, SP, SQ USER’S MANUAL

interrupt handler

interrupt latency

interrupt response time

interrupt service routine (ISR)

latency

level-triggered

LSB

maskable interrupt

MSB

multiplexed bus

n-channel FET

n-type material

nibble

nonmaskabk interrupt

Glossary-4

intel.

The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

The time delay between an interrupt request and the
resulting break in the current instruction stream.

The software routine that services an interrupt.

The amount of time between the interrupt request and
the execution of the first instruction in the interrupt
service routine.

The mode in which a device or component recognizes
a high level (logic one) or a low level (logic zero) of
an input signal as the assertion of that signal. See also
edge-triggered.

Least-significant bit of a byte or least-significant byte
of a word.

An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8XC251SB interrupts, except the software trap
(TRAP), are maskable.

Most-significant bit of a byte or most-significant byte
of a word.

A bus on which the data is time-multiplexed with
(some of) the address bits.

A field-effect transistor with am-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping causing it to have an excess of negatively
charged carriers.

A half-byte or four bits.

An interrupt that cannot be disabled (masked). The
software trap (TRAP) is the 8XC251SB’s only
nonmaskable interrupt.

intel.

nonpage mode

npn transistor
OTPROM
p-channel FET

p-type material

page mode

PC

peripheral cycle
program memory
powerdown mode

PWM

real-time wait state
rel

reserved bits

response time

GLOSSARY

Conventional method for accessing external memory
where code fetches require a two-state bus cycle. See
alsopage mode

A transistor consisting of one partype material and
two partsn-type material.

One-time-programmable read-only memory, a version
of EPROM.

A field-effect transistor with gp-type conducting
path.

Semiconductor material with introduced impurities
(doping causing it to have an excess of positively
charged carriers.

Method for reducing the time for external code
fetches where subsequent code fetches to the same
256-byte “page” of memory require only a one-state
bus cycle.

Program counter.

The cycle at which the 8XC251SA, SB, SP, SQ
peripherals operate. This is equal tosiate times

A part of memory where instructions can be stored for
fetching and execution.

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Pulse-width modulated (outputs).

A wait state whose delay time can be adjusted
dynamically by the programmer by means of
registers.

A signed (two's complement) 8-bit, relative
destination address. The destination is -128 to +127
bytes relative to the first byte of the next instruction.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these bits. In the 8XC251SB,
the value read from a reserved bit is indeterminate; do
not write a “1” to a reserved bit.

The amount of time between the interrupt request and
the resulting break in the current instruction stream.

Glossary-5

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

set

SFR

sign extension

sink current

source-code compatibility

source current

source mode

SP
SPX

state time (or state)

UART

WDT

Glossary-6

The termsetrefers to the value of a bit or the act of
giving it a value. If a bit iset its value is “1”;setting
a bit gives it a “1” value.

Special-function register.

A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

Current flowinginto a device to ground. Always a
positive value.

The ability of an MCS 251 microcontroller to execute
recompiled source code written for an MCS 51 micro-
controller.

Current flowingout of a device from Y. Always a
negative value.

An operating mode that is selected by a configuration
bit. In source mode, an MCS 251 microcontroller can
execute recompiled source code written for an MCS
51 microcontroller. In source mode, the MCS 251
microcontroller cannot execute unmodified binary
code written for an MCS 51 microcontroller. See
binary mode.

Stack pointer.

Extended stack pointer.

The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (The internal clock generator produces PH1 and
PH2 by halving the frequency of the signal on
XTAL1)) With a 16-MHz crystal, onestate time
equals 125 ns. Because the device can operate at
many frequencies, this manual defines time require-
ments in terms oftate timesrather than in specific
units of time.

Universal asynchronous receiver and transmitter. A
part of the serial 1/0 port.

Watchdog timer, an internal timer that resets the
device if the software fails to operate properly.

I nt6| ® GLOSSARY

word A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.
wraparound The result of interpreting an address whose

hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to the
value expressed by the lower bits.

Glossary-7

intel.

Index

intel.

INDEX

#0datal6, A-3 programming and verifying nonvolatile
#ldatal6, A-3 memory, 14-3
#data ANL instruction, 5-9, 5-11

definition, A-3 for bits, A-23
#datal6, A-3 ANL/ instruction, 5-11
#short, A-3 for bits, A-23
8XC251SA, SB, SP, SQ, 1-1 Arithmetic instructions, 5-8, 5-9

block diagram, 2-2 table of, A-14, A-15, A-16

on-chip peripherals, 2-3
8XC2518x, 1-1 B
8XCS1FX, 2-1 B register, 3-15, C-7

as SFR, 3-17, 3-18,C-2,C-3

A in register file, 3-13
A15:8, 7-1 Base address, 5-4

description, 13-2 Baud rateSee Serial I/O port, Timer 1, Timer 2
Al16 Big endien form, 5-2

description, 13-2 Binary and source modes, 2-4, 4-13—4-15, 5-1
AC flag, 5-18, 5-19, C-20 opcode maps, 4-14
ACALL instruction, 5-15, A-24, A-26 selection guidelines, 2-4, 4-14
ACC, 3-13, 3-17, 3-18, C-2, C-3, C-7 Bit address
Accumulator, 3-15 addressing modes, 5-12

in register file, 3-13 definition, A-3

See also ACC examples, 5-11
AD7:0, 7-1 Bit instructions, 5-1, 5-11-5-12

description, 13-2 addressing modes, 5-4, 5-11
ADD instruction, 5-8, A-14 bit51, 5-11, A-3
ADDC instruction, 5-8, A-14 Broadcast addresSge Serial 1/0 port
addrll, 5-13, A-3 Bulletin board service (BBS), 1-7, 1-8
addrl6, 5-13, A-3 Bus cycles, 13-3
addr24, 5-13, A-3 nonpage mode, 13-4
Address spaceSee Memory space, SFRs, Register page mode, 13-5

file, External memory, Compatibility

Addresses C

internal vs external, 4-9 Call instructions, 5-15
Addressing modes, 3-8, 5-4 Capacitors

See also Data instructions, Bit instructions, bypass, 11-2

_ C_Zontrol instructions CCAP1H-CCAP4H, CCAP1L-CCAPA4L, 3-17, 3-

AJMP instruction, 5-15, A-24 20, C-2, C-5, C-8
ALE CCAPM1-4, 3-17, 3-19, 9-15, C-2, C-5, C-9

caution, 11-7 interrupts, 6-5

description, 13-2 CCON, 3-17, 3-19, 9-14, C-2, C-5, C-10

extending, 4-13 Ceramic resonator, 11-4

following reset, 11-7 CEX4:0, 7-1

idle mode, 12-4 CH, CL, 3-17, 3-20, C-2, C-5, C-10

Index-1

8XC251SA, SB, SP, SQ USER’S MANUAL Int€|®

CJINE instruction, A-25 CPL instruction, 5-9, 5-11, A-17, A-23
Clock, 2-6 CPU, 2-5
external, 11-4, 11-5 block diagram, 2-5
external source, 11-3 Crystal
idle and powerdown modes, 12-5 for on-chip oscillator, 11-3
idle mode, 12-4 CY flag, 5-18, 5-19, C-20
powerdown mode, 12-5, 12-6
sources, 11-3 D
CLR instruction, 5-9, 5-11, A-17, A-23 DA instruction, A-16
CMOD, 3-17,3-19, 9-13, C-2, C-5, C-11 Data instructions, 5-1, 5-4-5-10
interrupts, 6-5 addressing modes, 5-4
CMP instruction, 5-8, 5-14, A-15 Data pointerSee DPH, DPL, DPTR, DPX, DPXL
Code constants, 4-16 Data transfer instructions, 5-10
Code fetches table of, A-22
external, 13-1, 13-5 See also Move instructions
internal, 13-5 Data types, 5-2
page hit and page miss, 13-6 Datasheets
page mode, 13-6 on WWW, 1-7
Code memory . DEC instruction, 5-8, A-16
MCS 51 architecture, 3-3 Destination register, 5-3
See also On-chip code memory, External code peyice
memory signal descriptions, B-3
Compatibility (MCS 251 and MCS 51 dirl6, A-3
architectures), 2-1, 3-2-3-5 dirs, A-3
address spaces, 3-2, 3-4 Direct addressing, 5-4
external memory, 3-5 in control instructions, 5-13
instruction set, 5-1 Displacement addressing, 5-4, 5-8
SFR space, 3-5 DIV instruction, 5-9, A-16
See also Binary and source modes Division, 5-9
CompuServe, 1-7 DJNZ instruction, A-25
Configuration Documents
external memory, 4-8 ordering, 1-7
overview, 4-1 related, 1-5
wait states, 4-1-4-2 DPH, DPL, 3-15, C-12
Configuration array, 4-1-4-4 as SFRs, 3-17, 3-18, C-2, C-3
on-chip, 4-2 DPTR, 3-15
Configuration bits, 4-4-4-6 in jump instruction, 5-13
UCON bit, 4-4 DPX, 3-5,3-13, 3-15, 5-4
Configuration bytes, 4-1 DPXL, 3-15, C-13
bus cycles_, 13-15 . as SFR, 3-17, 3-18,C-2,C-3
programming and verifying, 14-1 external data memory mapping, 3-5, 5-4, 5-10

UCONFIGO (table), 4-6

reset value, 3-5
UCONFIGL1 (table), 4-7

Control instructions, 5-1, 5-12-5-16 E

addressing modes, 5-12, 5-13 EA#, 3.8

table of, A-24 | - 150
Core, 2-4 escription, 13-

SFRs, 3-18, C-3 ECALL instruction, 5-15, A-24

Index-2

intel.

ECI, 7-1
EJMP instruction, 5-15, A-24
EMAP# bit, 3-9, 4-16
Encryption, 14-2
Encryption array
key bytes, 14-8
programming, 14-1, 14-8
setup for programming, 14-4-14-5
ERET instruction, 5-15, A-24
Escape prefix (A5H), 4-14
Extended stack pointeBee SPX
Extending ALE, A-1
extending ALE, A-11
External address lines
number of, 4-9
External bus
inactive, 13-3
pin status, 13-16, 13-17

structure in page mode, nonpage mode, 13-5

External bus cycles, 13-3
definitions, 13-3
extended ALE wait state, 13-10

extended RD#/WR#/PSEN# wait state, 13-8

nonpage mode, 13-4, 13-5

page mode, 13-5-13-7

page-hit vs page-miss, 13-5
External code memory

example, 13-20, 13-30

idle mode, 12-4

powerdown mode, 12-5
External memory, 3-10

design examples, 13-18-13-30

MCS 51 architecture, 3-2, 3-4, 3-5
External memory interface

configuring, 4-8-4-16

signals, 13-1
External RAM

example, 13-26

exiting idle mode, 12-5

E
FO flag, 5-18, C-20
FaxBack service, 1-7, 1-8
Flash memory
example, 13-18, 13-20, 13-30

INDEX

G

Given addressSee Serial 1/0 port
Ground bounce, 11-2

H

Hardware
application notes, 1-6
Help desk, 1-7

I

I/O ports, 7-1-7-9
external memory access, 7-7, 7-8
latches, 7-2
loading, 7-7
pullups, 7-6
guasi-bidirectional, 7-6
SFRs, 3-18
See also Ports 0-3

Idle mode, 2-4, 12-1, 12-4-12-5
entering, 12-4
exiting, 11-6, 12-5
external bus, 13-3

IE, 6-3, 6-5

IEO, 3-17, 3-18, 6-6, 6-14, 10-11, C-2, C-3, C-14

Immediate addressing, 5-4
INC instruction, 5-8, A-16
Indirect addressing, 5-4

in control instructions, 5-13

in data instructions, 5-6
Instruction set

MCS 251 architecture, 5-1

MCS 51 architecture, 5-1
Instructions

arithmetic, 5-8

bit, 5-11

data, 5-4

data transfer, 5-10

logical, 5-9
INT1:.0#, 6-1, 7-1, 8-1, 8-3

pulse width measurements, 8-10
Interrupt request, 6-1

cleared by hardware, 6-4
Interrupt service routine

exiting idle mode, 12-5

exiting powerdown mode, 12-6
Interrupts, 6-1-6-15

blocking conditions, 6-14

Index-3

8XC251SA, SB, SP, SQ USER’S MANUAL

detection, 6-3
edge-triggered, 6-4
enable/disable, 6-5
exiting idle mode, 12-5
exiting powerdown mode, 12-6
external, 6-3, 6-11
global enable, 6-5
instruction completion time, 6-10
latency, 6-9—6-13
level-triggered, 6-4
PCA, 6-5
polling, 6-9, 6-10
priority, 6-1, 6-3, 6-4, 6-7
priority within level, 6-7
processing, 6-9-6-15
requestSee Interrupt request
response time, 6-9, 6-10
sampling, 6-3, 6-10
serial port, 6-5
service routine (ISR), 6-4, 6-9, 6-14, 6-15
sources, 6-3
timer/counters, 6-4
vector cycle, 6-14
vectors, 3-3, 6-4
INTR bit
and RETI instruction, 4-16, 5-16
IPHO, 3-17, 3-18, 6-3, 6-8, 6-14, C-2, C-3, C-15
bit definitions, 6-7
IPLO, 3-17, 3-18, 6-3, 6-8, 6-14, C-2, C-3, C-16
bit definitions, 6-7
ISR, See Interrupts, service routine

J

JB instruction, 5-14, A-24
JBC instruction, 5-14, A-24
JC instruction, A-24

JE instruction, A-24

JG instruction, A-24

JLE instruction, A-24

JMP instruction, A-24
JNB instruction, 5-14, A-24
JNC instruction, A-24

JNE instruction, A-24

JNZ instruction, A-24

JSG instruction, A-25
JSGE instruction, A-25
JSL instruction, A-24

Index-4

JSLE instruction, A-25

Jump instructions
bit-conditional, 5-14
compare-conditional, 5-14
unconditional, 5-15

JZ instruction, A-24

K
Key bytes See Encryption array

L
Latency, 6-9
LCALL instruction, 5-15, A-24
LIMP instruction, 5-15, A-24
Lock bits
programming and verifying, 14-1, 14-7
protection types, 14-8
setup for programming and verifying, 14-4—
14-5
Logical instructions, 5-9
table of, A-17

M
MCS 251 microcontroller, 2-1
core, 2-4
features, 2-1
MCS 51 microcontroller, 2-1
Memory space, 2-4, 3-1, 3-5-3-10
compatibility, See Compatibility (MCS 251
and MCS 51 architectures)
regions, 3-2, 3-5
reserved locations, 3-5
Miller effect, 11-5
MOV instruction, A-19, A-20, A-21
for bits, 5-11, A-23
MOVC instruction, 3-2, 5-10, A-21
Move instructions
table of, A-19
MOVH instruction, 5-10, A-21
MOVS instruction, 5-10, A-21
MOVX instruction, 3-2, 5-10, A-21
MOVZ instruction, 5-10, A-21
MUL instruction, 5-9
Multiplication, 5-9

int6|® INDEX

N for bits, A-23
N flag, 5-9, 5-19 Oscillator, 2-6
Noise reduction, 11-2, 11-3, 11-5 at startup, 11-7
Nonpage mode during reset, 11-5
bus cyclesSee External bus cycles, Nonpage on-chip, 11-3
mode ONCE mode, 12-7
bus structure, 13-1 powerdown mode, 12-5, 12-6
configuration: 4-8 programming and verifying nonvolatile
design example, 13-22, 13-26 memory, 14-3
port pin status, 13-16 OTPROM/EPROM (on-chip)
Nonpage Mode Bus Cycles, 13-4 programming algorithm, 14-5
Nonvolatile memory programming and verifying, 14-3
programming and verifying, 14-1-14-9 verify algorithm, 14-6
NOP instruction, 5-15, A-25 See also On-chip code memory, Configuration
bytes, Lock bits, Encryption array,
O Signature bytes

OV bit, 5-18, 5-19, C-20

On-chip code memory, 3-2, 13-8 OverflowSee OV hit

accessing in data memory, 4-16
accessing in region 00:, 3-9

idle mode, 12-4 P .
powerdown mode, 12-5 P bit, 5-18, C-20
programming and verifying, 14-1, 14-7 PO, 3-17,3-18,7-2, C-2, C-3, C-17
setup for programming and verifying, 14-3— P1, 3-17,3-18,7-2,C-2, C-3, C-17
145 P2, 3-17, 3-18, 7-2, C-2, C-3, C-18
starting address, 3-8, 14-2 P3, 3-17, 3-18, 7-2, C-2, C-3, C-18
top eight bytes, 3-9, 14-2 Page mode, 2-5 .
See also OTPROM/EPROM, ROM address access time, 13-6
On-chip oscillator bus cyclesSee External bus cycles, page
hardware setup, 11-1 _ mode
On-chip RAM, 3-2, 3-8 configuration, 4-8
bit addressable, 3-8, 5-11 design example, 13-20, 13-29
bit addressable in MCS 51 architecture, 5-11 port pin status, 13-17
idle mode, 12-4 PAGE# bit, 4-8
MCS 51 architecture, 3-3, 3-4 PCA
reset, 11-6 compare/capture modules, 9-1
ONCE mode, 12-1, 12-7 idle mode, 12-4
entering, 12-7 pulse width modulation, 9-11
exiting, 12-7 SFRS, 3-19, C-5
Opcodes timer/counter, 9-1
for binary and source modes, 4-13, 5-1 watchdog timer, 9-1, 9-9
map, A-4 PCON, 3-17, 3-18, 10-7, 12-1, 12-2, 12-5, C-2, C-
binary mode, 4-15 _ 3,C-19
source mode, 4-15 idle mode, 12-4
See also Binary and source modes powerdown mode, 12-6
ORL instruction, 5-9, 5-11 reset, 11-6
for bits, A-23 Peripheral cycle, 2-6
ORL/ instruction, 5-11 Phase 1 and phase 2, 2-6

Index-5

8XC251SA, SB, SP, SQ USER’S MANUAL

Phone numbers, customer support, 1-7
Pin conditions, 12-3

Pins
unused inputs, 11-2

Pipeline, 2-5

POP instruction, 3-15, 5-10, A-22

Port 0, 7-2
and top of on-chip code memory, 14-2
pullups, 7-8

structure, 7-3
See also External bus
Port1, 7-2
structure, 7-3
Port 2, 7-2
and top of on-chip code memory, 14-2
structure, 7-4
See also External bus
Port 3, 7-2
structure, 7-3
Ports
at power on, 11-7
exiting idle mode, 12-5
exiting powerdown mode, 12-5
extended execution times, 5-1, A-1, A-11
programming and verifying nonvolatile
memory, 14-3, 14-5, 14-6
Power supply, 11-2
Powerdown mode, 2-4,12-1, 12-5-12-6
accidental entry, 12-4
entering, 12-6
exiting, 11-6, 12-6
external bus, 13-3
PROG#, 14-1
Program status worSee PSW, PSW1
PSEN#
caution, 11-7
description, 13-2
idle mode, 12-4
programming and verifying nonvolatile
memory, 14-3
regions for asserting, 4-9
PSW, A-26

PSw, PSW1, 3-17, 3-18, 5-16-5-17, C-2, C-3, C-

21
conditional jumps, 5-14
effects of instructions on flags, 5-17
PSW1, A-26
Pullups, 7-8

Index-6

intel.
ports 1, 2, 3, 7-6

Pulse width measurements, 8-10
PUSH instruction, 3-15, 5-10, A-22

Q

Quick-pulse algorithm, 14-1

R
RCAP2H, RCAP2L, 3-17, 3-19, 8-2, 10-12, C-2,
C-4, C-21
RD#, 7-1
described, 13-2
regions for asserting, 4-9
RD1:0 configuration bits, 4-9
Read-modify-write instructions, 7-2, 7-5
Real-time wait states, 13-10
Register addressing, 5-4, 5-5
Register banks, 3-2, 3-12
accessing in memory address space, 5-4
implementation, 3-12, 3-13
MCS 51 architecture, 3-3
selection bits (RS1:0), 5-18, 5-19, C-20
Register file, 2-5, 3-1, 3-5, 3-10-3-15
address space, 3-2
addressing locations in, 3-13
and reset, 11-6
MCS 51 architecture, 3-4
naming registers, 3-13
register types, 3-13
RegistersSee Register addressing, Register banks,
Register file
rel, A-3
Relative addressing, 5-4, 5-13
Reset, 11-5-11-8
cold start, 11-6, 12-1
entering ONCE mode, 12-7
exiting idle mode, 12-5
exiting powerdown mode, 12-6
externally initiated, 11-6
need for, 11-7
operation, 11-6
power on, 11-7
power-on setup, 11-1
timing sequence, 11-6, 11-8
warm start, 11-6, 12-1
Response time, 6-9
RET instruction, 5-15, A-24

intel.

RETI instruction, 6-1, 6-14, 6-15, A-24
Return instructions, 5-15
RL instruction, A-17
RLC instruction, A-17
ROM (on-chip), 14-1
verifying, 14-1-14-9

See also On-chip code memory, Configuration

bytes, Lock bits, Encryption array,
Signature bytes.
Rotate instructions, 5-9
RR instruction, A-17
RRC instruction, A-17
RST, 11-6, 11-7
exiting idle mode, 12-5
exiting powerdown mode, 12-6
ONCE mode, 12-7
power-on reset, 11-7
programming and verifying nonvolatile
memory, 14-3
RTWCE (Real Time WAIT CLOCK Enable) Bit,
13-12
RTWE (Real Time WAIT# Enable) Control Bit,
13-12
RXD, 7-1,10-1
mode 0, 10-4
modes 1, 2, 3, 10-6

S

SADDR, 3-17, 3-19, 10-2, 10-8, 10-9, 10-10, C-2,

C-4,C-22

INDEX

full-duplex, 10-6
given address, 10-8
half-duplex, 10-4
interrupts, 10-1, 10-8
mode 0, 10-4-10-5
modes 1, 2, 3, 10-6
multiprocessor communication, 10-7
SFRs, 3-19, 10-1, 10-2, C-4
synchronous mode, 10-4
timer 1 baud rate, 10-11, 10-12
timer 2 baud rate, 10-12-10-14
timing, mode 0, 10-5
SETB instruction, 5-11, A-23
SFRs
accessing, 3-16
address space, 3-1, 3-2
idle mode, 12-4
map, 3-17, C-2
MCS 51 architecture, 3-4
powerdown mode, 12-5
reset initialization, 11-6
reset values, 3-16
tables of, 3-18
unimplemented, 3-2, 3-16
Shift instruction, 5-9
Signal descriptions, B-3
Signature bytes
values, 14-8
verifying, 14-1, 14-8
SJMP instruction, 5-15, A-24

SADEN, 3-17, 3-19, 10-2, 10-8, 10-9, 10-10, C-2, SLL instruction, 5-9, A-17

C-4,C-23

SBUF, 3-17, 3-19, 10-2, 10-4,10-5, C-2,C-4,C-23

SCON, 3-17, 3-19, 10-2, 10-3, 10-4, 10-5, 10-6,
10-7, C-2, C-4, C-24, C-25
bit definitions, 10-3
interrupts, 6-5
Security, 14-2
Serial I/O port, 10-1-10-14
asynchronous modes, 10-6
automatic address recognition, 10-7-10-10
baud rate generator, 8-8
baud rate, mode 0, 10-4, 10-10

Software
application notes, 1-6
Source register, 5-3
SP, 3-15, 3-17, 3-18, C-2, C-3, C-25
Special function registeiSee SFRs
SPH, 3-15, 3-17, 3-18, C-2, C-3, C-26
SPX, 3-13, 3-15
SRA instruction, 5-9, A-18
SRL instruction, 5-9, A-18
State time, 2-6
SUB instruction, 5-8, A-14
SUBB instruction, 5-8, A-14

baud rate, modes 1, 2, 3, 10-6, 10-10-10-14 SWAP instruction, 5-9, A-18

broadcast address, 10-9
data frame, modes 1, 2, 3, 10-6
framing bit error detection, 10-7

T
T1.0, 7-1, 8-3

Index-7

8XC251SA, SB, SP, SQ USER’S MANUAL

T2, 7-1, 8-3
T2CON, 3-17, 3-19, 8-1, 8-2, 8-10, 8-17, 10-13, C-
2,C-4,C-27

baud rate generator, 10-12
T2EX, 7-1, 8-3, 8-11, 10-12
T2MOD, 3-17, 3-19, 8-1, 8-2, 8-10, 8-16, 13-11,
C-2,C-4,C-28
Target address, 5-4
TCON, 3-17, 3-19, 8-1, 8-2, 8-3, 8-6, 8-8, C-2, C-
4, C-29
interrupts, 6-1
Tech support, 1-7
TH2, TL2
baud rate generator, 10-12, 10-14
THx, TLx (x =0, 1, 2), 3-17, 3-19, 8-2, C-2, C-4,
C-31, C-32
Timer O, 8-3—8-8
applications, 8-9
auto-reload, 8-5
interrupt, 8-3
mode 0, 8-3
mode 1, 8-4
mode 2, 8-5
mode 3, 8-5
pulse width measurements, 8-10
Timer 1
applications, 8-9
auto-reload, 8-9
baud rate generator, 8-6
interrupt, 8-6
mode 0, 8-6
mode 1, 8-9
mode 2, 8-9
mode 3, 8-9
pulse width measurements, 8-10
Timer 2, 8-10-8-17
auto-reload mode, 8-12
baud rate generator, 8-14
capture mode, 8-11
clock out mode, 8-14
interrupt, 8-11
mode select, 8-15
Timer/counters, 8-1-8-17
external input sampling, 8-3
internal clock, 8-3
interrupts, 8-1
overview, 8-1-8-3
registers, 8-2

Index-8

intel.

SFRs, 3-19,C-4

signal descriptions, 8-3

See also Timer 0, Timer 1, Timer 2
TMOD, 3-17, 3-19, 8-1, 8-2, 8-3, 8-6, 8-7, 10-11,

C-2,C-4,C-30

Tosc, 2-6

See also Oscillator
TRAP instruction, 5-16, 6-3, 6-5, 6-15, A-25
TXD, 7-1, 10-1

mode 0, 10-4

modes 1, 2, 3, 10-6

U

UART, 10-1
UCON, 4-4-4-6
UCONFIGO, 4-2
UCONFIG1, 4-2
uD flag, 5-18, C-20

\

Vce, 11-2
during reset, 11-5
power off flag, 12-1
power-on reset, 11-7
powerdown mode, 12-5, 12-6
See also Power supply

Vcee2, 11-2

Vpp, 14-1
requirements, 14-3

Vssl, 11-2

Vss2, 11-2

W
Wait states, 4-12, 5-1, 13-8, A-1, A-11
configurable, 13-8
configuration bits, 4-12
extending ALE, 4-13, 13-10
extending RD#WR#/PSEN#, 13-8
RD#/WR#/PSEN#, 4-12, 4-13
real-time, 13-10
WAIT# (Wait State) Input, 13-2
Watchdog timer (hardware), 8-16-8-18
enabling, disabling, 8-16
in idle mode, 8-18
in powerdown mode, 8-18
initiating reset, 11-6
overflow, 8-16

int6|® INDEX

SFR (WDTRST), 3-19, C-4
WCLK (Wait Clock) Output, 13-2
WCON, 3-17, 13-11, C-2, C-3, C-32
WDTRST, 3-17, 3-19, 8-2, 8-16, C-2, C-4, C-33
World Wide Web, 1-7
WR#, 7-1
described, 13-2

X

XALE# bit, 4-13

XCH instruction, 5-10, A-22

XCHD instruction, 5-10, A-22

XRL instruction, 5-9

XTAL1, XTAL2, 11-3
capacitance loading, 11-5

Z
Z flag, 5-9, 5-19

Index-9

	8XC251SA, 8XC251SB, 8XC251SP, 8XC251SQ Embedded Microcontroller User’s Manual
	CONTENTS
	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 CompuServe Forums
	1.4.3 FaxBack Service
	1.4.4 Bulletin Board System (BBS)

	CHAPTER 2 Architectural Overview
	2.1 8XC251SA, SB, SP, SQ Architecture
	2.2 MCS 251 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.3 Interrupt Handler
	2.2.4 On-chip Code Memory
	2.2.5 On-chip RAM

	2.3 On-chip Peripherals
	2.3.1 Timer/Counters and Watchdog Timer
	2.3.2 Programmable Counter Array (PCA)
	2.3.3 Serial I/O Port

	CHAPTER 3 Address Spaces
	3.1 Address Spaces for MCS® 251 Microcontrollers
	3.1.1 Compatibility with the MCS® 51 Architecture

	3.2 8XC251SA, SB, SP, SQ Memory Space
	3.2.1 On-chip General-purpose Data RAM
	3.2.2 On-chip Code Memory (83C251SA, SB, SP, SQ/87...
	3.2.2.1 Accessing On-chip Code Memory in Region 00...

	3.2.3 External Memory

	3.3 8XC251SA, SB, SP, SQ Register File
	3.3.1 Byte, Word, and Dword Registers
	3.3.2 Dedicated Registers
	3.3.2.1 Accumulator and B Register
	3.3.2.2 Extended Data Pointer, DPX
	3.3.2.3 Extended Stack Pointer, SPX

	3.4 Special Function Registers (SFRs)

	CHAPTER 4 Device Configuration
	4.1 Configuration Overview
	4.2 Device Configuration
	4.3 The Configuration Bits
	4.4 Configuration Byte Location Selector (UCON)
	4.5 Configuring the External Memory Interface
	4.5.1 Page Mode and Nonpage Mode (PAGE#)
	4.5.2 Configuration Bits RD1:0
	4.5.2.1 RD1:0 = 00 (18 External Address Bits)
	4.5.2.2 RD1:0 = 01 (17 External Address Bits)
	4.5.2.3 RD1:0 = 10 (16 External Address Bits)
	4.5.2.4 RD1:0 = 11 (Compatible with MCS 51 Microco...

	4.5.3 Wait State Configuration Bits
	4.5.3.1 Configuration Bits WSA1:0#, WSB1:#
	4.5.3.2 Configuration Bit WSB
	4.5.3.3 Configuration Bit XALE#

	4.6 Opcode Configurations (SRC)
	4.6.1 Selecting Binary Mode or Source Mode

	4.7 Mapping On-chip Code Memory to Data Memory (EM...
	4.8 Interrupt Mode (INTR)

	CHAPTER 5 Programming
	5.1 Source Mode or Binary Mode Opcodes
	5.2 Programming Features of the MCS® 251 Architect...
	5.2.1 Data Types
	5.2.1.1 Order of Byte Storage for Words and Double...

	5.2.2 Register Notation
	5.2.3 Address Notation
	5.2.4 Addressing Modes

	5.3 Data Instructions
	5.3.1 Data Addressing Modes
	5.3.1.1 Register Addressing
	5.3.1.2 Immediate
	5.3.1.3 Direct
	5.3.1.4 Indirect
	5.3.1.5 Displacement

	5.3.2 Arithmetic Instructions
	5.3.3 Logical Instructions
	5.3.4 Data Transfer Instructions

	5.4 Bit Instructions
	5.4.1 Bit Addressing

	5.5 Control Instructions
	5.5.1 Addressing Modes for Control Instructions
	5.5.2 Conditional Jumps
	5.5.3 Unconditional Jumps
	5.5.4 Calls and Returns

	5.6 Program Status Words

	CHAPTER 6 Interrupt System
	6.1 OVERVIEW
	6.2 8XC251SA, SB, SP, SQ Interrupt Sources
	6.2.1 External Interrupts
	6.2.2 Timer Interrupts

	6.3 Programmable Counter Array (PCA) Interrupt
	6.4 SERIAL POrt Interrupt
	6.5 Interrupt Enable
	6.6 Interrupt Priorities
	6.7 Interrupt Processing
	6.7.1 Minimum Fixed Interrupt Time
	6.7.2 Variable Interrupt Parameters
	6.7.2.1 Response Time Variables
	6.7.2.2 Computation of Worst-case Latency With Var...
	6.7.2.3 Latency Calculations
	6.7.2.4 Blocking Conditions
	6.7.2.5 Interrupt Vector Cycle

	6.7.3 ISRs in Process

	CHAPTER 7 Input/Output Ports
	7.1 Input/Output port overview
	7.2 I/O Configurations
	7.3 Port 1 and Port 3
	7.4 Port 0 and Port 2
	7.5 Read-Modify-Write Instructions
	7.6 Quasi-bidirectional Port Operation
	7.7 Port Loading
	7.8 External Memory Access

	CHAPTER 8 Timer/Counters and WatchDog Timer
	8.1 Timer/Counter Overview
	8.2 Timer/Counter Operation
	8.3 Timer 0
	8.3.1 Mode 0 (13-bit Timer)
	8.3.2 Mode 1 (16-bit Timer)
	8.3.3 Mode 2 (8-bit Timer With Auto-reload)
	8.3.4 Mode 3 (Two 8-bit Timers)

	8.4 Timer 1
	8.4.1 Mode 0 (13-bit Timer)
	8.4.2 Mode 1 (16-bit Timer)
	8.4.3 Mode 2 (8-bit Timer with Auto-reload)
	8.4.4 Mode 3 (Halt)

	8.5 Timer 0/1 Applications
	8.5.1 Auto-load Setup Example
	8.5.2 Pulse Width Measurements

	8.6 Timer 2
	8.6.1 Capture Mode
	8.6.2 Auto-reload Mode
	8.6.2.1 Up Counter Operation
	8.6.2.2 Up/Down Counter Operation

	8.6.3 Baud Rate Generator Mode
	8.6.4 Clock-out Mode

	8.7 Watchdog Timer
	8.7.1 Description
	8.7.2 Using the WDT
	8.7.3 WDT During Idle Mode
	8.7.4 WDT During PowerDown

	CHAPTER 9 Programmable Counter Array
	9.1 PCA Description
	9.1.1 Alternate Port Usage

	9.2 PCA Timer/Counter
	9.3 PCA Compare/Capture Modules
	9.3.1 16-bit Capture Mode
	9.3.2 Compare Modes
	9.3.3 16-bit Software Timer Mode
	9.3.4 High-speed Output Mode
	9.3.5 PCA Watchdog Timer Mode
	9.3.6 Pulse Width Modulation Mode

	CHAPTER 10 Serial I/O Port
	10.1 Overview
	10.2 Modes of Operation
	10.2.1 Synchronous Mode (Mode 0)
	10.2.1.1 Transmission (Mode 0)
	10.2.1.2 Reception (Mode 0)

	10.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	10.2.2.1 Transmission (Modes 1, 2, 3)
	10.2.2.2 Reception (Modes 1, 2, 3)

	10.3 Framing Bit Error Detection (Modes 1, 2, and ...
	10.4 Multiprocessor Communication (Modes 2 and 3)
	10.5 Automatic Address Recognition
	10.5.1 Given Address
	10.5.2 Broadcast Address
	10.5.3 Reset Addresses

	10.6 Baud Rates
	10.6.1 Baud Rate for Mode 0
	10.6.2 Baud Rates for Mode 2
	10.6.3 Baud Rates for Modes 1 and 3
	10.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	10.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	10.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...
	10.6.3.4 Selecting Timer 2 as the Baud Rate Genera...

	CHAPTER 11 Minimum Hardware Setup
	11.1 Minimum Hardware Setup
	11.2 Electrical Environment
	11.2.1 Power and Ground Pins
	11.2.2 Unused Pins
	11.2.3 Noise Considerations

	11.3 Clock Sources
	11.3.1 On-chip Oscillator (Crystal)
	11.3.2 On-chip Oscillator (Ceramic Resonator)
	11.3.3 External Clock

	11.4 Reset
	11.4.1 Externally Initiated Resets
	11.4.2 WDT Initiated Resets
	11.4.3 Reset Operation
	11.4.4 Power-on Reset

	CHAPTER 12 Special Operating Modes
	12.1 General
	12.2 Power Control Register
	12.2.1 Serial I/O Control Bits
	12.2.2 Power Off Flag

	12.3 Idle Mode
	12.3.1 Entering Idle Mode
	12.3.2 Exiting Idle Mode

	12.4 Powerdown Mode
	12.4.1 Entering Powerdown Mode
	12.4.2 Exiting Powerdown Mode

	12.5 ON-Circuit emulation (Once) Mode
	12.5.1 Entering ONCE Mode
	12.5.2 Exiting ONCE Mode

	CHAPTER 13 External Memory Interface
	13.1 Overview
	13.2 External Bus Cycles
	13.2.1 Bus Cycle Definitions
	13.2.2 Nonpage Mode Bus Cycles
	13.2.3 Page Mode Bus Cycles

	13.3 Wait States
	13.4 External Bus Cycles with Configurable Wait St...
	13.4.1 Extending RD#/WR#/PSEN#
	13.4.2 Extending ALE

	13.5 External Bus Cycles with Real-time Wait State...
	13.5.1 Real-time WAIT# Enable (RTWE)
	13.5.2 Real-time WAIT CLOCK Enable (RTWCE)
	13.5.3 Real-time Wait State Bus Cycle Diagrams

	13.6 Configuration Byte Bus Cycles
	13.7 Port 0 and Port 2 Status
	13.7.1 Port 0 and Port 2 Pin Status in Nonpage Mod...
	13.7.2 Port 0 and Port 2 Pin Status in Page Mode

	13.8 External Memory Design Examples
	13.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External...
	13.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External...
	13.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External...
	13.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External...
	13.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External...
	13.8.5.1 An Application Requiring Fast Access to t...
	13.8.5.2 An Application Requiring Fast Access to D...

	13.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External...
	13.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External...

	CHAPTER 14 Programming and Verifying Nonvolatile M...
	14.1 General
	14.1.1 Programming Considerations for On-chip Code...
	14.1.2 EPROM Devices

	14.2 Programming and Verifying Modes
	14.3 General Setup
	14.4 Programming Algorithm
	14.5 Verify Algorithm
	14.6 Programmable Functions
	14.6.1 On-chip Code Memory
	14.6.2 Configuration Bytes
	14.6.3 Lock Bit System
	14.6.4 Encryption Array
	14.6.5 Signature Bytes

	14.7 Verifying the 83C251SA, SB, SP, SQ (ROM)

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map and Supporting Tables
	A.3 Instruction Set Summary
	A.3.1 Execution Times for Instructions that Access...
	A.3.2 Instruction Summaries � � � � �

	A.4 Instruction Descriptions

	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	GLOSSARY
	INDEX

	FIGURES
	Figure 2�1. Functional Block Diagram of the 8XC251...
	Figure 2�2. The CPU
	Figure 2�3. Clocking Definitions
	Figure 3�1. Address Spaces for MCS® 251 Microcontr...
	Figure 3�2. Address Spaces for the MCS® 51 Archite...
	Figure 3�3. Address Space Mappings MCS® 51 Archite...
	Figure 3�4. 8XC251SA, SB, SP, SQ Address Space
	Figure 3�5. Hardware Implementation of the 8XC251S...
	Figure 3�6. The Register File
	Figure 3�7. Register File Locations 0–7
	Figure 3�8. Dedicated Registers in the Register Fi...
	Figure 4�1. Configuration Array (On-chip)
	Figure 4�2. Configuration Array (External)
	Figure 4�3. Configuration Byte UCONFIG0
	Figure 4�4. Configuration Byte UCONFIG1
	Figure 4�5. Internal/External Address Mapping (RD1...
	Figure 4�6. Internal/External Address Mapping (RD1...
	Figure 4�7. Binary Mode Opcode Map
	Figure 4�8. Source Mode Opcode Map
	Figure 5�1. Word and Double-word Storage in Big En...
	Figure 5�2. Program Status Word Register
	Figure 5�3. Program Status Word 1 Register
	Figure 6�1. Interrupt Control System
	Figure 6�2. Interrupt Enable Register
	Figure 6�3. Interrupt Priority High Register
	Figure 6�4. Interrupt Priority Low Register
	Figure 6�5. The Interrupt Process
	Figure 6�6. Response Time Example #1
	Figure 6�7. Response Time Example #2
	Figure 7�1. Port 1 and Port 3 Structure
	Figure 7�2. Port 0 Structure
	Figure 7�3. Port 2 Structure
	Figure 7�4. Internal Pullup Configurations
	Figure 8�1. Basic Logic of the Timer/Counters
	Figure 8�2. Timer 0/1 in Mode 0 and Mode 1
	Figure 8�3. Timer 0/1 in Mode 2, Auto-Reload
	Figure 8�4. Timer 0 in Mode 3, Two 8-bit Timers
	Figure 8�5. TMOD: Timer/Counter Mode Control Regis...
	Figure 8�6. TCON: Timer/Counter Control Register
	Figure 8�7. Timer 2: Capture Mode
	Figure 8�8. Timer 2: Auto Reload Mode (DCEN = 0)
	Figure 8�9. Timer 2: Auto Reload Mode (DCEN = 1)
	Figure 8�10. Timer 2: Clock Out Mode
	Figure 8�11. T2MOD: Timer 2 Mode Control Register
	Figure 8�12. T2CON: Timer 2 Control Register
	Figure 9�1. Programmable Counter Array
	Figure 9�2. PCA 16-bit Capture Mode
	Figure 9�3. PCA Software Timer and High-speed Outp...
	Figure 9�4. PCA Watchdog Timer Mode
	Figure 9�5. PCA 8-bit PWM Mode
	Figure 9�6. PWM Variable Duty Cycle
	Figure 9�7. CMOD: PCA Timer/Counter Mode Register
	Figure 9�8. CCON: PCA Timer/Counter Control Regist...
	Figure 9�9. CCAPMx: PCA Compare/Capture Module Mod...
	Figure 10�1. Serial Port Block Diagram
	Figure 10�2. SCON: Serial Port Control Register
	Figure 10�3. Mode 0 Timing
	Figure 10�4. Data Frame (Modes 1, 2, and 3) �
	Figure 10�5. Timer 2 in Baud Rate Generator Mode
	Figure 11�1. Minimum Setup
	Figure 11�2. CHMOS On-chip Oscillator
	Figure 11�3. External Clock Connection
	Figure 11�4. External Clock Drive Waveforms
	Figure 11�5. Reset Timing Sequence
	Figure 12�1. Power Control (PCON) Register
	Figure 12�2. Idle and Powerdown Clock Control
	Figure 13�1. Bus Structure in Nonpage Mode and Pag...
	Figure 13�2. External Code Fetch (Nonpage Mode)
	Figure 13�3. External Data Read (Nonpage Mode)
	Figure 13�4. External Data Write (Nonpage Mode)
	Figure 13�5. External Code Fetch (Page Mode)
	Figure 13�6. External Data Read (Page Mode)
	Figure 13�7. External Data Write (Page Mode)
	Figure 13�8. External Code Fetch (Nonpage Mode, On...
	Figure 13�9. External Data Write (Nonpage Mode, On...
	Figure 13�10. External Code Fetch (Nonpage Mode, O...
	Figure 13�11. Real-time Wait State Control Registe...
	Figure 13�12. External Code Fetch/Data Read (Nonpa...
	Figure 13�13. External Data Write (Nonpage Mode, R...
	Figure 13�14. External Data Read (Page Mode, RT Wa...
	Figure 13�15. External Data Write (Page Mode, RT W...
	Figure 13�16. Configuration Byte Bus Cycles
	Figure 13�17. Bus Diagram for Example 1: 80C251SB ...
	Figure 13�18. Address Space for Example 1
	Figure 13�19. Bus Diagram for Example 2: 80C251SB ...
	Figure 13�20. Address Space for Example 2
	Figure 13�21. Bus Diagram for Example 3: 87C251SB/...
	Figure 13�22. Address Space for Example 3
	Figure 13�23. Bus Diagram for Example 4: 87C251SB/...
	Figure 13�24. Address Space for Example 4
	Figure 13�25. Bus Diagram for Example 5: 80C251SB ...
	Figure 13�26. Address Space for Examples 5 and 6
	Figure 13�27. Bus Diagram for Example 6: 80C251SB ...
	Figure 13�28. Bus Diagram for Example 7: 80C251SB ...
	Figure 14�1. Setup for Programming and Verifying N...
	Figure 14�2. Program/Verify Bus Cycles
	Figure B�1. 8XC251SA, SB, SP, SQ 44-pin PLCC Packa...
	Figure B�2. 8XC251SA, SB, SP, SQ 40-pin PDIP and C...

	TABLES
	Table 1�1. Intel Application Support Services
	Table 2�1. 8XC251SA, SB, SP, SQ Features
	Table 3�1. Address Mappings
	Table 3�2. Minimum Times to Fetch Two Bytes of Cod...
	Table 3�3. Register Bank Selection
	Table 3�4. Dedicated Registers in the Register Fil...
	Table 3�5. 8XC251SA, SB, SP, SQ SFR Map and Reset ...
	Table 3�6. Core SFRs
	Table 3�7. I/O Port SFRs
	Table 3�8. Serial I/O SFRs
	Table 3�9. Timer/Counter and Watchdog Timer SFRs
	Table 3�10. Programmable Counter Array (PCA) SFRs�...
	Table 4�1. External Addresses for Configuration Ar...
	Table 4�2. Memory Signal Selections (RD1:0)
	Table 4�3. RD#, WR#, PSEN# External Wait States
	Table 4�4. Examples of Opcodes in Binary and Sourc...
	Table 5�1. Data Types
	Table 5�2. Notation for Byte Registers, Word Regis...
	Table 5�3. Addressing Modes for Data Instructions ...
	Table 5�4. Addressing Modes for Data Instructions ...
	Table 5�5. Bit-addressable Locations
	Table 5�6. Addressing Two Sample Bits
	Table 5�7. Addressing Modes for Bit Instructions
	Table 5�8. Addressing Modes for Control Instructio...
	Table 5�9. Compare-conditional Jump Instructions
	Table 5�10. The Effects of Instructions on the PSW...
	Table 6�1. Interrupt System Pin Signals
	Table 6�2. Interrupt System Special Function Regis...
	Table 6�3. Interrupt Control Matrix�
	Table 6�4. Level of Priority
	Table 6�5. Interrupt Priority Within Level
	Table 6�6. Interrupt Latency Variables
	Table 6�7. Actual vs. Predicted Latency Calculatio...
	Table 7�1. Input/Output Port Pin Descriptions �
	Table 7�2. Instructions for External Data Moves
	Table 8�1. Timer/Counter and Watchdog Timer SFRs
	Table 8�2. External Signals�
	Table 8�3. Timer 2 Modes of Operation
	Table 9�1. PCA Special Function Registers (SFRs)�
	Table 9�2. External Signals
	Table 9�3. PCA Module Modes
	Table 10�1. Serial Port Signals
	Table 10�2. Serial Port Special Function Registers...
	Table 10�3. Summary of Baud Rates
	Table 10�4. Timer 1 Generated Baud Rates for Seria...
	Table 10�5. Selecting the Baud Rate Generator(s)
	Table 10�6. Timer 2 Generated Baud Rates
	Table 12�1. Pin Conditions in Various Modes
	Table 13�1. External Memory Interface Signals
	Table 13�2. Bus Cycle Definitions (No Wait States)...
	Table 13�3. Port 0 and Port 2 Pin Status In Normal...
	Table 14�1. Programming and Verifying Modes �
	Table 14�2. Lock Bit Function
	Table 14�3. Contents of the Signature Bytes
	Table A�1. Notation for Register Operands
	Table A�2. Notation for Direct Addresses
	Table A�3. Notation for Immediate Addressing
	Table A�4. Notation for Bit Addressing
	Table A�5. Notation for Destinations in Control In...
	Table A�6. Instructions for MCS® 51 Microcontrolle...
	Table A�7. New Instructions for the MCS® 251 Archi...
	Table A�8. Data Instructions
	Table A�9. High Nibble, Byte 0 of Data Instruction...
	Table A�10. Bit Instructions
	Table A�11. Byte 1 (High Nibble) for Bit Instructi...
	Table A�12. PUSH/POP Instructions
	Table A�13. Control Instructions
	Table A�14. Displacement/Extended MOVs
	Table A�15. INC/DEC
	Table A�16. Encoding for INC/DEC
	Table A�17. Shifts
	Table A�18. State Times to Access the Port SFRs�(C...
	Table A�19. Summary of Add and Subtract Instructio...
	Table A�20. Summary of Compare Instructions
	Table A�21. Summary of Increment and Decrement Ins...
	Table A�22. Summary of Multiply, Divide, and Decim...
	Table A�23. Summary of Logical Instructions (Conti...
	Table A�24. Summary of Move Instructions (Continue...
	Table A�25. Summary of Exchange, Push, and Pop Ins...
	Table A�26. Summary of Bit Instructions �
	Table A�27. Summary of Control Instructions (Conti...
	Table A�28. Flag Symbols
	Table B�1. PLCC/DIP Pin Assignments Listed by Func...
	Table B�2. Signal Descriptions (Continued)
	Table B�3. Memory Signal Selections (RD1:0)
	Table C�1. 8XC251SA, SB, SP, SQ SFR Map
	Table C�2. Core SFRs
	Table C�3. I/O Port SFRs
	Table C�4. Serial I/O SFRs
	Table C�5. Timer/Counter and Watchdog Timer SFRs
	Table C�6. Programmable Counter Array (PCA) SFRs��...
	Table C�7. Register File

