TOSHIBA 2SK2744

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE (π -MOS V)

2 S K 2 7 4 4

CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE **APPLICATIONS**

4 V Gate Drive

Low Drain-Source ON Resistance : $R_{DS(ON)} = 15 \,\mathrm{m}\Omega$ (Typ.)

High Forward Transfer Admittance : $|Y_{fS}| = 27 \text{ S}$ (Typ.)

Low Leakage Current : $I_{DSS} = 100 \,\mu\text{A}$ (Max.) ($V_{DS} = 50 \,\text{V}$)

: $V_{th} = 1.5 \sim 3.5 \text{ V}$ Enhancement-Mode

 $(V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA})$

MAXIMUM RATINGS (Ta = 25°C)

CHARACTE	SYMBOL	RATING	UNIT	
Drain-Source Voltage	$v_{ m DSS}$	50	V	
Drain-Gate Voltage ($V_{ m DGR}$	50	V	
Gate-Source Voltage	v_{GSS}	±20	V	
Drain Current	DC (Note 1)	$I_{\mathbf{D}}$	45	Α
	Pulse (Note 1)	I_{DP}	180	Α
Drain Power Dissipat	P_{D}	125	W	
Single Pulse Avalanc	E_{AS}	95	mJ	
Avalanche Current	I_{AR}	45	Α	
Repetitive Avalanche	EAR	12.5	mJ	
Channel Temperature	$\mathrm{T_{ch}}$	150	$^{\circ}\mathrm{C}$	
Storage Temperature	$\mathrm{T_{stg}}$	-55~150	°C	

Unit in mm 15.9 max 1.0 + 0.3 5.45±0.2 5.45±0.2 DRAIN (HEAT SINK) 3. SOURCE **JEDEC JEITA** SC-65 **TOSHIBA** 2-16C1B

Weight: 4.6 g (Typ.)

THERMAL CHARACTERISTICS

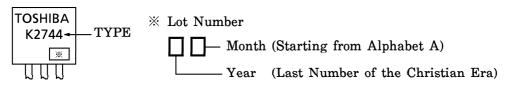
CHARACTERISTIC	SYMBOL	MAX.	UNIT
Thermal Resistance, Channel to Case	R _{th (ch-c)}	1.0	°C/W
Thermal Resistance, Channel to Ambient	R _{th (ch-a)}	50	°C/W

(Note 1): Please use devices on condition that the channel temperature is below 150°C.

(Note 2): $V_{DD}=25\,V$, $T_{ch}=25^{\circ}C$ (initial), $L=58\,\mu\text{H}$, $R_{G}=25\,\Omega$, $I_{AR}=45\,A$ (Note 3): Repetitive rating; Pulse Width Limited by maximum junction temperature.

This transistor is an electrostatic sensitive device. Please handle with caution.

2002-08-12


ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARA	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	e Current	I_{GSS}	$V_{GS} = \pm 16 V, \ V_{DS} = 0 V$	_	_	±10	μ A
Drain Cut-off	Current	$I_{ m DSS}$	$V_{DS} = 50 \text{ V}, \ V_{GS} = 0 \text{ V}$	_	_	100	μ A
Drain-Source Voltage	Breakdown		$I_{ m D} = 10 { m mA}, \; { m V}_{ m GS} = 0 { m V}$	50	_	_	V
Gate Thresho	ld Voltage	$V_{ m th}$	$V_{ m DS} = 10 m V, I_{ m D} = 1 mA$	1.5	_	3.5	V
Drain-Source	ON Resistance	R _{DS} (ON)	$V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}$	_	15	20	$\mathbf{m}\Omega$
Forward Tran Admittance	nsfer	Y _{fs}	$V_{ m DS} = 10 \ m V, \ I_{ m D} = 25 \ m A$	15	27	_	S
Input Capacitance Reverse Transfer Capacitance		$\mathrm{c}_{\mathrm{iss}}$	$V_{ m DS} = 10 m V, \ V_{ m GS} = 0 m V, \ f = 1 MHz$	_	2300	_	pF
		C_{rss}		_	420	_	
Output Capac	Output Capacitance			_	1200	_	
Switching Time Fa	Rise Time	${ m t_r}$	V_{GS} V_{OV} V_{OUT} V_{OUT	_	30	_	
	Turn-on Time	t_{on}		_	45	_	ns
	Fall Time	t_f		_	80	_	115
	Turn-off Time	$t_{ m off}$		_	230	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	$V_{DD} = 40 \text{ V}, V_{GS} = 10 \text{ V},$	_	68	_	nC
Gate-Source Charge		$\mathbf{Q}_{\mathbf{g}\mathbf{s}}$	$I_D = 45 \text{ A}$		20	_] "[]
Gate-Drain ("Miller") Charge		\mathbf{Q}_{gd}			48	_	

SOURCE-DRAIN RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current (Note 1)	$I_{ m DR}$	_	_	_	45	A
Pulse Drain Reverse Current (Note 1)	${ m I}_{ m DRP}$	_	_	_	180	A
Forward Voltage (Diode)	$v_{ m DSF}$	$I_{DR} = 45 \text{ A}, \ V_{GS} = 05 \text{V}$	_	_	-1.8	V
Reverse Recovery Time	${ m t_{rr}}$	$I_{DR} = 455A, V_{GS} = 05V$	_	130		ns
Reverse Recovery Charge	$Q_{\mathbf{rr}}$	$\mathrm{dI}_{\mathrm{DR}}$ / $\mathrm{dt}=50\mathrm{A}$ / $\mu\mathrm{s}$	_	0.3	_	nC

MARKING

2 2002-08-12

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.