No.3165

2SK1236

N-Channel GaAs MES FET

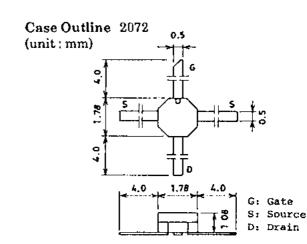
12GHz-Band Local Oscillator, Amplifier Applications

Features

· Ceramic package

SANYO

· Adoption of high reliable protection film


Absolute Maximum Ratings at Ta = 25°C				
Drain to Source Voltage	v_{DS}			
Gate to Source Voltage	v_{GS}			
Drain Current	$ m I_D$			
Allowable Power Dissipation	${ m P}_{ m D}$			
Junction Temperature	$\mathbf{T}\mathbf{j}$			
Storage Temperature	Tstg			

		unit
	6	v
-65 to +	/ 5	ν
	100	mΑ
And September 1	300	mW
A STATE OF THE STA	150	°C
-∕65 to +	- 150	°C

Electrical Characteristics at Ta = 2
Gate to Drain Breakdown Voltage
Gate Cutoff Current
Drain Current
Gate to Source Cutoff Voltage
Forward Transfer Admittance
Noise Figure
Associated Gain
Maximum Available Power Gaip 🥖
Maximum Oscillation Frequency
N. N.

25	-	min	typ	max	unit
!	$V_{(BR)GDS}/I_G = -10\mu A/V_{DS} = 0V//$	 5			ν
	I _{GSS}			-10	μΑ
	$I_{DSS}//V_{DS}=3V_{VGS}=0V/$	20		90	mΑ
	$V_{GS(dII)} V_{DS} = 3V J_D = 190 \mu \Lambda$	-0.5		-5	v
	$ y_{fs} $ $V_{DS} = 3V, l_D = 10mA$	20	40		mS
, gil	$NF \qquad V_{DS} = 3V, I_D = 10mA, f = 12GH$	lz	2	2.8	đВ
ericinetic	Ga $V_{DS} = 3V, I_D = 10 \text{ mA}, f = 12 \text{GHz}$	Iz 5.3	6.3		dB
A. A	MAG $V_{DS}=3V,I_D=30\text{mA}, f=12\text{GH}$	łz	7		dB
F	f max $V_{DS} = 3V, I_D = 30 \text{mA}$		50		GHz
	200 J. J.				

The application circuit diagrams and execuit constants herein are included as an axample and provide no gassantee for designing equipment to be mass-produced. The information herein is believed to be accurate and reliable. However, no responsibility is assumed by SANYO for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

Specifications and information herein are subject to change without notice.