2N6520 ## **High Voltage Transistor** - Collector-Emitter Voltage: V_{CEO}= -350V Collector Dissipation: P_C (max)=625mW Complement to 2N6517 ### 1. Emitter 2. Base 3. Collector ## **PNP Epitaxial Silicon Transistor** ## **Absolute Maximum Ratings** T_a=25°C unless otherwise noted | Symbol | Parameter | Value | Units | |------------------|-----------------------------|-----------|-------| | V _{CBO} | Collector-Base Voltage | -350 | V | | V _{CEO} | Collector-Emitter Voltage | -350 | V | | V _{EBO} | Emitter-Base Voltage | -5 | V | | I _C | Collector Current | -500 | mA | | I _B | Base Current | -250 | mA | | P _C | Collector Power Dissipation | 0.625 | W | | | Derate above 25 | 5 | mW/°C | | T _J | Junction Temperature | 50 | °C | | T _{STG} | Storage Temperature | -55 ~ 150 | °C | ## **Electrical Characteristics** T_a =25°C unless otherwise noted | Symbol | Parameter | Test Condition | Min. | Max. | Units | |-----------------------|---------------------------------------|--|----------------------------|-------------------------------|-------------| | BV _{CBO} | Collector-Base Breakdown Voltage | I _C = -100μA, I _E =0 | -350 | | V | | BV _{CEO} | * Collector-Emitter Breakdown Voltage | I _C = -1mA, I _B =0 | -350 | | V | | BV _{EBO} | Emitter-Base Breakdown Voltage | I _E = -10μA, I _C =0 | | | V | | I _{CBO} | Collector Cut-off Current | V _{CB} = -250V, I _E =0 -50 | | -50 | nA | | I _{EBO} | Emitter Cut-off Current | V _{EB} = -4V, I _C =0 | | -50 | nA | | h _{FE} | * DC Current Gain | V_{CE} = -10V, I_{C} = -1mA
V_{CE} = -10V, I_{C} = -10mA
V_{CE} = -10V, I_{C} = -30mA
V_{CE} = -10V, I_{C} = -50mA
V_{CE} = -10V, I_{C} = -100mA | 20
30
30
20
15 | 200
200 | | | V _{CE} (sat) | Collector-Emitter Saturation Voltage | I _C = -10mA, I _B = -1mA
I _C = -20mA, I _B = -2mA
I _C = -30mA, I _B = -3mA
I _C = -50mA, I _B = -5mA | | -0.30
-0.35
-0.50
-1 | V
V
V | | V _{BE} (sat) | Base-Emitter Saturation Voltage | I _C = -10mA, I _B = -1mA
I _C = -20mA, I _B = -2mA
I _C = -30mA, I _B = -3mA | | -0.75
-0.85
-0.90 | V
V
V | | V _{BE} (on) | Base-Emitter On Voltage | V _{CE} = -10V, I _C = -100mA | | -2 | V | | f _T | * Current Gain Bandwidth Product | V _{CE} = -20V, I _C = -10mA, f=20MHz | 40 | 200 | MHz | | C _{ob} | Output Capacitance | V _{CB} = -20V, I _E =0, f=1MHz | | 6 | pF | | C _{EB} | Emitter-Base Capacitance | V _{EB} = -0.5V, I _C =0, f=1MHz | | 100 | pF | | t _{ON} | Turn On Time | V_{BE} (off)= -2V, V_{CC} = -100V I_{C} = -50mA, I_{B1} = -10mA | | 200 | ns | | t _{OFF} | Turn Off Time | V _{CC} = -100V, I _C = -50mA 3.5
I _{B1} =I _{B2} = -10mA | | ns | | ^{*} Pulse Test: Pulse Width≤300μs, Duty Cycle≤2% # **Typical Characteristics** Figure 1. DC current Gain Figure 2. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage Figure 3. Turn-On Time Figure 4. Turn-Off Time Figure 5. Temperature Coefficients Figure 6. Capacitance ©2002 Fairchild Semiconductor Corporation Rev. A2, August 2002 # Typical Characteristics (Continued) Figure 7. Current Gain Bandwidth Product # **Package Dimensions** TO-92 ### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | ACEx™ | FACT™ | ImpliedDisconnect™ | PACMAN™ | SPM™ | |--------------------------------------|---------------------|------------------------|--------------------------|-----------------------| | ActiveArray™ | FACT Quiet series™ | ISOPLANAR™ | POP™ | Stealth™ | | Bottomless™ | FAST [®] | LittleFET™ | Power247™ | SuperSOT™-3 | | CoolFET™ | FASTr™ | MicroFET™ | PowerTrench [®] | SuperSOT™-6 | | $CROSSVOLT^{TM}$ | FRFET™ | MicroPak™ | QFET™ | SuperSOT™-8 | | DOME™ | GlobalOptoisolator™ | MICROWIRE™ | QS™ | SyncFET™ | | EcoSPARK™ | GTO™ | MSX™ | QT Optoelectronics™ | TinyLogic™ | | E ² CMOS™ | HiSeC™ | MSXPro™ | Quiet Series™ | TruTranslation™ | | EnSigna™ | I^2C^{TM} | OCX^{TM} | RapidConfigure™ | UHC™ | | Across the board. Around the world.™ | | OCXPro™ | RapidConnect™ | UltraFET [®] | | The Power Franchise™ | | OPTOLOGIC [®] | SILENT SWITCHER® | VCX TM | | Programmable Active Droop™ | | OPTOPLANAR™ | SMART START™ | | #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. ### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### **PRODUCT STATUS DEFINITIONS** ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or In
Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |