High-Voltage — **High Power Transistors**

... designed for use in high power audio amplifier applications and high voltage switching regulator circuits.

High Collector Emitter Sustaining Voltage —
 VCEO(sus) = 120 Vdc — 2N5630, 2N6030
 = 140 Vdc — 2N5631, 2N6031

High DC Current Gain — @ I_C = 8.0 Adc
 h_{FE} = 20 (Min) — 2N5630, 2N6030
 = 15 (Min) — 2N5631, 2N6031

 Low Collector–Emitter Saturation Voltage — V_{CE(sat)} = 1.0 Vdc (Max) @ I_C = 10 Adc

MAXIMUM RATINGS (1)

Rating	Symbol	2N5630 2N6030	2N5631 2N6031	Unit
Collector–Emitter Voltage	VCEO	120	140	Vdc
Collector-Base Voltage	VCB	120	140	Vdc
Emitter–Base Voltage	V _{EB}	7.0		Vdc
Collector Current — Continuous Peak	IC	16 20		Adc
Base Current — Continuous	ΙΒ	5.0		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	200 1.14		Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS (1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	0.875	°C/W

⁽¹⁾ Indicates JEDEC Registered Data.

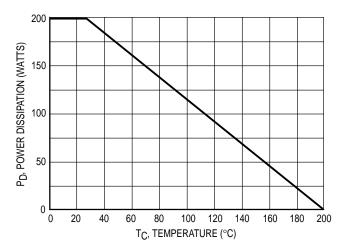


Figure 1. Power Derating

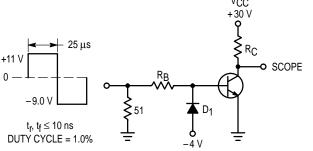
Safe Area Curves are indicated by Figure 5. All Limits are applicable and must be observed.

NPN 2**N**5630

2N5631 PNP 2N6030

2N6031

16 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
100-120-140 VOLTS
200 WATTS


CASE 1-07 TO-204AA (TO-3)

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

	Symbol	Min	Max	Unit
				•
2N5630, 2N6030 2N5631, 2N6031	VCEO(sus)	120 140	_	Vdc
2N5630, 2N6030 2N5631, 2N6031	ICEO		2.0 2.0	mAdc
	ICEX		2.0 7.0	mAdc
	I _{CBO}	_	2.0	mAdc
	IEBO	_	5.0	mAdc
2N5630, 2N6030 2N5631, 2N6031 All Types	hFE	20 15 4.0	80 60 —	_
All Types	VCE(sat)		1.0 2.0	Vdc
	V _{BE(sat)}	_	1.8	Vdc
	V _{BE(on)}	_	1.5	Vdc
				•
	fΤ	1.0	_	MHz
2N5630, 31 2N6030, 31	C _{ob}		500 1000	pF
	h _{fe}	15	_	_
	2N5631, 2N6031 2N5630, 2N6030 2N5631, 2N6030 2N5631, 2N6031 All Types All Types	2N5630, 2N6030 2N5631, 2N6031 CEO	2N5630, 2N6030 2N5631, 2N6031 CEO	2N5630, 2N6030 2N5631, 2N6031 CEO

^{*} Indicates JEDEC Registered Data.

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$

 R_B and R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS D_1 MUST BE FAST RECOVERY TYPE, e.g.: $1N5825~USED~ABOVE~I_B\approx 100~mA \\ MSD6100~USED~BELOW~I_B\approx 100~mA$

For PNP test circuit, reverse all polarities and D1.

Figure 2. Switching Times Test Circuit

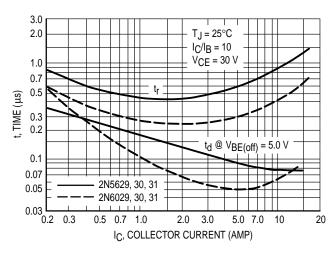


Figure 3. Turn-On Time

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \geq 2.0%.

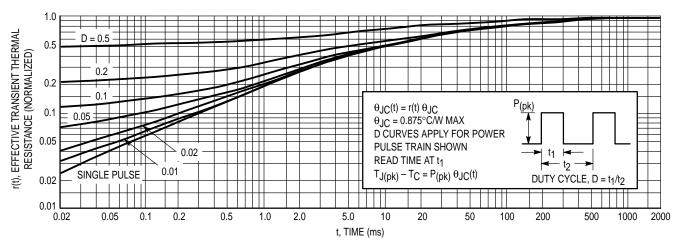


Figure 4. Thermal Response

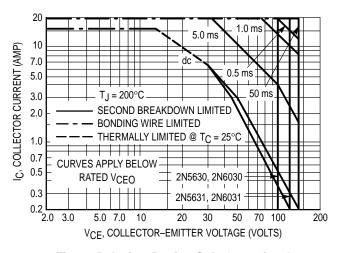


Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\text{C}} - V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 200^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 200^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

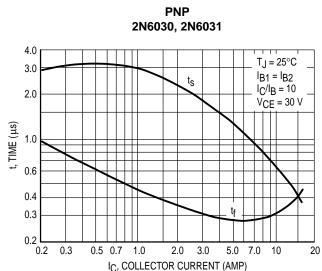
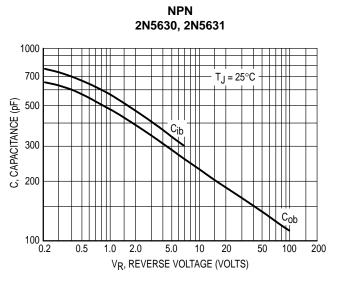



Figure 6. Turn-Off Time

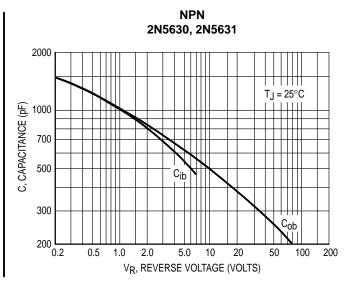
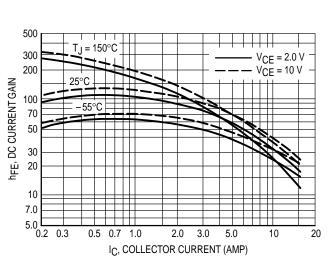



Figure 7. Capacitance

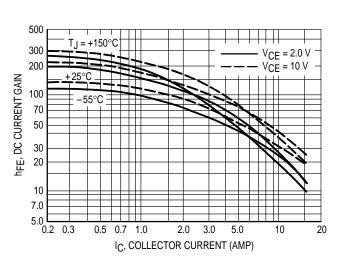
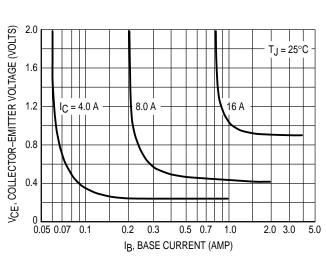



Figure 8. DC Current Gain

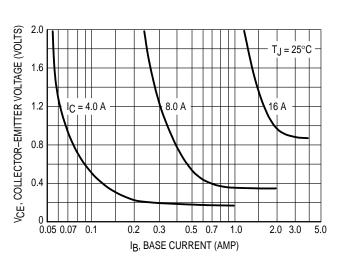


Figure 9. Collector Saturation Region

PACKAGE DIMENSIONS

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37 REF		
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
E	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665	BSC	16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
V	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

CASE 1-07 TO-204AA (TO-3) ISSUE Z

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

