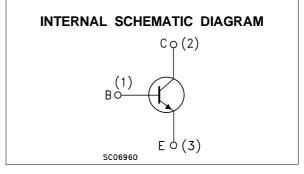

2N5320


SMALL SIGNAL NPN TRANSISTOR

DESCRIPTION

The 2N5320 is a silicon Epitaxial Planar NPN transistor in Jedec TO-39 metal case. It is especially intended for high-voltage medium power application in industrial and commercial equipments.

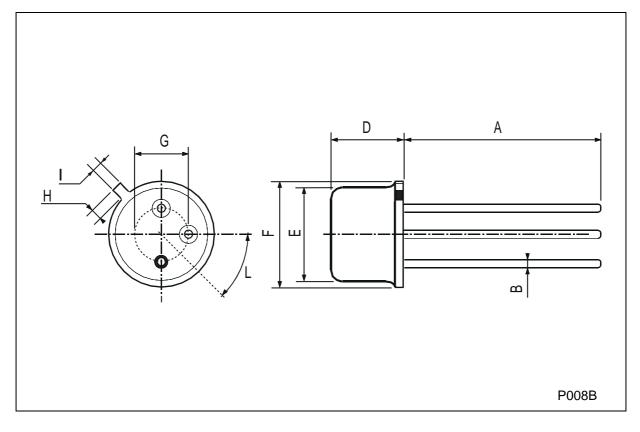
The complementary PNP type is the 2N5322

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	100	V
V_{CEV}	Collector-Emitter Voltage (V _{BE} = 1.5V)	100	V
VCEO	Collector-Emitter Voltage ($I_B = 0$)	75	V
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$	6	V
Ic	Collector Current	1.2	А
I _{CM}	Collector Peak Current	2	Α
Ι _Β	Base Current	1	Α
P _{tot}	Total Dissipation at T _{amb} = 25 °C	1	W
Ptot	Total Dissipation at $T_c = 25 \ ^{\circ}C$	10	W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max Operating Junction Temperature	175	°C

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-Case	15	°C/W
R _{thi-amb}	Max	150	°C/W
,	Thermal Resistance Junction-Ambient Max		


ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ісво	Collector Cut-off Current (I _E = 0)	V _{CB} = 80 V			0.5	μA
I _{EBO}	Collector Cut-off Current ($I_c = 0$)	$V_{EB} = 5 V$		0.1		μA
V _{(BR)CEV}	Collector-Emitter Breakdown Voltage (V _{BE} = 1.5V)	I _C = 100 μA	100			V
$V_{(BR)CEO^*}$	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	75			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 100 μA	6			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 500 mA I _B = 50 mA			0.5	V
$V_{BE}*$	Base-Emitter Voltage	$I_{C} = 500 \text{ mA}$ $V_{CE} = 4 \text{ V}$			1.1	V
h _{FE} *	DC Current Gain		30 10		130	
f⊤	Transition Frequency	$I_C = 50 \text{ mA} V_{CE} = 4 \text{ V} f = 10 \text{ MHz}$	50			MHz
t _{on}	Turn-on Time				80	ns
t _{off}	Turn-off Time	$ I_C = 500 \text{ mA} V_{CC} = 30 \text{ V} \\ I_{B1} = -I_{B2} = 50 \text{ mA} $			800	ns

* Pulsed: Pulse duration = 300 μ s, duty cycle = 1 %

	mm			inch	
MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
12.7			0.500		
		0.49			0.019
		6.6			0.260
		8.5			0.334
		9.4			0.370
5.08			0.200		
		1.2			0.047
		0.9			0.035
	12.7	12.7	12.7 0.49 0.49 6.6 8.5 9.4 5.08 1.2	12.7 0.500 12.7 0.49 0.49 0.49 6.6 0.49 8.5 0.200 5.08 0.200 1.2 0.200	12.7 0.500 12.7 0.49 0.49 0.49 6.6 0.49 8.5 0.40 9.4 0.200 5.08 1.2

A77

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

